Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.138
Filtrar
1.
Ann Med Surg (Lond) ; 86(10): 5793-5801, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39359823

RESUMO

Radiotherapy is widely regarded as the primary therapeutic modality for nasopharyngeal cancer (NPC). Studies have shown that cancer cells with high resistance to radiation, known as radioresistant cancer cells, may cause residual illness, which in turn might contribute to the occurrence of cancer recurrence and metastasis. It has been shown that cancer stem-like cells (CSCs) exhibit resistance to radiation therapy. In the present study, fractionated doses of radiation-induced epithelial-mesenchymal transition (EMT) and ALDH+ CSCs phenotype of NPC tumor spheroids. Furthermore, it has been shown that cells with elevated ALDH activity have increased resistance to the effects of fractionated irradiation. Nuclear factor erythroid-2-related factor 2 (Nrf2) plays a pivotal role in regulating cellular antioxidant systems. A large body of evidence suggests that Nrf2 plays a significant role in the development of radioresistance in cancer. The authors' research revealed that the application of fractionated irradiation resulted in a decline in Nrf2-dependent reactive oxygen species (ROS) levels, thereby mitigating DNA damage in ALDH+ stem-like NPC cells. In addition, immunofluorescence analysis revealed that subsequent to the process of fractionated irradiation of ALDH+ cells, activated Nrf2 was predominantly localized inside the nucleus. Immunofluorescent analysis also revealed that the presence of the nuclear Nrf2+/NQO1+/ALDH1+ axis might potentially serve as an indicator of poor prognosis and resistance to radiotherapy in patients with NPC. Thus, the authors' findings strongly suggest that the radioresistance of ALDH-positive NPC CSCs to fractionated irradiation is regulated by nuclear Nrf2 accumulation. Nrf2 exerts its effects through the downstream effector NQO1/ALDH1, which depends on ROS attenuation.

2.
Sci Rep ; 14(1): 23225, 2024 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-39369090

RESUMO

The identification of optimal candidate genes from large-scale blood transcriptomic data is crucial for developing targeted assays to monitor immune responses. Here, we introduce a novel, optimized large language model (LLM)-based approach for prioritizing candidate biomarkers from blood transcriptional modules. Focusing on module M14.51 from the BloodGen3 repertoire, we implemented a multi-step LLM-driven workflow. Initial high-throughput screening used GPT-4, Claude 3, and Claude 3.5 Sonnet to score and rank the module's constituent genes across six criteria. Top candidates then underwent high-resolution scoring using Consensus GPT, with concurrent manual fact-checking and, when needed, iterative refinement of the scores based on user feedback. Qualitative assessment of literature-based narratives and analysis of reference transcriptome data further refined the selection process. This novel multi-tiered approach consistently identified Glutathione Peroxidase 4 (GPX4) as the top candidate gene for module M14.51. GPX4's role in oxidative stress regulation, its potential as a future drug target, and its expression pattern across diverse cell types supported its selection. The incorporation of reference transcriptome data further validated GPX4 as the most suitable candidate for this module. This study presents an advanced LLM-driven workflow with a novel optimized scoring strategy for candidate gene prioritization, incorporating human-in-the-loop augmentation. The approach identified GPX4 as a key gene in the erythroid cell-associated module M14.51, suggesting its potential utility for biomarker discovery and targeted assay development. By combining AI-driven literature analysis with iterative human expert validation, this method leverages the strengths of both artificial and human intelligence, potentially contributing to the development of biologically relevant and clinically informative targeted assays. Further validation studies are needed to confirm the broader applicability of this human-augmented AI approach.


Assuntos
Biomarcadores , Células Eritroides , Fosfolipídeo Hidroperóxido Glutationa Peroxidase , Humanos , Biomarcadores/sangue , Células Eritroides/metabolismo , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/genética , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/metabolismo , Transcriptoma , Perfilação da Expressão Gênica/métodos , Estresse Oxidativo/genética
3.
J Hazard Mater ; 480: 136141, 2024 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-39405682

RESUMO

Evidence on the effects of fine particulate matter (PM2.5) constituents and sources on kidney injury is limited. We designed a panel study with 4 repeated measurements to investigate the association of acute exposure to chemical constituents and source-specific PM2.5 with kidney function and renal tubular injury. We further evaluated the modifying effect of Nrf2 promoter polymorphism. In this study, a total of 64 participants were recruited and ambient PM2.5 constituents were monitored at a fixed-site station. We used a positive matrix factorization (PMF) model to identify emission sources and linear mixed-effect models to explore the associations. An interquartile range (IQR) increase in PM2.5 concentration was associated with a 1.40 % and 3.15 % decrease in eGFR-Cr (eGFR assessed by creatinine) and eGFR-Cys (eGFR assessed by cystatin-C), respectively, and 10.2 % higher kidney injury molecule 1 (KIM-1) levels. Carbonaceous components (EC and OC), metallic elements (Cr, K, Pb, Zn) and Cl- were robustly responsible for kidney injury. Per IQR increase in these constituents accounted for 0.57 % to 1.62 % declines in eGFR-Cr; 1.36 % to 3.66 % declines in eGFR-Cys; and 7.50 % to 19.83 % increments in KIM-1. Specific source analysis revealed that PM2.5 emitted by combustion was associated with the largest reduction in eGFR, while the secondary source played a more prominent role in renal tubular injury. The dominant models showed that the magnitudes of the effect estimates of PM2.5 and its constituents were generally larger in the participants with minor alleles of the Nrf2 promoter. These findings suggest that acute exposure to EC, OC, Cl- and several metallic constituents may be responsible for kidney injury induced by PM2.5, especially in individuals with unfavorable Nrf2 genotypes. PM2.5 from combustion and secondary sources impairs kidney health, highlighting the importance of source-oriented PM2.5 control strategies.

4.
Immunopharmacol Immunotoxicol ; : 1-11, 2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-39406691

RESUMO

BACKGROUND: Azithromycin is an antibacterial and anti-inflammatory drug widely used for the treatment of various diseases, including those caused by atypical pathogens, bacterial or viral infections, chronic sinusitis, and bronchial asthma, particularly in pediatric patients. However, concerns have emerged regarding its hepatotoxicity and its precise mechanism of action remains unclear. OBJECTIVE: To investigate the molecular mechanisms responsible for azithromycin-induced acute liver injury to advance our understanding of the progression and pathogenesis of antibiotic-induced liver damage, and to improve prevention and treatment strategies. MATERIALS AND METHODS: C57BL/6 mice, Nrf2-/- mice, and primary hepatocytes were used. Primary hepatocytes from mice were isolated using a two-step perfusion method and cultured in vitro via the 'sandwich' culture model. RESULTS: The exposure to azithromycin resulted in increased apoptosis and reactive oxygen species (ROS) levels. In mouse models, intraperitoneal administration of azithromycin at varying concentrations and time points substantially induced hepatic disarray, swelling, and dysfunction. Azithromycin markedly upregulated the mRNA and protein levels of phosphorylated adenosine-activated protein kinase (AMPK) while downregulating nuclear factor erythroid 2-related factor 2 (Nrf2), heme oxygenase 1 (HO-1), and NADPH: quinone oxidoreductase 1 (NQO-1). Moreover, HO-1 and NQO-1 protein levels remained largely unaffected in primary hepatocytes co-cultured with azithromycin in Nrf2-/- mice. CONCLUSIONS: Our findings suggest that azithromycin-induced acute liver injury is mediated by suppression of Nrf2 activation and ROS production. This sheds light on the potential mechanisms involved in azithromycin-induced liver damage, underscoring the importance of exploring targeted interventions to mitigate the hepatotoxic effects.

5.
Int J Mol Sci ; 25(19)2024 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-39408618

RESUMO

The frequency, duration, and size of wildfires have been increasing, and the inhalation of wildfire smoke particles poses a significant risk to human health. Epidemiological studies have shown that wildfire smoke exposure is positively associated with cognitive and neurological dysfunctions. However, there is a significant gap in knowledge on how wildfire smoke exposure can affect the blood-brain barrier and cause molecular and cellular changes in the brain. Our study aims to determine the acute effect of smoldering eucalyptus wood smoke extract (WSE) on brain endothelial cells for potential neurotoxicity in vitro. Primary human brain microvascular endothelial cells (HBMEC) and immortalized human brain endothelial cell line (hCMEC/D3) were treated with different doses of WSE for 24 h. WSE treatment resulted in a dose-dependent increase in IL-8 in both HBMEC and hCMEC/D3. RNA-seq analyses showed a dose-dependent upregulation of genes involved in aryl hydrocarbon receptor (AhR) and nuclear factor erythroid 2-related factor 2 (NRF2) pathways and a decrease in tight junction markers in both HBMEC and hCMEC/D3. When comparing untreated controls, RNA-seq analyses showed that HBMEC have a higher expression of tight junction markers compared to hCMEC/D3. In summary, our study found that 24 h WSE treatment increases IL-8 production dose-dependently and decreases tight junction markers in both HBMEC and hCMEC/D3 that may be mediated through the AhR and NRF2 pathways, and HBMEC could be a better in vitro model for studying the effect of wood smoke extract or particles on brain endothelial cells.


Assuntos
Encéfalo , Células Endoteliais , Eucalyptus , Extratos Vegetais , Fumaça , Madeira , Humanos , Fumaça/efeitos adversos , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Eucalyptus/química , Madeira/química , Encéfalo/metabolismo , Encéfalo/efeitos dos fármacos , Extratos Vegetais/farmacologia , Linhagem Celular , Barreira Hematoencefálica/efeitos dos fármacos , Barreira Hematoencefálica/metabolismo , Interleucina-8/metabolismo , Interleucina-8/genética , Relação Dose-Resposta a Droga , Fator 2 Relacionado a NF-E2/metabolismo , Fator 2 Relacionado a NF-E2/genética , Incêndios Florestais
6.
Neurotherapeutics ; 21(5): e00444, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39353831

RESUMO

This study aims to investigate whether butylphthalide can inhibit ferroptosis and ameliorate cerebral ischaemia-reperfusion (I/R) injury in rats by activating the nuclear factor erythroid 2-related factor 2 (Nrf2) / heme oxygenase-1 (HO-1) signalling pathway, known for its antioxidative and cytoprotective properties. Middle cerebral artery occlusion reperfusion (MCAO/R) rat models were established. Male rats were randomly divided into five groups: a sham-operated group (sham), MCAO/R group, MCAO/R â€‹+ â€‹ML385 (Nrf2-specific inhibitor) group, MCAO/R â€‹+ â€‹NBP (butylphthalide) group and MCAO/R â€‹+ â€‹ML385 â€‹+ â€‹NBP group. The effect of butylphthalide on cerebral I/R injury was evaluated using neurological deficit scores. The expression levels of Nrf2, HO-1, glutathione peroxidase 4 (GPX4), acyl-CoA synthetase long-chain family member 4 (ACSL4) and transferrin receptor 1 (TfR1) protein were detected using Western blot. Moreover, the expression levels of GPX4, HO-1 and TfR1 mRNA were determined through real-time fluorescence quantitative reverse transcription polymerase chain reaction. The distribution of Nrf2, HO-1, GPX4 and TfR1 was detected using immunohistochemical staining. The levels of iron and related lipid peroxidation indexes, such as reduced glutathione, reactive oxygen species, malondialdehyde and nitric oxide, were measured using a kit. The changes in mitochondria were observed through transmission electron microscopy. Butylphthalide treatment significantly improved neurological dysfunction, reduced cerebral infarction volume and mitigated histopathological damage in MCAO/R rats. It induced the nuclear translocation of Nrf2 and upregulated HO-1 expression, which was attenuated by ML385. Butylphthalide also attenuated lipid peroxidation, iron accumulation and mitochondrial damage induced by MCAO/R. The expression of GPX4, ACSL4 and TfR1 proteins, as well as their mRNA levels, was modulated through butylphthalide treatment, with improvements observed in mitochondrial morphology. Butylphthalide exerts neuroprotective effects by attenuating neurological dysfunction and ferroptosis in MCAO/R rats through the activation of the Nrf2/HO-1 pathway and inhibition of lipid peroxidation and iron accumulation.


Assuntos
Benzofuranos , Ferroptose , Fator 2 Relacionado a NF-E2 , Traumatismo por Reperfusão , Transdução de Sinais , Animais , Masculino , Ratos , Benzofuranos/farmacologia , Benzofuranos/uso terapêutico , Isquemia Encefálica/tratamento farmacológico , Isquemia Encefálica/metabolismo , Ferroptose/efeitos dos fármacos , Heme Oxigenase (Desciclizante)/metabolismo , Heme Oxigenase-1/metabolismo , Infarto da Artéria Cerebral Média/tratamento farmacológico , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Fator 2 Relacionado a NF-E2/metabolismo , Ratos Sprague-Dawley , Traumatismo por Reperfusão/tratamento farmacológico , Traumatismo por Reperfusão/metabolismo , Transdução de Sinais/efeitos dos fármacos
7.
Heliyon ; 10(19): e37477, 2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-39421383

RESUMO

Wound healing impairment is a frequent diabetes problem leading to amputation. Hyperglycemia induces the overproduction of reactive oxygen species (ROS), iron overload and sustained inflammation, resulting in the persistence of chronic wounds. However, the intrinsic mechanisms of impaired diabetic wound healing remain enigmatic. A new non-apoptotic regulatory cellular death called Ferroptosis, is distinguished by iron-driven lipid peroxidation products accumulation along with insufficient antioxidant enzymes. A decline in antioxidant capacity, excess accumulation of peroxidation of iron and lipid have been identified in wound sites of streptozotocin-induced diabetes mellitus (DM) rats and elevated glucose (EG)-cultured macrophages. Additionally, sustained inflammation and increased inflammatory cytokines were observed in DM rats and HG-cultured macrophages. Importantly, ferrostatin-1 (Fer-1) is a ferroptosis suppressor treatment significantly ameliorated diabetes-related ferroptosis and inflammation. This treatment also enhanced cell proliferation and neovascularization, ultimately thereby accelerating diabetic wound healing. Meanwhile, our study demonstrated that an anti-ferroptotic and anti-inflammatory effects of Fer-1 were mediated through stimulation of nuclear erythroid-associated factor 2 (Nrf2). The current study may provide a new rationale for diabetic wound healing.

8.
Curr Med Chem ; 2024 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-39421996

RESUMO

Nuclear factor erythroid 2-related factor 2 (Nrf2) is a regulator of the cellular antioxidant defense system that plays an important role in reducing the risk of various pathophysiological conditions, including cancer. Targeting Nrf2 presents an attractive therapeutic approach to overcome these challenges and improve cancer treatment outcomes. Nanoparticles, with their unique physicochemical properties, offer several advantages over conventional therapies for targeting Nrf2. These include enhanced stability, improved permeability and retention effect, and precise targeting capabilities. Moreover, delivery systems based on nanotechnology have shown promise in overcoming the limitations of conventional cancer therapies, including ineffective precision targeting and momentous complications. The therapeutic efficacy of Nrf2 inhibitors may be enhanced by using nanoparticles for specific drug targeting and deeper tissue penetration. This involves optimizing nanoparticle formulations, understanding their interactions with the biological environment, and ensuring their safety and biocompatibility. Effective nanoparticle formulations are being developed to transport Nrf2 inhibitors, which can significantly improve treatment outcomes and address the limitations of conventional cancer therapies. Further studies are needed to explore the potential of nanotechnology in targeting Nrf2 for cancer therapeutic purposes.

9.
Artigo em Inglês | MEDLINE | ID: mdl-39226028

RESUMO

Hematopoietic stem cells (HSCs) possess the capacity for self-renewal and the sustained production of all mature blood cell lineages. It has been well established that a metabolic rewiring controls the switch of HSCs from a self-renewal state to a more differentiated state but it is only recently that we have appreciated the importance of metabolic pathways in regulating the commitment of progenitors to distinct hematopoietic lineages. In the context of erythroid differentiation, an extensive network of metabolites - including amino acids, sugars, nucleotides, fatty acids, vitamins, and iron - is required for red blood cell (RBC) maturation. In this review, we will highlight the multi-faceted roles via which metabolites regulate physiological erythropoiesis as well as the effects of metabolic perturbations on erythroid lineage commitment and differentiation. Of note, the erythroid differentiation process is associated with an exceptional breadth of SLC metabolite transporter upregulation. Finally, we will discuss how recent research, revealing the critical impact of metabolic reprogramming in diseases of disordered and ineffective erythropoiesis, has created opportunities for the development of novel metabolic-centered therapeutic strategies.

10.
Front Immunol ; 15: 1431303, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39267736

RESUMO

The role of Erythroid cells in immune regulation and immunosuppression is one of the emerging topics in modern immunology that still requires further clarification as Erythroid cells from different tissues and different species express different immunoregulatory molecules. In this study, we performed a thorough investigation of human bone marrow Erythroid cells from adult healthy donors and adult acute lymphoblastic leukemia patients using the state-of-the-art single-cell targeted proteomics and transcriptomics via BD Rhapsody and cancer-related gene copy number variation analysis via NanoString Sprint Profiler. We found that human bone marrow Erythroid cells express the ARG1, LGALS1, LGALS3, LGALS9, and C10orf54 (VISTA) immunosuppressive genes, CXCL5, CXCL8, and VEGFA cytokine genes, as well as the genes involved in antimicrobial immunity and MHC Class II antigen presentation. We also found that ARG1 gene expression was restricted to the single erythroid cell cluster that we termed ARG1-positive Orthochromatic erythroblasts and that late Erythroid cells lose S100A9 and gain MZB1 gene expression in case of acute lymphoblastic leukemia. These findings show that steady-state erythropoiesis bone marrow Erythroid cells express myeloid signature genes even without any transdifferentiating stimulus like cancer.


Assuntos
Células Eritroides , Leucemia-Linfoma Linfoblástico de Células Precursoras , Análise de Célula Única , Humanos , Células Eritroides/metabolismo , Células Eritroides/imunologia , Leucemia-Linfoma Linfoblástico de Células Precursoras/imunologia , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Diferenciação Celular/imunologia , Proteômica/métodos , Transcriptoma , Perfilação da Expressão Gênica , Adulto , Multiômica
11.
Zhonghua Xue Ye Xue Za Zhi ; 45(7): 651-659, 2024 Jul 14.
Artigo em Chinês | MEDLINE | ID: mdl-39231769

RESUMO

Objective: To analyze the clinical characteristics and prognosis of patients with myelodysplastic syndrome (MDS) with a bone marrow nucleated erythroid cell proportion of greater than or equal to 50% (MDS-E) . Methods: The clinical characteristics and prognostic factors of patients with MDS-E were retrospectively analyzed by collecting the case data of 1 436 newly treated patients with MDS diagnosed in the Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences from May 2014 to June 2023. Results: A total of 1 436 newly diagnosed patients with complete data were included in the study, of which 337 (23.5%) patients with MDS-E had a younger age of onset and lower neutrophil and platelet counts compared with those in patients with an erythroid cell proportion of less than 50% (MDS-NE) (all P<0.05). The proportion of MDS cases with ring sideroblasts (MDS-RS) was higher in the MDS-E group than in the MDS-NE group, and multi-hit TP53 mutations were more enriched in the MDS-E group than in the MDS-NE group (all P<0.05). Among patients with MDS-RS, the frequency of complex karyotypes and the TP53 mutation rate were significantly lower in the MDS-E group than in the MDS-NE group (0 vs 11.9%, P=0.048 and 2.4% vs 15.1%, P=0.053, respectively). Among patients with TP53 mutations, the frequencies of complex karyotypes and multi-hit TP53 mutations were significantly higher in the MDS-E group than in the MDS-NE group (87.5% vs 64.6%, P=0.003 and 84.0% vs 54.2%, P<0.001, respectively). Survival analysis of patients with MDS-RS found that the overall survival (OS) in the MDS-E group was better than that in the MDS-NE group [not reached vs 63 (95% CI 53.3-72.7) months, P=0.029]. Among patients with TP53 mutations and excess blasts, the OS in the MDS-E group was worse than that in the MDS-NE group [6 (95% CI 2.2-9.8) months vs 12 (95% CI 8.9-15.1) months, P=0.022]. Multivariate analysis showed that age of ≥65 years (HR=2.47, 95% CI 1.43-4.26, P=0.001), mean corpuscular volume (MCV) of ≤100 fl (HR=2.62, 95% CI 1.54-4.47, P<0.001), and TP53 mutation (HR=2.31, 95% CI 1.29-4.12, P=0.005) were poor prognostic factors independent of the Revised International Prognostic Scoring System (IPSS-R) prognosis stratification in patients with MDS-E. Conclusion: Among patients with MDS-RS, MDS-E was strongly associated with a lower proportion of complex karyotypes and TP53 mutations, and the OS in the MDS-E group was longer than that in the MDS-NE group. Among patients with TP53 mutations, MDS-E was strongly associated with complex karyotypes and multi-hit TP53 mutations, and among TP53-mutated patients with excess blasts, the OS in the MDS-E group was shorter than that in the MDS-NE group. Age of ≥65 years, MCV of ≤100 fl, and TP53 mutation were independent adverse prognostic factors affecting OS in patients with MDS-E.


Assuntos
Mutação , Síndromes Mielodisplásicas , Humanos , Síndromes Mielodisplásicas/genética , Síndromes Mielodisplásicas/diagnóstico , Prognóstico , Estudos Retrospectivos , Medula Óssea/patologia , Células da Medula Óssea , Masculino , Feminino , Taxa de Sobrevida , Proteína Supressora de Tumor p53/genética , Pessoa de Meia-Idade
12.
Int J Ophthalmol ; 17(9): 1606-1613, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39296564

RESUMO

AIM: To determine whether etomidate (ET) has a protective effect on retinal ganglion cells (RGCs) injured with hydrogen peroxide (H2O2) and to explore the potential mechanism underlying the antioxidative stress effect of ET. METHODS: Cultured RGCs were identified by double immunofluorescent labeling of microtubule-associated protein 2 and Thy1.1. An injury model of H2O2-induced RGCs oxidative stress was established in vitro. Cells were pretreated with different concentrations of ET (1, 5, and 10 µmol/L) for 4h, followed by further exposure to H2O2 at 1000 µmol/L. Cell counting kit 8 and Annexin V/propidium iodide assays were applied to detect the viabilities and apoptosis rates of the RGCs at 12, 24, and 48h after H2O2 stimulation. The levels of nitric oxide, malondialdehyde, and glutathione in culture media were measured at these time points. Quantitative reverse transcription polymerase chain reaction (qRT-PCR) and Western blot were performed to observe the effects of ET on the messenger RNA and protein expression of inducible nitric oxide synthase (iNOS), nuclear factor erythroid 2-related factor 2 (Nrf2), heme oxygenase 1 (HO-1), glutathione peroxidase 1 and the level of conjugated acrolein in RGCs at 12, 24, and 48h after H2O2 stimulation and in the retina at 12h after optic nerve transection (ONT). RESULTS: The applications of 5 and 10 µmol/L of ET significantly increased the viability of RGCs. Results from qRT-PCR indicated a decrease in the expression of iNOS and an increase in the expressions of Nrf2 and HO-1 in ET-pretreated RGCs at 12, 24 and 48h after H2O2 stimulation, as well as in ET-treated retinas at 12h after ONT. Western blot analysis revealed a decrease in the expression of iNOS and levels of conjugated acrolein, along with an increase in the expressions of Nrf2 and HO-1 in ET-pretreated RGCs in vitro and ET-treated retinas in vivo. CONCLUSION: ET is a neuroprotective agent in primary cultured RGCs injured by H2O2. The effect of ET is dose-dependent with the greatest effect being at 10 µmol/L. ET plays an antioxidant role by inhibiting iNOS, up-regulating Nrf2/HO-1, decreasing the production of acrolein, and increasing the scavenge of acrolein.

13.
AMB Express ; 14(1): 100, 2024 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-39251509

RESUMO

Non-alcoholic fatty liver disease (NAFLD) is becoming a significant global public health threat. Seabuckthorn (Hippophae rhamnoides L.) has been used in traditional Chinese medicine (TCM). The hypolipidemic effects of Seabuckthorn polysaccharides (SP) against high-fat diets (HFD)-induced NAFLD were systematically explored and compared with that of Bifidobacterium lactis V9 (B. Lactis V9). Results showed that HFD-induced alanine transaminase (ALT) and aspartate aminotransferase (AST) levels decreased by 2.8-fold and 4.5-fold, respectively, after SP supplementation. Moreover, the alleviating effect on hepatic lipid accumulation is better than that of B. Lactis V9. The ACC and FASN mRNA levels were significantly reduced by 1.8 fold (P < 0.05) and 2.3 folds (P < 0.05), respectively, while the CPT1α and PPARα mRNA levels was significantly increased by 2.3 fold (P < 0.05) and 1.6 fold (P < 0.05), respectively, after SP administration. SP activated phosphorylated-AMPK and inhibited PPARγ protein expression, improved serum oxidative stress and inflammation (P < 0.05). SP supplementation leads to increased hepatic expression of nuclear factor erythroid 2-related factor 2 (Nrf-2), heme oxygenase-1 (HO-1) and Superoxide dismutase-2 (SOD-2). Furthermore, SP treatment improved HFD-induced intestinal dysbiosis. Lentisphaerae, Firmicutes, Tenericutes and Peptococcus sp., RC9_gut_group sp., and Parabacteroides sp. of the gut microbiota were significantly associated with hepatic steatosis and indicators related to oxidative stress and inflammation. Therefore, SP can mitigate hepatic lipid accumulation by regulating Nrf-2/HO-1 signaling pathways and gut microbiota. This study offers new evidence supporting the use of SP as a prebiotic treatment for NAFLD.

14.
Int J Biol Sci ; 20(12): 4888-4907, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39309448

RESUMO

Reactive oxygen species are involved in the pathogenesis of cancers and metabolic diseases, including diabetes, obesity, and fatty liver disease. Thus, inhibiting the generation of free radicals is a promising strategy to control the onset of metabolic diseases and cancer progression. Various synthetic drugs and natural product-derived compounds that exhibit antioxidant activity have been reported to have a protective effect against a range of metabolic diseases and cancer. This review highlights the development and aggravation of cancer and metabolic diseases due to the imbalance between pro-oxidants and endogenous antioxidant molecules. In addition, we discuss the function of proteins that regulate the production of reactive oxygen species as a strategy to treat metabolic diseases. In particular, we summarize the role of proteins such as nuclear factor-like 2, Sestrin, and heme oxygenase-1, which regulate the expression of various antioxidant genes in metabolic diseases and cancer. We have included recent literature to discuss the latest research on identifying novel signals of antioxidant genes that can control metabolic diseases and cancer.


Assuntos
Antioxidantes , Heme Oxigenase-1 , Doenças Metabólicas , Fator 2 Relacionado a NF-E2 , Neoplasias , Humanos , Doenças Metabólicas/metabolismo , Doenças Metabólicas/genética , Neoplasias/metabolismo , Neoplasias/genética , Antioxidantes/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Fator 2 Relacionado a NF-E2/genética , Heme Oxigenase-1/metabolismo , Heme Oxigenase-1/genética , Animais , Espécies Reativas de Oxigênio/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Nucleares/genética , Estresse Oxidativo
15.
Curr Issues Mol Biol ; 46(9): 9401-9414, 2024 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-39329909

RESUMO

Lichen sclerosus (LS) is a chronic inflammatory disease of the skin, and the gold standard for treatment is the use of the very potent topical steroids, but they can have side effects. Previously, we demonstrated that OZOILE (stable ozonides) were effective in children affected by LS, reducing the inflammatory process and stimulating tissue regeneration of the foreskin, showing a similar efficacy to steroid treatment. In this study, the modulation of inflammatory and oxidative stress pathways was evaluated by qRT-PCR and Western blotting in foreskins affected by LS removed from patients untreated or treated with OZOILE or corticosteroid cream formulations for 7 days before circumcision. OZOILE induced a significant increase in NRF2 and SOD2 levels, while it did not produce change in MIF, NF-kB subunits, and MMPs in comparison to untreated foreskins. Conversely, steroid topical treatment produced a significant reduction in the expression of p65, MIF, and MMP9, but it did not cause variation in NRF2 and SOD2 levels. These results demonstrate that the use of OZOILE as cream formulation exhibits effects on NRF2 signaling, and it does not induce NF-κB activation, unlike corticosteroids. On the basis of our biochemical data, further studies evaluating the role of NRF2 signaling cascade are necessary.

16.
Biomed Pharmacother ; 180: 117513, 2024 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-39341075

RESUMO

Cardiac arrest (CA) is a significant challenge for emergency physicians worldwide and leads to increased morbidity and mortality rates. The poor prognosis of CA primarily stems from the complexity and irreversibility of cerebral ischemia-reperfusion injury (CIRI). Ferroptosis, a form of programmed cell death characterized by iron overload and lipid peroxidation, plays a crucial role in the progression and treatment of CIRI. In this review, we highlight the mechanisms of ferroptosis within the context of CIRI, focusing on its role as a key contributor to neuronal damage and dysfunction post-CA. We explore the crucial involvement of the nuclear factor erythroid 2-related factor (Nrf2)-mediated signaling pathway in modulating ferroptosis-associated processes during CIRI. Through comprehensive analysis of the regulatory role of Nrf2 in the cellular responses to oxidative stress, we highlight its potential as a therapeutic target for mitigating ferroptotic cell death and improving the neurological prognosis of patients experiencing CA. Furthermore, we discuss interventions targeting the Kelch-like ECH-associated protein 1/Nrf2/antioxidant response element pathway, including the use of traditional Chinese medicine and Western medicine, which demonstrate potential for attenuating ferroptosis and preserving neuronal function in CIRI. Owing to the limitations in the safety, specificity, and effectiveness of Nrf2-targeted drugs, as well as the technical difficulties and ethical constraints in obtaining the results related to the brain pathological examination of patients, most of the studies focusing on Nrf2-related regulation of ferroptosis in CIRI are still in the basic research stage. Overall, this review aims to provide a comprehensive understanding of the mechanisms underlying ferroptosis in CIRI, offering insights into novel therapeutics aimed at enhancing the clinical outcomes of patients with CA.

17.
J Inflamm Res ; 17: 6619-6633, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39329083

RESUMO

Osteoarthritis (OA) is a chronic degenerative joint disease characterized by the degradation of joint cartilage, subchondral bone sclerosis, synovitis, and structural changes in the joint. Recent research has highlighted the role of various genes in the pathogenesis and progression of OA, with nuclear factor erythroid 2-related factor 2 (NRF2) emerging as a critical player. NRF2, a vital transcription factor, plays a key role in regulating the OA microenvironment and slowing the disease's progression. It modulates the expression of several antioxidant enzymes, such as Heme oxygenase-1 (HO-1) and NAD(P)H oxidoreductase 1 (NQO1), among others, which help reduce oxidative stress. Furthermore, NRF2 inhibits the nuclear factor kappa-B (NF-κB) signaling pathway, thereby decreasing inflammation, joint pain, and the breakdown of cartilage extracellular matrix, while also mitigating cell aging and death. This review discusses NRF2's impact on oxidative stress, inflammation, cell aging, and various cell death modes (such as apoptosis, necroptosis, and ferroptosis) in OA-affected chondrocytes. The role of NRF2 in OA macrophages, and synovial fibroblasts was also discussed. It also covers NRF2's role in preserving the cartilage extracellular matrix and alleviating joint pain. The purpose of this review is to provide a comprehensive understanding of NRF2's protective mechanisms in OA, highlighting its potential as a therapeutic target and underscoring its significance in the development of novel treatment strategies for OA.

18.
J Dairy Sci ; 2024 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-39343197

RESUMO

Ketosis is a common metabolic disorder in high-yielding cows and is characterized by high concentrations of BHB and free fatty acids (FFA). High concentrations of FFA induce endoplasmic reticulum (ER) stress in multiple organs including mammary tissue, and result in reduced milk production and lower milk quality. In non-ruminants, loss of nuclear factor erythroid 2-related factor 1 (NFE2L1) results in ER stress. The physiological functions and molecular mechanisms controlled by NFE2L1 in bovine mammary tissue are poorly understood. Thus, the present study aimed to elucidate the role of the NFE2L1 on proteasomal homeostasis and ER stress in mammary tissue from early-lactation (DIM 6 to 14) healthy cows (CON, blood concentration of BHB <1.2 mM, n = 10) and cows with clinical ketosis (CK blood concentration of BHB >3 mM, n = 10). Compared with CON, serum concentration of glucose was lower due to CK, while serum concentrations of BHB and FFA were greater. Protein and mRNA abundance of NFE2L1 along with abundance of proteasomal subunits (PSMD1, PSMD14, PSMA1, PSMB1, and PSMB5 genes and PSMB4 and PSMB6 proteins) were lower in cows with CK, indicating that expression of NFE2L1 and proteasomal homeostasis was impaired by ketosis. In vitro, primary bovine mammary epithelial cells were exposed to various concentrations of FFA (0, 0.3, 0.6, or 1.2 mM). Compared with the 0 mM FFA, the ratio of phosphorylated (p)-protein kinase R-like ER kinase (PERK)/PERK along with the expression of inositol-requiring enzyme 1 (IRE1) α, activating transcription factor 6 (ATF6), glucose regulated protein 78 (GRP78), and C/EBP homologous protein (CHOP) was higher with 1.2 mM FFA. A similar response was observed for ER stress-associated genes (CHOP, GRP78, and XBP1) indicating that high concentrations of FFA induced ER stress. In line with in vivo results, 1.2 mM FFA downregulated the protein and mRNA abundance of NFE2L1, the abundance of PSMB6 protein, and PSM genes (PSMC1, PSMC3, and PSMD1), and increased the accumulation of ubiquitin. This suggested a marked negative effect of high FFA on NFE2L1 and proteasomal homeostasis. Silencing of NFE2L1 triggered upregulation of ER stress-associated genes as well as protein abundance of GRP78 and CHOP. Further, compared with CON-siRNA, the abundance of PSM genes was downregulated in the NFE2L1-siRNA group. In contrast, abundance of markers of ER stress and PSM genes and proteins indicated that overexpression of NFE2L1 relieved the FFA-induced ER stress and improved 26S proteasome homeostasis. Our data suggested that the mammary gland experiences ER stress during ketosis partly due to disruption of proteasomal homeostasis from the excess FFA. As such, NFE2L1 could represent a target for potential therapeutic applications in the field to alleviate the accumulation of malformed proteins that may impair the long-term lactogenic capacity of the udder.

19.
Antioxidants (Basel) ; 13(9)2024 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-39334729

RESUMO

The regulation of reactive oxygen species (ROS) in red blood cells (RBCs) is crucial for maintaining functionality and lifespan. Indeed, dysregulated ROS occurs in haematological diseases such as sickle cell disease and ß-thalassaemia. In order to combat this, RBCs possess high levels of protective antioxidant enzymes. We aimed to further boost RBC antioxidant capacity by overexpressing peroxiredoxin (Prxs) and glutathione peroxidase (GPxs) enzymes. Multiple antioxidant enzyme cDNAs were individually overexpressed in expanding immortalised erythroblasts using lentivirus, including Prx isoforms 1, 2, and 6 and GPx isoforms 1 and 4. Enhancing Prx protein expression proved straightforward, but GPx overexpression required modifications. For GPx4, these modifications included adding a SECIS element in the 3'UTR, the removal of a mitochondrial-targeting sequence, and removing putative ubiquitination sites. Culture-derived reticulocytes exhibiting enhanced levels of Prx and GPx antioxidant proteins were successfully engineered, demonstrating a novel approach to improve RBC resilience to oxidative stress. Further work is needed to explore the activity of these proteins and their impact on RBC metabolism, but this strategy shows promise for improving RBC function in physiological and pathological contexts and during storage for transfusion. Enhancing the antioxidant capacity of reticulocytes has exciting promise for developing culture-derived RBCs with enhanced resistance to oxidative damage and offers new therapeutic interventions in diseases with elevated oxidative stress.

20.
Sci Rep ; 14(1): 21425, 2024 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-39271809

RESUMO

Oxidative stress in adipose tissue may alter the secretion pattern of adipocytokines and potentially promote atherosclerosis. However, the therapeutic role of hydrogen in adipose tissue under oxidative stress remains unclear. In this study, subcutaneous adipose tissue (SCAT) was collected from the mid-thoracic wounds of 12 patients who underwent open-heart surgery with a mid-thoracic incision. The adipose tissue was then immersed in a culture medium dissolved with hydrogen, which was generated using a hydrogen-generating device. The weight of the adipose tissue was measured before and after hydrogenation, and the tissue was immunostained for nuclear factor erythroid 2-related factor 2 (Nrf2), heme oxygenase-1 (HO-1), and superoxide dismutase (SOD), which are markers of oxidative stress. The immunostaining results showed that HO-1 and Nrf2 expression levels were significantly decreased in the hydrogenated group, whereas SOD expression levels increased, but did not attain statistical significance. Image analysis of adipose tissue revealed that a reduction in adipocyte size. Furthermore, hydrogenated adipose tissue showed a trend toward increased gene expression levels of adiponectin and decreased gene expression levels of chemerin, an adipocytokine involved in adipogenesis. These results demonstrated the therapeutic potential of hydrogen gas for oxidative stress in adipose tissue and for reducing adipocyte size.


Assuntos
Tecido Adiposo , Hidrogênio , Estresse Oxidativo , Estresse Oxidativo/efeitos dos fármacos , Humanos , Hidrogênio/farmacologia , Hidrogênio/metabolismo , Masculino , Feminino , Tecido Adiposo/metabolismo , Tecido Adiposo/efeitos dos fármacos , Pessoa de Meia-Idade , Superóxido Dismutase/metabolismo , Heme Oxigenase-1/metabolismo , Heme Oxigenase-1/genética , Idoso , Adiponectina/metabolismo , Adiponectina/genética , Adipócitos/metabolismo , Adipócitos/efeitos dos fármacos , Gordura Subcutânea/metabolismo , Gordura Subcutânea/efeitos dos fármacos , Fator 2 Relacionado a NF-E2
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...