Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 72
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Biosystems ; 242: 105255, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38901165

RESUMO

In this last article of the trilogy, the unified biothermokinetic theory of ATP synthesis developed in the previous two papers is applied to a major problem in comparative physiology, biochemistry, and ecology-that of metabolic scaling as a function of body mass across species. A clear distinction is made between intraspecific and interspecific relationships in energy metabolism, clearing up confusion that had existed from the very beginning since Kleiber first proposed his mouse-to-elephant rule almost a century ago. It is shown that the overall mass exponent of basal/standard metabolic rate in the allometric relationship [Formula: see text] is composed of two parts, one emerging from the relative intraspecific constancy of the slope (b), and the other (b') arising from the interspecific variation of the mass coefficient, a(M) with body size. Quantitative analysis is shown to reveal the hidden underlying relationship followed by the interspecific mass coefficient, a(M)=P0M0.10, and a universal value of P0=3.23 watts, W is derived from empirical data on mammals from mouse to cattle. The above relationship is shown to be understood only within an evolutionary biological context, and provides a physiological explanation for Cope's rule. The analysis also helps in fundamentally understanding how variability and a diversity of scaling exponents arises in allometric relations in biology and ecology. Next, a molecular-level understanding of the scaling of metabolism across mammalian species is shown to be obtained by consideration of the thermodynamic efficiency of ATP synthesis η, taking mitochondrial proton leak as a major determinant of basal metabolic rate in biosystems. An iterative solution is obtained by solving the mathematical equations of the biothermokinetic ATP theory, and the key thermodynamic parameters, e.g. the degree of coupling q, the operative P/O ratio, and the metabolic efficiency of ATP synthesis η are quantitatively evaluated for mammals from rat to cattle. Increases in η (by ∼15%) over a 2000-fold body size range from rat to cattle, primarily arising from an ∼3-fold decrease in the mitochondrial H+ leak rate are quantified by the unified ATP theory. Biochemical and mechanistic consequences for the interpretation of basal metabolism, and the various molecular implications arising are discussed in detail. The results are extended to maximum metabolic rate, and interpreted mathematically as a limiting case of the general ATP theory. The limitations of the analysis are pointed out. In sum, a comprehensive quantitative analysis based on the unified biothermokinetic theory of ATP synthesis is shown to solve a central problem in biology, physiology, and ecology on the scaling of energy metabolism with body size.


Assuntos
Trifosfato de Adenosina , Metabolismo Energético , Mamíferos , Mitocôndrias , Termodinâmica , Animais , Trifosfato de Adenosina/metabolismo , Metabolismo Energético/fisiologia , Mitocôndrias/metabolismo , Mamíferos/metabolismo , Especificidade da Espécie , Camundongos , Tamanho Corporal/fisiologia , Modelos Biológicos , Bovinos
2.
Biosystems ; 240: 105228, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38735525

RESUMO

The nonequilibrium coupled processes of oxidation and ATP synthesis in the fundamental process of oxidative phosphorylation (OXPHOS) are of vital importance in biosystems. These coupled chemical reaction and transport bioenergetic processes using the OXPHOS pathway meet >90% of the ATP demand in aerobic systems. On the basis of experimentally determined thermodynamic OXPHOS flux-force relationships and biochemical data for the ternary system of oxidation, ion transport, and ATP synthesis, the Onsager phenomenological coefficients have been computed, including an estimate of error. A new biothermokinetic theory of energy coupling has been formulated and on its basis the thermodynamic parameters, such as the overall degree of coupling, q and the phenomenological stoichiometry, Z of the coupled system have been evaluated. The amount of ATP produced per oxygen consumed, i.e. the actual, operating P/O ratio in the biosystem, the thermodynamic efficiency of the coupled reactions, η, and the Gibbs free energy dissipation, Φ have been calculated and shown to be in agreement with experimental data. At the concentration gradients of ADP and ATP prevailing under state 3 physiological conditions of OXPHOS that yield Vmax rates of ATP synthesis, a maximum in Φ of ∼0.5J(hmgprotein)-1, corresponding to a thermodynamic efficiency of ∼60% for oxidation on succinate, has been obtained. Novel mechanistic insights arising from the above have been discussed. This is the first report of a 3 × 3 system of coupled chemical reactions with transport in a biological context in which the phenomenological coefficients have been evaluated from experimental data.


Assuntos
Trifosfato de Adenosina , Metabolismo Energético , Fosforilação Oxidativa , Termodinâmica , Trifosfato de Adenosina/metabolismo , Metabolismo Energético/fisiologia , Oxirredução , Modelos Biológicos , Cinética , Difosfato de Adenosina/metabolismo , Humanos
3.
Life (Basel) ; 14(2)2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38398709

RESUMO

How Nature discovered genetic coding is a largely ignored question, yet the answer is key to explaining the transition from biochemical building blocks to life. Other, related puzzles also fall inside the aegis enclosing the codes themselves. The peptide bond is unstable with respect to hydrolysis. So, it requires some form of chemical free energy to drive it. Amino acid activation and acyl transfer are also slow and must be catalyzed. All living things must thus also convert free energy and synchronize cellular chemistry. Most importantly, functional proteins occupy only small, isolated regions of sequence space. Nature evolved heritable symbolic data processing to seek out and use those sequences. That system has three parts: a memory of how amino acids behave in solution and inside proteins, a set of code keys to access that memory, and a scoring function. The code keys themselves are the genes for cognate pairs of tRNA and aminoacyl-tRNA synthetases, AARSs. The scoring function is the enzymatic specificity constant, kcat/kM, which measures both catalysis and specificity. The work described here deepens the evidence for and understanding of an unexpected consequence of ancestral bidirectional coding. Secondary structures occur in approximately the same places within antiparallel alignments of their gene products. However, the polar amino acids that define the molecular surface of one are reflected into core-defining non-polar side chains on the other. Proteins translated from base-paired coding strands fold up inside out. Bidirectional genes thus project an inverted structural duality into the proteome. I review how experimental data root the scoring functions responsible for the origins of coding and catalyzed activation of unfavorable chemical reactions in that duality.

4.
Biosystems ; 236: 105134, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38301737

RESUMO

The nonequilibrium coupled processes of oxidation and ATP synthesis in the biological process of oxidative phosphorylation (OXPHOS) are fundamental to all life on our planet. These steady-state energy transduction processes ‒ coupled by proton and anion/counter-cation concentration gradients in the OXPHOS pathway ‒ generate ∼95 % of the ATP requirement of aerobic systems for cellular function. The rapid energy cycling and homeostasis of metabolites involved in this coupling are shown to be responsible for maintenance and regulation of stable nonequilibrium states, the latter first postulated in pioneering biothermodynamics work by Ervin Bauer between 1920 and 1935. How exactly does this occur? This is shown to be answered by molecular considerations arising from Nath's torsional mechanism of ATP synthesis and two-ion theory of energy coupling developed in 25 years of research work on the subject. A fresh analysis of the biological thermodynamics of coupling that goes beyond the previous work of Stucki and others and shows how the system functions at the molecular level has been carried out. Thermodynamic parameters, such as the overall degree of coupling, q of the coupled system are evaluated for the state 4 to state 3 transition in animal mitochondria with succinate as substrate. The actual or operative P to O ratio, the efficiency of the coupled reactions, η, and the Gibbs energy dissipation, Φ have been calculated and shown to be in good agreement with experimental data. Novel mechanistic insights arising from the above have been discussed. A fourth law/principle of thermodynamics is formulated for a sub-class of physical and biological systems. The critical importance of constraints and time-varying boundary conditions for function and regulation is discussed in detail. Dynamic internal structural changes essential for torsional energy storage within the γ-subunit in a single molecule of the FOF1-ATP synthase and its transduction have been highlighted. These results provide a molecular-level instantiation of Ervin Bauer's pioneering concepts in biological thermodynamics.


Assuntos
Trifosfato de Adenosina , Fosforilação Oxidativa , Animais , Trifosfato de Adenosina/metabolismo , Termodinâmica , Prótons , Física
5.
ACS Nano ; 17(15): 14253-14282, 2023 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-37459320

RESUMO

The coupled interactions among the fundamental carriers of charge, heat, and electromagnetic fields at interfaces and boundaries give rise to energetic processes that enable a wide array of technologies. The energy transduction among these coupled carriers results in thermal dissipation at these surfaces, often quantified by the thermal boundary resistance, thus driving the functionalities of the modern nanotechnologies that are continuing to provide transformational benefits in computing, communication, health care, clean energy, power recycling, sensing, and manufacturing, to name a few. It is the purpose of this Review to summarize recent works that have been reported on ultrafast and nanoscale energy transduction and heat transfer mechanisms across interfaces when different thermal carriers couple near or across interfaces. We review coupled heat transfer mechanisms at interfaces of solids, liquids, gasses, and plasmas that drive the resulting interfacial heat transfer and temperature gradients due to energy and momentum coupling among various combinations of electrons, vibrons, photons, polaritons (plasmon polaritons and phonon polaritons), and molecules. These interfacial thermal transport processes with coupled energy carriers involve relatively recent research, and thus, several opportunities exist to further develop these nascent fields, which we comment on throughout the course of this Review.

6.
J Gen Appl Microbiol ; 69(2): 68-78, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37394433

RESUMO

In thermophilic microorganisms, c-type cytochrome (cyt) proteins mainly function in the respiratory chain as electron carriers. Genome analyses at the beginning of this century revealed a variety of genes harboring the heme c motif. Here, we describe the results of surveying genes with the heme c motif, CxxCH, in a genome database comprising four strains of Thermus thermophilus, including strain HB8, and the confirmation of 19 c-type cytochromes among 27 selected genes. We analyzed the 19 genes, including the expression of four, by a bioinformatics approach to elucidate their individual attributes. One of the approaches included an analysis based on the secondary structure alignment pattern between the heme c motif and the 6th ligand. The predicted structures revealed many cyt c domains with fewer ß-strands, such as mitochondrial cyt c, in addition to the ß-strand unique to Thermus inserted in cyt c domains, as in T. thermophilus cyt c552 and caa3 cyt c oxidase subunit IIc. The surveyed thermophiles harbor potential proteins with a variety of cyt c folds. The gene analyses led to the development of an index for the classification of cyt c domains. Based on these results, we propose names for T. thermophilus genes harboring the cyt c fold.


Assuntos
Citocromos , Thermus thermophilus , Thermus thermophilus/genética , Thermus thermophilus/metabolismo , Transporte de Elétrons , Citocromos/metabolismo , Thermus/metabolismo , Complexo IV da Cadeia de Transporte de Elétrons/genética , Complexo IV da Cadeia de Transporte de Elétrons/química , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo
7.
Front Chem ; 11: 1058500, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37324562

RESUMO

F1-ATPase is a universal multisubunit enzyme and the smallest-known motor that, fueled by the process of ATP hydrolysis, rotates in 120o steps. A central question is how the elementary chemical steps occurring in the three catalytic sites are coupled to the mechanical rotation. Here, we performed cold chase promotion experiments and measured the rates and extents of hydrolysis of preloaded bound ATP and promoter ATP bound in the catalytic sites. We found that rotation was caused by the electrostatic free energy change associated with the ATP cleavage reaction followed by Pi release. The combination of these two processes occurs sequentially in two different catalytic sites on the enzyme, thereby driving the two rotational sub-steps of the 120o rotation. The mechanistic implications of this finding are discussed based on the overall energy balance of the system. General principles of free energy transduction are formulated, and their important physical and biochemical consequences are analyzed. In particular, how exactly ATP performs useful external work in biomolecular systems is discussed. A molecular mechanism of steady-state, trisite ATP hydrolysis by F1-ATPase, consistent with physical laws and principles and the consolidated body of available biochemical information, is developed. Taken together with previous results, this mechanism essentially completes the coupling scheme. Discrete snapshots seen in high-resolution X-ray structures are assigned to specific intermediate stages in the 120o hydrolysis cycle, and reasons for the necessity of these conformations are readily understood. The major roles played by the "minor" subunits of ATP synthase in enabling physiological energy coupling and catalysis, first predicted by Nath's torsional mechanism of energy transduction and ATP synthesis 25 years ago, are now revealed with great clarity. The working of nine-stepped (bMF1, hMF1), six-stepped (TF1, EF1), and three-stepped (PdF1) F1 motors and of the α3ß3γ subcomplex of F1 is explained by the same unified mechanism without invoking additional assumptions or postulating different mechanochemical coupling schemes. Some novel predictions of the unified theory on the mode of action of F1 inhibitors, such as sodium azide, of great pharmaceutical importance, and on more exotic artificial or hybrid/chimera F1 motors have been made and analyzed mathematically. The detailed ATP hydrolysis cycle for the enzyme as a whole is shown to provide a biochemical basis for a theory of "unisite" and steady-state multisite catalysis by F1-ATPase that had remained elusive for a very long time. The theory is supported by a probability-based calculation of enzyme species distributions and analysis of catalytic site occupancies by Mg-nucleotides and the activity of F1-ATPase. A new concept of energy coupling in ATP synthesis/hydrolysis based on fundamental ligand substitution chemistry has been advanced, which offers a deeper understanding, elucidates enzyme activation and catalysis in a better way, and provides a unified molecular explanation of elementary chemical events occurring at enzyme catalytic sites. As such, these developments take us beyond binding change mechanisms of ATP synthesis/hydrolysis proposed for oxidative phosphorylation and photophosphorylation in bioenergetics.

9.
Biophys J ; 122(10): 1762-1771, 2023 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-37056051

RESUMO

Studies of biological transport frequently neglect the explicit statistical correlations among particle site occupancies (i.e., they use a mean-field approximation). Neglecting correlations sometimes captures biological function, even for out-of-equilibrium and interacting systems. We show that neglecting correlations fails to describe free energy transduction, mistakenly predicting an abundance of slippage and energy dissipation, even for networks that are near reversible and lack interactions among particle sites. Interestingly, linear charge transport chains are well described without including correlations, even for networks that are driven and include site-site interactions typical of biological electron transfer chains. We examine three specific bioenergetic networks: a linear electron transfer chain (as found in bacterial nanowires), a near-reversible electron bifurcation network (as in complex III of respiration and other recently discovered structures), and a redox-coupled proton pump (as in complex IV of respiration).


Assuntos
Complexo IV da Cadeia de Transporte de Elétrons , Prótons , Oxirredução , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Metabolismo Energético , Bombas de Próton , Transporte de Elétrons , Transporte Biológico
10.
Annu Rev Biophys ; 52: 525-551, 2023 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-36791746

RESUMO

Hybrid quantum mechanical/molecular mechanical (QM/MM) methods have become indispensable tools for the study of biomolecules. In this article, we briefly review the basic methodological details of QM/MM approaches and discuss their applications to various energy transduction problems in biomolecular machines, such as long-range proton transports, fast electron transfers, and mechanochemical coupling. We highlight the particular importance for these applications of balancing computational efficiency and accuracy. Using several recent examples, we illustrate the value and limitations of QM/MM methodologies for both ground and excited states, as well as strategies for calibrating them in specific applications. We conclude with brief comments on several areas that can benefit from further efforts to make QM/MM analyses more quantitative and applicable to increasingly complex biological problems.


Assuntos
Transporte Biológico , Fenômenos Físicos
11.
Angew Chem Int Ed Engl ; 62(23): e202219076, 2023 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-36847210

RESUMO

Natural photosynthesis (NP) generates oxygen and carbohydrates from water and CO2 utilizing solar energy to nourish lives and balance CO2 levels. Following nature, artificial photosynthesis (AP), typically, overall water or CO2 splitting, produces fuels and chemicals from renewable energy. However, hydrogen evolution or CO2 reduction is inherently coupled with kinetically sluggish water oxidation, lowering efficiencies and raising safety concerns. Decoupled systems have thus emerged. In this review, we elaborate how decoupled artificial photosynthesis (DAP) evolves from NP and AP and unveil their distinct photoelectrochemical mechanisms in energy capture, transduction and conversion. Advances of AP and DAP are summarized in terms of photochemical (PC), photoelectrochemical (PEC), and photovoltaic-electrochemical (PV-EC) catalysis based on material and device design. The energy transduction process of DAP is emphasized. Challenges and perspectives on future researches are also presented.

12.
Theory Biosci ; 141(3): 249-260, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35499671

RESUMO

Mechanisms coupling the chemical reactions of oxidation and ATP synthesis in cellular metabolism by the fundamental biological process of oxidative phosphorylation (OX PHOS) in mitochondria provide > 90% of the energy requirements in living organisms. Mathematical graph theory methods have been extensively used to characterize various metabolic, regulatory, and disease networks in biology. However, networks of energy coupling mechanisms in OX PHOS have not been represented and analyzed previously by these approaches. Here, the problem of biological energy coupling is translated into a graph-theoretical framework, and all possible coupling schemes between oxidation and ATP synthesis are represented as graphs connecting these processes by various intermediates or states. The problem is shown to be transformed into the hard problem of finding a Hamiltonian tour in the networks of possible constituent mechanisms, given the constraints of a cyclical nature of operation of enzymes and biological molecular machines. Accessible mathematical proofs of three theorems that guarantee sufficient conditions for the existence of a Hamiltonian cycle in simple graphs are provided. The results of the general theorems are applied to the set of possible coupling mechanisms in OX PHOS and shown to (1) unequivocally differentiate between the major theories and mechanisms of energy coupling, (2) greatly reduce the possibilities for detailed consideration, and (3) deduce the biologically selected mechanism using additional constraints from the cumulative experimental record. Finally, an algorithm is constructed to implement the graph-theoretical procedure. In summary, the enormous power and generality of mathematical theorems and approaches in graph theory are shown to help solve a fundamental problem in biology.


Assuntos
Trifosfato de Adenosina , Fosforilação Oxidativa , Trifosfato de Adenosina/química , Metabolismo Energético , Mitocôndrias/metabolismo , Fenômenos Físicos , Termodinâmica
13.
Biomol Concepts ; 13(1): 272-288, 2022 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-35617665

RESUMO

Following structural determination by recent advances in electron cryomicroscopy, it is now well established that the respiratory Complexes I-IV in oxidative phosphorylation (OXPHOS) are organized into supercomplexes in the respirasome. Nonetheless, the reason for the existence of the OXPHOS supercomplexes and their functional role remains an enigma. Several hypotheses have been proposed for the existence of these supercomplex supercomplexes. A commonly-held view asserts that they enhance catalysis by substrate channeling. However, this - and other views - has been challenged based on structural and biophysical information. Hence, new ideas, concepts, and frameworks are needed. Here, a new model of energy transfer in OXPHOS is developed on the basis of biochemical data on the pure competitive inhibition of anionic substrates like succinate by the classical anionic uncouplers of OXPHOS (2,4-dinitrophenol, carbonyl cyanide 4-(trifluoromethoxy)phenylhydrazone, and dicoumarol), and pharmacological data on the unique site-selective, energy-linked inhibition of energy conservation pathways in mitochondria induced by the guanidine derivatives. It is further found that uncouplers themselves are site-specific and exhibit differential selectivity and efficacy in reversing the inhibition caused by the Site 1/Complex I or Site 2/Complexes II-III-selective guanidine derivatives. These results lead to new vistas and sufficient complexity in the network of energy conservation pathways in the mitochondrial respiratory chain that necessitate discrete points of interaction with two classes of guanidine derivatives and uncoupling agents and thereby separate and distinct energy transfer pathways between Site 1 and Site 2 and the intermediate that energizes adenosine triphosphate (ATP) synthesis by Complex V. Interpretation based on Mitchell's single-ion chemiosmotic theory that postulates only a single energy pool is inadequate to rationalize the data and account for the required complexity. The above results and available information are shown to be explained by Nath's two-ion theory of energy coupling and ATP synthesis, involving coupled movement of succinate anions and protons, along with the requirement postulated by the theory for maintenance of homeostasis and ion translocation across the energy-transducing membrane of both succinate monoanions and succinate dianions by Complexes I-V in the OXPHOS supercomplexes. The new model of energy transfer in mitochondria is mapped onto the solved structures of the supercomplexes and integrated into a consistent model with the three-dimensional electron microscope computer tomography visualization of the internal structure of the cristae membranes in mammalian mitochondria. The model also offers valuable insights into diseased states induced in type 2 diabetes and especially in Alzheimer's and other neurodegenerative diseases that involve mitochondrial dysfunction.


Assuntos
Diabetes Mellitus Tipo 2 , Fosforilação Oxidativa , Trifosfato de Adenosina/metabolismo , Animais , Guanidinas , Mamíferos/metabolismo , Succinatos
14.
ACS Appl Mater Interfaces ; 14(11): 13768-13777, 2022 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-35262326

RESUMO

A polymer actuator typically responds to only one or two types of stimuli, where sensing and actuation are simultaneously exerted by the same responsive polymer. In cells, sensing and actuation are exerted separately by different biomolecules, which are integrated into nanoscale assemblies to construct the signaling network, making cells a multistimuli responsive and multimodal system. Inspired by the structure-function relationship of the signaling network in cells, we have developed a strategy to select and assemble proper functional polymers into assemblies, where sensing and actuation are exerted by different polymers, and the assemblies can present novel functions beyond that of each polymer component. Three polymers [polyaniline, PANi; poly(N-isopropylacrylamide), PNIPAm; and polydimethylsiloxane, PDMS] are integrated as nodes into a simple energy transduction network, which can be regulated by three molecular factors (pH, kosmotropic anions, and polyethylene glycol). PANi converts the light or electric stimulus into heat, which triggers the actuation of PNIPAm and PDMS. Relying on this energy transduction network, the polymer assembly can respond to six types of stimuli (light, electricity, temperature, water, ions, and organic solvents) and perform different actuation modes, serving as a powerful actuator. Programmable complex deformation upon multiple simultaneous or sequential stimuli has also been achieved by this actuator. An adaptive gripper to catch thin objects and a self-regulating switch to maintain environmental humidity illustrate the wide potential of this actuator for next-generation smart materials and soft robots.

15.
Genes Cells ; 27(3): 157-172, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35073606

RESUMO

Typical second messengers include cyclic AMP (cAMP), cyclic GMP (cGMP), and inositol phosphate. In bacteria, cyclic diguanylate (c-di-GMP), which is not used in animals, is widely used as a second messenger for environmental responses. Initially found as a regulator of cellulose synthesis, this small molecule is known to be widely present in bacteria. A wide variety of synthesis and degradation enzymes for c-di-GMP exist, and the activities of effector proteins are regulated by changing the cellular c-di-GMP concentration in response to the environment. It has been shown well that c-di-GMP plays an essential role in pathogenic cycle and is involved in flagellar motility in Vibrio cholerae. In this review, we aim to explain the direct or indirect regulatory mechanisms of c-di-GMP in bacteria, focusing on the study of c-di-GMP in Vibrio spp. and in flagella, which are our research subjects.


Assuntos
Proteínas de Escherichia coli , Vibrio cholerae , Proteínas de Bactérias/genética , Biofilmes , GMP Cíclico/análogos & derivados , Proteínas de Escherichia coli/metabolismo , Regulação Bacteriana da Expressão Gênica , Sistemas do Segundo Mensageiro/fisiologia , Vibrio cholerae/metabolismo
16.
PNAS Nexus ; 1(5): pgac276, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36712358

RESUMO

Respiratory complex I [NADH:ubiquinone (UQ) oxidoreductase] captures the free energy released from NADH oxidation and UQ reduction to pump four protons across an energy-transducing membrane and power ATP synthesis. Mechanisms for long-range energy coupling in complex I have been proposed from structural data but not yet evaluated by robust biophysical and biochemical analyses. Here, we use the powerful bacterial model system Paracoccus denitrificans to investigate 14 mutations of key residues in the membrane-domain Nqo13/ND4 subunit, defining the rates and reversibility of catalysis and the number of protons pumped per NADH oxidized. We reveal new insights into the roles of highly conserved charged residues in lateral energy transduction, confirm the purely structural role of the Nqo12/ND5 transverse helix, and evaluate a proposed hydrated channel for proton uptake. Importantly, even when catalysis is compromised the enzyme remains strictly coupled (four protons are pumped per NADH oxidized), providing no evidence for escape cycles that circumvent blocked proton-pumping steps.

18.
Biochem Soc Trans ; 49(6): 2669-2685, 2021 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-34854900

RESUMO

Energy transduction is the conversion of one form of energy into another; this makes life possible as we know it. Organisms have developed different systems for acquiring energy and storing it in useable forms: the so-called energy currencies. A universal energy currency is the transmembrane difference of electrochemical potential (Δµ~). This results from the translocation of charges across a membrane, powered by exergonic reactions. Different reactions may be coupled to charge-translocation and, in the majority of cases, these reactions are catalyzed by modular enzymes that always include a transmembrane subunit. The modular arrangement of these enzymes allows for different catalytic and charge-translocating modules to be combined. Thus, a transmembrane charge-translocating module can be associated with different catalytic subunits to form an energy-transducing complex. Likewise, the same catalytic subunit may be combined with a different membrane charge-translocating module. In this work, we analyze the modular arrangement of energy-transducing membrane complexes and discuss their different combinations, focusing on the charge-translocating module.


Assuntos
Membrana Celular/química , Proteínas de Membrana/química , Domínio Catalítico
19.
J Biol Phys ; 47(4): 401-433, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34792702

RESUMO

The dynamics of ion translocation through membrane transporters is visualized from a comprehensive point of view by a Gibbs energy landscape approach. The ΔG calculations have been performed with the Kirkwood-Tanford-Warshel (KTW) electrostatic theory that properly takes into account the self-energies of the ions. The Gibbs energy landscapes for translocation of a single charge and an ion pair are calculated, compared, and contrasted as a function of the order parameter, and the characteristics of the frustrated system with bistability for the ion pair are described and quantified in considerable detail. These calculations have been compared with experimental data on the ΔG of ion pairs in proteins. It is shown that, under suitable conditions, the adverse Gibbs energy barrier can be almost completely compensated by the sum of the electrostatic energy of the charge-charge interactions and the solvation energy of the ion pair. The maxima in ΔGKTW with interionic distance in the bound H+ - A- charge pair on the enzyme is interpreted in thermodynamic and molecular mechanistic terms, and biological implications for molecular mechanisms of ATP synthesis are discussed. The timescale at which the order parameter moves between two stable states has been estimated by solving the dynamical equations of motion, and a wealth of novel insights into energy transduction during ATP synthesis by the membrane-bound FOF1-ATP synthase transporter is offered. In summary, a unifying analytical framework that integrates physics, chemistry, and biology has been developed for ion translocation by membrane transporters for the first time by means of a Gibbs energy landscape approach.


Assuntos
Trifosfato de Adenosina , Proteínas de Membrana Transportadoras , Biologia , Íons , Física , Termodinâmica
20.
Biochemistry (Mosc) ; 86(8): 913-925, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34488569

RESUMO

Once it was believed that ribosomal RNA encodes proteins, and GTP hydrolysis supplies the energy for protein synthesis. Everything has changed, when Alexander Spirin joined the science. It turned out that proteins are encoded by a completely different RNA, and GTP hydrolysis only accelerates the process already provided with energy. It was Spirin who first put forward the idea of a Brownian ratchet and explained how and why molecular machines could arise in the RNA world.


Assuntos
Guanosina Trifosfato/metabolismo , Biossíntese de Proteínas , RNA Ribossômico/metabolismo , Bioquímica/história , Catálise , DNA Bacteriano/análise , RNA Polimerases Dirigidas por DNA/química , História do Século XX , Hidrólise , Modelos Moleculares , Dobramento de Proteína , RNA/biossíntese , Ribossomos/fisiologia , U.R.S.S.
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...