Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 657
Filtrar
1.
Genes Dis ; 11(5): 101199, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38947741

RESUMO

As the most prevalent and reversible internal epigenetic modification in eukaryotic mRNAs, N 6-methyladenosine (m6A) post-transcriptionally regulates the processing and metabolism of mRNAs involved in diverse biological processes. m6A modification is regulated by m6A writers, erasers, and readers. Emerging evidence suggests that m6A modification plays essential roles in modulating the cell-fate transition of embryonic stem cells. Mechanistic investigation of embryonic stem cell maintenance and differentiation is critical for understanding early embryonic development, which is also the premise for the application of embryonic stem cells in regenerative medicine. This review highlights the current knowledge of m6A modification and its essential regulatory contribution to the cell fate transition of mouse and human embryonic stem cells.

2.
Environ Res ; 259: 119521, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38960350

RESUMO

Tetracycline (TC) and ciprofloxacin (CF) induce a synergistic effect that alters the biochemical composition, leading to a decrease in the growth and photosynthetic efficiency of microalgae. But the current study provides a novel insight into stress-inducing techniques that trigger a change in macromolecules, leading to an increase in the bioenergy potential and pathogen resistance of Chlorella variabilis biofilm. The study revealed that in a closed system, a light intensity of 167 µmol/m2/s causes 93.5% degradation of TC and 16% degradation of CF after 7 days of exposure, hence availing the products for utilization by C. variabilis biofilm. The resistance to pathogens invasion was linked to 85% and 40% increase in the expression level of photosystem II oxygen-evolving enhancer protein 3 (PsbQ), and mitogen activated kinase (MAK) respectively. The results also indicate that a surge in light intensity triggers 49% increase in the expression level of lysophosphatidylcholine (LPC) (18:2), which is an important lipidomics that can easily undergo transesterification into bioenergy. The thermogravimetric result indicates that the biomass sample of C. variabilis biofilm cultivated under light intensity of 167 µmol/m2/s produces a higher residual mass of 45.5% and 57.5 under air and inert conditions, respectively. The Fourier transform infrared (FTIR) indicates a slight shift in the major functional groups, while the energy-dispersive X-ray spectroscopy (SEM-EDS) and X-ray fluorescence (XRF) indicate clear differences in the morphology and elemental composition of the biofilm biomass in support of the increase bioenergy potential of C. variabilis biofilm. The current study provides a vital understanding of a innovative method of cultivation of C. variabilis biofilm, which is resistant to pathogens and controls the balance between fatty acid and TAG synthesis leading to surge in bioenergy potential and environmental sustainability.

3.
Front Pharmacol ; 15: 1416992, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38994197

RESUMO

Vascular smooth muscle cells (VSMCs) are integral to the pathophysiology of cardiovascular diseases (CVDs). Enhancer of zeste homolog 2 (EZH2), a histone methyltransferase, plays a crucial role in epigenetic regulation of VSMCs gene expression. Emerging researches suggest that EZH2 has a dual role in VSMCs, contingent on the pathological context of specific CVDs. This mini-review synthesizes the current knowledge on the mechanisms by which EZH2 regulates VSMC proliferation, migration and survival in the context of CVDs. The goal is to underscore the potential of EZH2 as a therapeutic target for CVDs treatment. Modulating EZH2 and its associated epigenetic pathways in VSMCs could potentially ameliorate vascular remodeling, a key factor in the progression of many CVDs. Despite the promising outlook, further investigation is warranted to elucidate the epigenetic mechanisms mediated by EZH2 in VSMCs, which may pave the way for novel epigenetic therapies for conditions such as atherosclerosis and hypertension.

4.
Int J Mol Sci ; 25(13)2024 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-39000282

RESUMO

Obesity is a global health challenge that has received increasing attention in contemporary research. The gut microbiota has been implicated in the development of obesity, primarily through its involvement in regulating various host metabolic processes. Recent research suggests that epigenetic modifications may serve as crucial pathways through which the gut microbiota and its metabolites contribute to the pathogenesis of obesity and other metabolic disorders. Hence, understanding the interplay between gut microbiota and epigenetic mechanisms is crucial for elucidating the impact of obesity on the host. This review primarily focuses on the understanding of the relationship between the gut microbiota and its metabolites with epigenetic mechanisms in several obesity-related pathogenic mechanisms, including energy dysregulation, metabolic inflammation, and maternal inheritance. These findings could serve as novel therapeutic targets for probiotics, prebiotics, and fecal microbiota transplantation tools in treating metabolic disruptions. It may also aid in developing therapeutic strategies that modulate the gut microbiota, thereby regulating the metabolic characteristics of obesity.


Assuntos
Epigênese Genética , Microbioma Gastrointestinal , Obesidade , Humanos , Obesidade/metabolismo , Obesidade/microbiologia , Obesidade/genética , Animais , Probióticos , Transplante de Microbiota Fecal , Prebióticos , Metabolismo Energético
5.
Indian J Clin Biochem ; 39(3): 312-321, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39005862

RESUMO

War trauma has been linked to changes in the neuroendocrine and immunological systems and increases the risk of physical disorders. Traumatic events during the war may have long-term repercussions on psychological and biological parameters in future generations, implying that traumatic stress may have transgenerational consequences. This article addresses how epigenetic mechanisms, which are a key biological mechanism for dynamic adaptation to environmental stressors, may help explain the long-term and transgenerational consequences of trauma. In war survivors, epigenetic changes in genes mediating the hypothalamus-pituitary-adrenal axis, as well as the immune system, have been reported. These genetic modifications may cause long-term changes in the stress response as well as physical health risks. Also, the finding of biomarkers for diagnosing the possibility of psychiatric illnesses in people exposed to stressful conditions such as war necessitates extensive research. While epigenetic research has the potential to further our understanding of the effects of trauma, the findings must be interpreted with caution because epigenetic molecular mechanisms is only one piece of a complicated puzzle of interwoven biological and environmental components.

6.
J Inflamm Res ; 17: 4405-4417, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39006496

RESUMO

Sepsis is a disorder of the immune response to infection or infectious factors with high morbidity and mortality in clinical settings. The lactylation of lysine residues, fueled by lactate, plays a pivotal role in its pathophysiology. In conducting a literature review on sepsis-related research, we employed a systematic approach to ensure comprehensiveness and accuracy. Initially, we conducted an extensive literature search through the PubMed database, utilizing a range of keywords including "sepsis", "lactate", "lactylation", and "epigenetic modification". The aim was to capture the most recent research related to the pathophysiological mechanisms of sepsis, metabolic disorders, and the role of lactylation. The results of the literature review revealed a close link between sepsis and metabolic dysfunction, particularly the pivotal role of lactylation in regulating immune responses and inflammatory processes. Lactate, not only an energy metabolic byproduct produced during glycolysis, affects the activity of various proteins, including those involved in immune regulation and cell signaling, through lactylation. In the context of sepsis, changes in the levels of lactylation may be closely associated with the severity and prognosis of the disease. In summary, lactylation, as an emerging type of epigenetic modification, provides a new perspective for the diagnosis and treatment of sepsis. Future research needs to further elucidate the exact mechanisms of lactylation in sepsis and explore its potential as a therapeutic target.


The annual incidence and mortality rates associated with sepsis are on the rise, and to date, no medications or therapies have been proven effective in clinical practice. Glycolysis plays a pivotal role in regulating lactylation, a process derived from lactate generated by cellular glucose metabolism. In the context of sepsis, elevated lactate levels are indicative of a poor prognosis. It is imperative to delve into the mechanisms underlying lactylation alterations during sepsis to enhance our comprehension of its complex pathophysiology and to pinpoint innovative therapeutic targets for the condition.

7.
Transcription ; : 1-25, 2024 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-39033307

RESUMO

Transcription factors (TFs) intricately navigate the vast genomic landscape to locate and bind specific DNA sequences for the regulation of gene expression programs. These interactions occur within a dynamic cellular environment, where both DNA and TF proteins experience continual chemical and structural perturbations, including epigenetic modifications, DNA damage, mechanical stress, and post-translational modifications (PTMs). While many of these factors impact TF-DNA binding interactions, understanding their effects remains challenging and incomplete. This review explores the existing literature on these dynamic changes and their potential impact on TF-DNA interactions.

8.
Acta Pharm Sin B ; 14(7): 3049-3067, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39027246

RESUMO

The mucosal barrier is crucial for intestinal homeostasis, and goblet cells are essential for maintaining the mucosal barrier integrity. The proviral integration site for Moloney murine leukemia virus-1 (PIM1) kinase regulates multiple cellular functions, but its role in intestinal homeostasis during colitis is unknown. Here, we demonstrate that PIM1 is prominently elevated in the colonic epithelia of both ulcerative colitis patients and murine models, in the presence of intestinal microbiota. Epithelial PIM1 leads to decreased goblet cells, thus impairing resistance to colitis and colitis-associated colorectal cancer (CAC) in mice. Mechanistically, PIM1 modulates goblet cell differentiation through the Wnt and Notch signaling pathways. Interestingly, PIM1 interacts with histone deacetylase 2 (HDAC2) and downregulates its level via phosphorylation, thereby altering the epigenetic profiles of Wnt signaling pathway genes. Collectively, these findings investigate the unknown function of the PIM1-HDAC2 axis in goblet cell differentiation and ulcerative colitis/CAC pathogenesis, which points to the potential for PIM1-targeted therapies of ulcerative colitis and CAC.

9.
Pharmaceuticals (Basel) ; 17(6)2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38931332

RESUMO

The circulatory system is a closed conduit system throughout the body and consists of two parts as follows: the cardiovascular system and the lymphatic system. Hematological malignancies usually grow and multiply in the circulatory system, directly or indirectly affecting its function. These malignancies include multiple myeloma, leukemia, and lymphoma. O-linked ß-N-acetylglucosamine (O-GlcNAc) transferase (OGT) regulates the function and stability of substrate proteins through O-GlcNAc modification. Abnormally expressed OGT is strongly associated with tumorigenesis, including hematological malignancies, colorectal cancer, liver cancer, breast cancer, and prostate cancer. In cells, OGT can assemble with a variety of proteins to form complexes to exercise related biological functions, such as OGT/HCF-1, OGT/TET, NSL, and then regulate glucose metabolism, gene transcription, cell proliferation, and other biological processes, thus affecting the development of hematological malignancies. This review summarizes the complexes involved in the assembly of OGT in cells and the role of related OGT complexes in hematological malignancies. Unraveling the complex network regulated by the OGT complex will facilitate a better understanding of hematologic malignancy development and progression.

10.
Curr Drug Deliv ; 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38939986

RESUMO

Drug transporters are critical factors influencing the pharmacokinetics of drugs under hypoxic conditions. Studies have shown significant changes in drug transporter levels in the hypoxic environment. In addition to being regulated by HIF-1, nuclear receptors, and inflammatory factors, hypoxia can also regulate transporters through epigenetic modifications, thereby affecting drug absorption, distribution, metabolism, and excretion. In recent years, increasing attention has been paid to the role of epigenetic modifications in regulating drug transporters under hypoxic conditions at high altitude. In this paper, we comprehensively review the effects of hypoxia on drug transporters and epigenetic modifications and explore the regulatory mechanism of epigenetic modifications on drug transporter expression under hypoxic conditions. The aim is to provide a reference for exploring the epigenetic regulation mechanism of drug transporter expression in the hypoxic environment at high altitude, and then guide the study of pharmacokinetics and promote effective and safe medication at high altitude.

11.
Front Biosci (Landmark Ed) ; 29(6): 205, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38940023

RESUMO

Epigenetics refers to heritable changes in gene expression and function that impact nuclear processes associated with chromatin, all without altering DNA sequences. These epigenetic patterns, being heritable traits, are vital biological mechanisms that intricately regulate gene expression and heredity. The application of chemical labeling and single-cell resolution mapping strategies has significantly facilitated large-scale epigenetic modifications in nucleic acids over recent years. Notably, epigenetic modifications can induce heritable phenotypic changes, regulate cell differentiation, influence cell-specific gene expression, parentally imprint genes, activate the X chromosome, and stabilize genome structure. Given their reversibility and susceptibility to environmental factors, epigenetic modifications have gained prominence in disease diagnosis, significantly impacting clinical medicine research. Recent studies have uncovered strong links between epigenetic modifications and the pathogenesis of metabolic cardiovascular diseases, including congenital heart disease, heart failure, cardiomyopathy, hypertension, and atherosclerosis. In this review, we provide an overview of the progress in epigenetic research within the context of cardiovascular diseases, encompassing their pathogenesis, prevention, diagnosis, and treatment. Furthermore, we shed light on the potential prospects of nucleic acid epigenetic modifications as a promising avenue in clinical medicine and biomedical applications.


Assuntos
Doenças Cardiovasculares , Metilação de DNA , Epigênese Genética , Humanos , Doenças Cardiovasculares/genética , Animais
12.
Brain Behav Immun ; 120: 290-303, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38851307

RESUMO

Postnatal immune activation (PIA) induces persistent glial activation in the brain and causes various neuropathologies in adults. Exercise training improves stress-related mood disorders; however, the role of exercise in psychiatric disorders induced by early-life immune activation and the association between exercise training and glial activation remain unclear. We compared the effects of different exercise intensities on the PIA model, including high-intensity interval training (HIIT) and moderate-intensity continuous training (MICT). Both HIIT and MICT in adolescent mice inhibited neuroinflammation, remodeled synaptic plasticity, and improved PIA-induced mood disorders in adulthood. Importantly, HIIT was superior to MICT in terms of reducing inflammation and increasing body weight. RNA-seq of prefrontal cortex (PFC) tissues revealed a gene expression pattern, confirming that HIIT was more effective than MICT in improving brain glial cell activation through epigenetic modifications of KDM6B. We investigated the role of KDM6B, a specific histone lysine demethylation enzyme - histone 3 lysine 27 demethylase, in inhibiting glial activation against PIA-induced depression and anxiety by regulating the expression of IL-4 and brain-derived neurotrophic factor (BDNF). Overall, our data support the idea that HIIT improves PIA-induced mood disorders by regulating KDM6B-mediated epigenetic mechanisms and indicate that HIIT might be superior to MICT in improving mood disorders with PIA in mice. Our findings provide new insights into the treatment of anxiety and depression disorders.

13.
J Transl Med ; 22(1): 561, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38867256

RESUMO

BACKGROUND: Fibrogenesis within ovarian endometrioma (endometrioma), mainly induced by transforming growth factor-ß (TGF-ß), is characterized by myofibroblast over-activation and excessive extracellular matrix (ECM) deposition, contributing to endometrioma-associated symptoms such as infertility by impairing ovarian reserve and oocyte quality. However, the precise molecular mechanisms that underpin the endometrioma- associated fibrosis progression induced by TGF-ß remain poorly understood. METHODS: The expression level of lysine acetyltransferase 14 (KAT14) was validated in endometrium biopsies from patients with endometrioma and healthy controls, and the transcription level of KAT14 was further confirmed by analyzing a published single-cell transcriptome (scRNA-seq) dataset of endometriosis. We used overexpression, knockout, and knockdown approaches in immortalized human endometrial stromal cells (HESCs) or human primary ectopic endometrial stromal cells (EcESCs) to determine the role of KAT14 in TGF-ß-induced fibrosis. Furthermore, an adeno-associated virus (AAV) carrying KAT14-shRNA was used in an endometriosis mice model to assess the role of KAT14 in vivo. RESULTS: KAT14 was upregulated in ectopic lesions from endometrioma patients and predominantly expressed in activated fibroblasts. In vitro studies showed that KAT14 overexpression significantly promoted a TGF-ß-induced profibrotic response in endometrial stromal cells, while KAT14 silencing showed adverse effects that could be rescued by KAT14 re-enhancement. In vivo, Kat14 knockdown ameliorated fibrosis in the ectopic lesions of the endometriosis mouse model. Mechanistically, we showed that KAT14 directly interacted with serum response factor (SRF) to promote the expression of α-smooth muscle actin (α-SMA) by increasing histone H4 acetylation at promoter regions; this is necessary for TGF-ß-induced ECM production and myofibroblast differentiation. In addition, the knockdown or pharmacological inhibition of SRF significantly attenuated KAT14-mediating profibrotic effects under TGF-ß treatment. Notably, the KAT14/SRF complex was abundant in endometrioma samples and positively correlated with α-SMA expression, further supporting the key role of KAT14/SRF complex in the progression of endometrioma-associated fibrogenesis. CONCLUSION: Our results shed light on KAT14 as a key effector of TGF-ß-induced ECM production and myofibroblast differentiation in EcESCs by promoting histone H4 acetylation via co-operating with SRF, representing a potential therapeutic target for endometrioma-associated fibrosis.


Assuntos
Endometriose , Fibrose , Fator de Resposta Sérica , Fator de Crescimento Transformador beta , Adulto , Animais , Feminino , Humanos , Camundongos , Endometriose/patologia , Endometriose/metabolismo , Endométrio/metabolismo , Endométrio/patologia , Histona Acetiltransferases/metabolismo , Miofibroblastos/metabolismo , Miofibroblastos/patologia , Fator de Resposta Sérica/metabolismo , Células Estromais/metabolismo , Células Estromais/patologia , Fator de Crescimento Transformador beta/metabolismo , Regulação para Cima/efeitos dos fármacos , Proteínas Adaptadoras de Transdução de Sinal/metabolismo
14.
Sci Rep ; 14(1): 12602, 2024 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-38824202

RESUMO

Mitochondrial RNA modification (MRM) plays a crucial role in regulating the expression of key mitochondrial genes and promoting tumor metastasis. Despite its significance, comprehensive studies on MRM in lower grade gliomas (LGGs) remain unknown. Single-cell RNA-seq data (GSE89567) was used to evaluate the distribution functional status, and correlation of MRM-related genes in different cell types of LGG microenvironment. We developed an MRM scoring system by selecting potential MRM-related genes using LASSO regression analysis and the Random Survival Forest algorithm, based on multiple bulk RNA-seq datasets from TCGA, CGGA, GSE16011, and E-MTAB-3892. Analysis was performed on prognostic and immunological features, signaling pathways, metabolism, somatic mutations and copy number variations (CNVs), treatment responses, and forecasting of potential small-molecule agents. A total of 35 MRM-related genes were selected from the literature. Differential expression analysis of 1120 normal brain tissues and 529 LGGs revealed that 22 and 10 genes were upregulated and downregulated, respectively. Most genes were associated with prognosis of LGG. METLL8, METLL2A, TRMT112, and METTL2B were extensively expressed in all cell types and different cell cycle of each cell type. Almost all cell types had clusters related to mitochondrial RNA processing, ribosome biogenesis, or oxidative phosphorylation. Cell-cell communication and Pearson correlation analyses indicated that MRM may promoting the development of microenvironment beneficial to malignant progression via modulating NCMA signaling pathway and ICP expression. A total of 11 and 9 MRM-related genes were observed by LASSO and the RSF algorithm, respectively, and finally 6 MRM-related genes were used to establish MRM scoring system (TRMT2B, TRMT11, METTL6, METTL8, TRMT6, and TRUB2). The six MRM-related genes were then validated by qPCR in glioma and normal tissues. MRM score can predict the malignant clinical characteristics, abundance of immune infiltration, gene variation, clinical outcome, the enrichment of signaling pathways and metabolism. In vitro experiments demonstrated that silencing METTL8 significantly curbs glioma cell proliferation and enhances apoptosis. Patients with a high MRM score showed a better response to immunotherapies and small-molecule agents such as arachidonyl trifluoromethyl ketone, MS.275, AH.6809, tacrolimus, and TTNPB. These novel insights into the biological impacts of MRM within the glioma microenvironment underscore its potential as a target for developing precise therapies, including immunotherapeutic approaches.


Assuntos
Neoplasias Encefálicas , Glioma , Humanos , Glioma/genética , Glioma/patologia , Prognóstico , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , RNA Mitocondrial/genética , RNA Mitocondrial/metabolismo , Regulação Neoplásica da Expressão Gênica , Microambiente Tumoral/genética , Processamento Pós-Transcricional do RNA , Gradação de Tumores , Mitocôndrias/genética , Mitocôndrias/metabolismo , Biomarcadores Tumorais/genética , Perfilação da Expressão Gênica , Multiômica
15.
Trends Genet ; 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38845265

RESUMO

Extracellular vesicles (EVs), emerging as novel mediators between intercellular communication, encapsulate distinct bioactive cargoes to modulate multiple biological events, such as epigenetic remodeling. In essence, EVs and epigenomic profiles are tightly linked and reciprocally regulated. Epigenetic factors, including histone and DNA modifications, noncoding RNAs, and protein post-translational modifications (PTMs) dynamically regulate EV biogenesis to contribute to EV heterogeneity. Alternatively, EVs actively modify DNA, RNA, and histone profiles in recipient cells by delivering RNA and protein cargoes for downstream epigenetic enzyme regulation. Moreover, EVs display great potential as diagnostic markers and drug-delivery vehicles for therapeutic applications. The combination of parental cell epigenomic modification with single EV characterization would be a promising strategy for EV engineering to enhance the epidrug loading efficacy and accuracy.

16.
J Agric Food Chem ; 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38842303

RESUMO

Lysine lactylation (Kla) is a kind of novel post-translational modification (PTM) that participates in gene expression and various metabolic processes. Nannochloropsis has a remarkable capacity for triacylglycerol (TAG) production under nitrogen stress. To elucidate the involvement of lactylation in lipid synthesis, we conducted chromatin immunoprecipitation sequencing (ChIP-seq) and mRNA-seq analyses to monitor lactylation modifications and transcriptome alterations in Nannochloropsis oceanica. In all, 2057 genes showed considerable variation between nitrogen deprivation (ND) and nitrogen repletion (NR) conditions. Moreover, a total of 5375 differential Kla peaks were identified, including 5331 gain peaks and 44 loss peaks under ND vs NR. The differential Kla peaks were primarily distributed in the promoter (≤1 kb) (71.07%), 5'UTR (22.64%), and exon (4.25%). Integrative analysis of ChIP-seq, transcriptome, and previous proteome and lactylome data elucidates the potential mechanism by which lactylation promotes lipid accumulation under ND. Lactylation facilitates autophagy and protein degradation, leading to the recycling of carbon into the tricarboxylic acid (TCA) cycle, thereby providing carbon precursors for lipid synthesis. Additionally, lactylation induces the redirection of carbon from membrane lipids to TAG by upregulating lipases and enhancing the TCA cycle and ß-oxidation pathways. This research offers a new perspective for the investigation of lipid biosynthesis in Nannochloropsis.

17.
Front Genet ; 15: 1296622, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38919956

RESUMO

Human activities and climate change have resulted in frequent and intense weather fluctuations, leading to diverse abiotic stresses on crops which hampers greatly their metabolic activities. Heat stress, a prevalent abiotic factor, significantly influences cotton plant biological activities resulting in reducing yield and production. We must deepen our understanding of how plants respond to heat stress across various dimensions, encompassing genes, RNAs, proteins, metabolites for effective cotton breeding. Multi-omics methods, primarily genomics, transcriptomics, proteomics, metabolomics, and phenomics, proves instrumental in studying cotton's responses to abiotic stresses. Integrating genomics, transcriptomics, proteomics, and metabolomic is imperative for our better understanding regarding genetics and molecular basis of heat tolerance in cotton. The current review explores fundamental omics techniques, covering genomics, transcriptomics, proteomics, and metabolomics, to highlight the progress made in cotton omics research.

18.
Anticancer Res ; 44(6): 2459-2470, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38821592

RESUMO

BACKGROUND/AIM: Gastric cancer, with its high global incidence and mortality rates, poses a significant challenge due to the rapid decline in patient survival upon metastasis. Understanding and combating metastasis are crucial in improving outcomes. The metastasis suppressor gene CD82 has demonstrated efficacy in inhibiting metastasis across various carcinomas but is frequently down-regulated. However, its role and regulatory mechanisms in gastric cancer remain elusive. MATERIALS AND METHODS: Utilizing public data, we assessed patient survival in relation to CD82 expression. CD82 expression in gastric cancer cell lines was evaluated via western blotting, and its impact on cell mobility was assessed through wound healing and Transwell assays. The demethylation of CD82 was induced using 5-aza-deoxycytidine, while methylation levels were detected via methylation-specific PCR. RESULTS: Low CD82 expression correlated with poor prognosis in patients, and down-regulation and over-expression of CD82 significantly affected cell mobility. Treatment with 5-aza-deoxycytidine restored CD82 expression in low-expressing cell lines, highlighting its methylation-dependent regulation. CONCLUSION: CD82 serves as a pivotal regulator of cell mobility in gastric cancer by suppressing metastasis. Its expression is attenuated in gastric cancer cells through promoter hypermethylation.


Assuntos
Movimento Celular , Metilação de DNA , Regulação Neoplásica da Expressão Gênica , Proteína Kangai-1 , Neoplasias Gástricas , Humanos , Neoplasias Gástricas/genética , Neoplasias Gástricas/patologia , Neoplasias Gástricas/metabolismo , Proteína Kangai-1/genética , Proteína Kangai-1/metabolismo , Linhagem Celular Tumoral , Movimento Celular/genética , Regiões Promotoras Genéticas , Prognóstico , Decitabina/farmacologia , Metástase Neoplásica , Regulação para Baixo , Genes Supressores de Tumor
19.
J Thromb Thrombolysis ; 57(5): 743-753, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38787496

RESUMO

Thrombosis, a coagulation disorder, occurs due to altered levels of coagulation, fibrinolytic and immune factors, which are otherwise known to maintain hemostasis in normal physiological conditions. Here, we review the direct and indirect participation of a multifunctional nuclear enzyme poly (ADP-ribose) polymerase-1 (PARP1) in the expression of key genes and cellular processes involved in thrombotic pathogenesis. PARP1 biological activities range from maintenance of genomic integrity, chromatin remodeling, base excision DNA repair, stress responses to cell death, angiogenesis and cell cycle pathways. However, under homeostatic imbalances, PARP1 activities are linked with the pathogenesis of diseases, including cancer, aging, neurological disorders, and cardiovascular diseases. Disease-associated distressed cells employ a variety of PARP-1 functions such as oxidative damage exacerbations, cellular energetics and apoptosis pathways, regulation of inflammatory mediators, promotion of endothelial dysfunction, and ERK-mediated signaling in pathogenesis. Thrombosis is one such pathogenesis that comprises exacerbation of coagulation cascade due to biochemical alterations in endothelial cells, platelet activation, overexpression of adhesion molecules, cytokines release, and leukocyte adherence. Thus, the activation of endothelial and inflammatory cells in thrombosis implicates a potential role of PARP1 activation in thrombogenesis. This review article explores the direct impact of PARP1 activation in the etiology of thrombosis and discusses PARP1-mediated endothelial dysfunction, inflammation, and epigenetic regulations in the disease manifestation. Understanding PARP1 functions associated with thrombosis may elucidate novel pathogenetic mechanisms and help in better disease management through newer therapeutic interventions targeting PARP1 activity.


Assuntos
Poli(ADP-Ribose) Polimerase-1 , Trombose , Humanos , Poli(ADP-Ribose) Polimerase-1/metabolismo , Animais , Inflamação
20.
World J Hepatol ; 16(5): 703-715, 2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38818286

RESUMO

Non-alcoholic fatty liver disease (NAFLD) poses a significant health challenge in modern societies due to shifts in lifestyle and dietary habits. Its complexity stems from genetic predisposition, environmental influences, and metabolic factors. Epigenetic processes govern various cellular functions such as transcription, chromatin structure, and cell division. In NAFLD, these epigenetic tendencies, especially the process of histone methylation, are intricately intertwined with fat accumulation in the liver. Histone methylation is regulated by different enzymes like methyltransferases and demethylases and influences the expression of genes related to adipogenesis. While early-stage NAFLD is reversible, its progression to severe stages becomes almost irreversible. Therefore, early detection and intervention in NAFLD are crucial, and understanding the precise role of histone methylation in the early stages of NAFLD could be vital in halting or potentially reversing the progression of this disease.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...