Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 322
Filtrar
1.
Eur Biophys J ; 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38955858

RESUMO

Proteins have evolved through mutations-amino acid substitutions-since life appeared on Earth, some 109 years ago. The study of these phenomena has been of particular significance because of their impact on protein stability, function, and structure. This study offers a new viewpoint on how the most recent findings in these areas can be used to explore the impact of mutations on protein sequence, stability, and evolvability. Preliminary results indicate that: (1) mutations can be viewed as sensitive probes to identify 'typos' in the amino-acid sequence, and also to assess the resistance of naturally occurring proteins to unwanted sequence alterations; (2) the presence of 'typos' in the amino acid sequence, rather than being an evolutionary obstacle, could promote faster evolvability and, in turn, increase the likelihood of higher protein stability; (3) the mutation site is far more important than the substituted amino acid in terms of the marginal stability changes of the protein, and (4) the unpredictability of protein evolution at the molecular level-by mutations-exists even in the absence of epistasis effects. Finally, the Darwinian concept of evolution "descent with modification" and experimental evidence endorse one of the results of this study, which suggests that some regions of any protein sequence are susceptible to mutations while others are not. This work contributes to our general understanding of protein responses to mutations and may spur significant progress in our efforts to develop methods to accurately forecast changes in protein stability, their propensity for metamorphism, and their ability to evolve.

2.
Evol Appl ; 17(7): e13742, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38975285

RESUMO

The number of multidrug-resistant strains of bacteria is increasing rapidly, while the number of new antibiotic discoveries has stagnated. This trend has caused a surge in interest in bacteriophages as anti-bacterial therapeutics, in part because there is near limitless diversity of phages to harness. While this diversity provides an opportunity, it also creates the dilemma of having to decide which criteria to use to select phages. Here we test whether a phage's ability to coevolve with its host (evolvability) should be considered and how this property compares to two previously proposed criteria: fast reproduction and thermostability. To do this, we compared the suppressiveness of three phages that vary by a single amino acid yet differ in these traits such that each strain maximized two of three characteristics. Our studies revealed that both evolvability and reproductive rate are independently important. The phage most able to suppress bacterial populations was the strain with high evolvability and reproductive rate, yet this phage was unstable. Phages varied due to differences in the types of resistance evolved against them and their ability to counteract resistance. When conditions were shifted to exaggerate the importance of thermostability, one of the stable phages was most suppressive in the short-term, but not over the long-term. Our results demonstrate the utility of biological therapeutics' capacities to evolve and adjust in action to resolve complications like resistance evolution. Furthermore, evolvability is a property that can be engineered into phage therapeutics to enhance their effectiveness.

3.
Adv Biol (Weinh) ; : e2300658, 2024 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-38880843

RESUMO

Because aging and internally determined lifespan vary greatly between similar species it is now widely accepted that aging is an evolved trait, resulting in two classes of evolutionary aging theories: aging is programmed by complex biological mechanisms, and aging is not programmed. As recently as 2002 programmed aging is thought to be theoretically impossible. However, genetics discoveries, results of selective breeding, and other direct evidence strongly support the idea that aging creates an evolutionary advantage and that therefore complex biological mechanisms evolved that control aging in mammals and other multiparous organisms. Like life-cycle programs that control reproduction, growth, and menopause the aging program can adjust the aging trait during an individual's life to compensate for temporary or local changes in external conditions that alter the optimum lifespan for a particular species population. Genetics discoveries also strongly support the evolvability concept to the effect that sexually reproducing species can evolve design features that increase their ability to evolve, and that aging is one such feature. Genetics discoveries also prove that biological inheritance involves transmission of organism design information in digital form between parent and descendant of any organism. This has major implications for the evolution process.

4.
Evolution ; 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38884170

RESUMO

The informed use of scales and units in evolutionary quantitative genetics is often neglected, and naïve standardizations can cause misinterpretations of empirical results. A potentially influential example of such neglect can be found in the recent book by Stevan J. Arnold (2023. Evolutionary Quantitative Genetics Oxford University Press). There, Arnold championed the use of heritability over mean-scaled genetic variance as a measure of evolutionary potential arguing that mean-scaled genetic variances are correlated with trait means while heritabilities are not. Here, we show that Arnold's empirical result is an artifact of ignoring the units in which traits are measured. More importantly, Arnold's argument mistakenly assumes that the goal of mean scaling is to remove the relationship between mean and variance. In our view, the purpose of mean scaling is to put traits with different units on a common scale that makes evolutionary changes, or their potential, readily interpretable and comparable in terms of proportions of the mean.

5.
New Phytol ; 243(2): 753-764, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38714871

RESUMO

Plants can evolve rapidly after pollinator changes, but the response of different floral traits to novel selection can vary. Floral morphology is often expected to show high integration to maintain pollination accuracy, while nectar traits can be more environmentally sensitive. The relative role of genetic correlations and phenotypic plasticity (PP) in floral evolution remains unclear, particularly for nectar traits, and can be studied in the context of recent pollinator changes. Digitalis purpurea shows rapid recent evolution of corolla morphology but not nectar traits following a range expansion with hummingbirds added as pollinators. We use this species to compare PP, heritability, evolvability and integration of floral morphology and nectar in a common garden. Morphological traits showed higher heritability than nectar traits, and the proximal section of the corolla, which regulates access to nectar and underwent rapid change in introduced populations, presented lower integration than the rest of the floral phenotype. Nectar was more plastic than morphology, driven by highly plastic sugar concentration. Nectar production rate showed high potential to respond to selection. These results explain the differential rapid evolution of floral traits previously observed in this species and show how intrafloral modularity determines variable evolutionary potential in morphological and nectar traits.


Assuntos
Evolução Biológica , Flores , Fenótipo , Néctar de Plantas , Polinização , Flores/anatomia & histologia , Flores/fisiologia , Polinização/fisiologia , Característica Quantitativa Herdável , Meio Ambiente , Animais , Aves/anatomia & histologia , Aves/fisiologia
6.
EMBO J ; 43(12): 2294-2307, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38719995

RESUMO

Organisms rely on mutations to fuel adaptive evolution. However, many mutations impose a negative effect on fitness. Cells may have therefore evolved mechanisms that affect the phenotypic effects of mutations, thus conferring mutational robustness. Specifically, so-called buffer genes are hypothesized to interact directly or indirectly with genetic variation and reduce its effect on fitness. Environmental or genetic perturbations can change the interaction between buffer genes and genetic variation, thereby unmasking the genetic variation's phenotypic effects and thus providing a source of variation for natural selection to act on. This review provides an overview of our understanding of mutational robustness and buffer genes, with the chaperone gene HSP90 as a key example. It discusses whether buffer genes merely affect standing variation or also interact with de novo mutations, how mutational robustness could influence evolution, and whether mutational robustness might be an evolved trait or rather a mere side-effect of complex genetic interactions.


Assuntos
Evolução Molecular , Proteínas de Choque Térmico HSP90 , Mutação , Proteínas de Choque Térmico HSP90/genética , Proteínas de Choque Térmico HSP90/metabolismo , Seleção Genética , Variação Genética , Humanos , Animais , Aptidão Genética
7.
Elife ; 122024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38767330

RESUMO

A protein's genetic architecture - the set of causal rules by which its sequence produces its functions - also determines its possible evolutionary trajectories. Prior research has proposed that the genetic architecture of proteins is very complex, with pervasive epistatic interactions that constrain evolution and make function difficult to predict from sequence. Most of this work has analyzed only the direct paths between two proteins of interest - excluding the vast majority of possible genotypes and evolutionary trajectories - and has considered only a single protein function, leaving unaddressed the genetic architecture of functional specificity and its impact on the evolution of new functions. Here, we develop a new method based on ordinal logistic regression to directly characterize the global genetic determinants of multiple protein functions from 20-state combinatorial deep mutational scanning (DMS) experiments. We use it to dissect the genetic architecture and evolution of a transcription factor's specificity for DNA, using data from a combinatorial DMS of an ancient steroid hormone receptor's capacity to activate transcription from two biologically relevant DNA elements. We show that the genetic architecture of DNA recognition consists of a dense set of main and pairwise effects that involve virtually every possible amino acid state in the protein-DNA interface, but higher-order epistasis plays only a tiny role. Pairwise interactions enlarge the set of functional sequences and are the primary determinants of specificity for different DNA elements. They also massively expand the number of opportunities for single-residue mutations to switch specificity from one DNA target to another. By bringing variants with different functions close together in sequence space, pairwise epistasis therefore facilitates rather than constrains the evolution of new functions.


Assuntos
Epistasia Genética , Evolução Molecular , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , DNA/genética , DNA/metabolismo , Mutação , Ligação Proteica
8.
Biol Lett ; 20(5): 20230576, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38747685

RESUMO

Neural circuits govern the interface between the external environment, internal cues and outwardly directed behaviours. To process multiple environmental stimuli and integrate these with internal state requires considerable neural computation. Expansion in neural network size, most readily represented by whole brain size, has historically been linked to behavioural complexity, or the predominance of cognitive behaviours. Yet, it is largely unclear which aspects of circuit variation impact variation in performance. A key question in the field of evolutionary neurobiology is therefore how neural circuits evolve to allow improved behavioural performance or innovation. We discuss this question by first exploring how volumetric changes in brain areas reflect actual neural circuit change. We explore three major axes of neural circuit evolution-replication, restructuring and reconditioning of cells and circuits-and discuss how these could relate to broader phenotypes and behavioural variation. This discussion touches on the relevant uses and limitations of volumetrics, while advocating a more circuit-based view of cognition. We then use this framework to showcase an example from the insect brain, the multi-sensory integration and internal processing that is shared between the mushroom bodies and central complex. We end by identifying future trends in this research area, which promise to advance the field of evolutionary neurobiology.


Assuntos
Evolução Biológica , Encéfalo , Cognição , Cognição/fisiologia , Animais , Encéfalo/fisiologia , Rede Nervosa/fisiologia , Insetos/fisiologia , Corpos Pedunculados/fisiologia
9.
Proc Biol Sci ; 291(2021): 20240122, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38628120

RESUMO

Diverse organisms actively manipulate their (sym)biotic and physical environment in ways that feed back on their own development. However, the degree to which these processes affect microevolution remains poorly understood. The gazelle dung beetle both physically modifies its ontogenetic environment and structures its biotic interactions through vertical symbiont transmission. By experimentally eliminating (i) physical environmental modifications and (ii) the vertical inheritance of microbes, we assess how environment modifying behaviour and microbiome transmission shape heritable variation and evolutionary potential. We found that depriving larvae of symbionts and environment modifying behaviours increased additive genetic variance and heritability for development time but not body size. This suggests that larvae's ability to manipulate their environment has the potential to modify heritable variation and to facilitate the accumulation of cryptic genetic variation. This cryptic variation may become released and selectable when organisms encounter environments that are less amenable to organismal manipulation or restructuring. Our findings also suggest that intact microbiomes, which are commonly thought to increase genetic variation of their hosts, may instead reduce and conceal heritable variation. More broadly, our findings highlight that the ability of organisms to actively manipulate their environment may affect the potential of populations to evolve when encountering novel, stressful conditions.


Assuntos
Besouros , Microbiota , Animais , Besouros/genética , Microbiota/genética , Larva/genética , Evolução Biológica , Variação Genética
10.
J Evol Biol ; 37(4): 464-470, 2024 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-38451871

RESUMO

Group size is an important trait for many ecological and evolutionary processes. However, it is not a trait possessed by individuals but by social groups, and as many genomes contribute to group size understanding its genetic underpinnings and so predicting its evolution is a conceptual challenge. Here I suggest how group size can be modelled as a joint phenotype of multiple individuals, and so how models for evolution accounting for indirect genetic effects are essential for understanding the genetic variance of group size. This approach makes it clear that (a) group size should have a larger genetic variance than initially expected as indirect genetic effects always contribute exactly as much as direct genetic effects and (b) the response to selection of group size should be faster than expected based on direct genetic variance alone as the correlation between direct and indirect effects is always at the maximum positive limit of 1. Group size should therefore show relatively rapid evolved increases and decreases, the consequences of which and evidence for I discuss.


Assuntos
Modelos Genéticos , Seleção Genética , Humanos , Fenótipo , Evolução Biológica
11.
Proc Natl Acad Sci U S A ; 121(14): e2320413121, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38530898

RESUMO

Understanding, predicting, and controlling the phenotypic consequences of genetic and environmental change is essential to many areas of fundamental and applied biology. In evolutionary biology, the generative process of development is a major source of organismal evolvability that constrains or facilitates adaptive change by shaping the distribution of phenotypic variation that selection can act upon. While the complex interactions between genetic and environmental factors during development may appear to make it impossible to infer the consequences of perturbations, the persistent observation that many perturbations result in similar phenotypes indicates that there is a logic to what variation is generated. Here, we show that a general representation of development as a dynamical system can reveal this logic. We build a framework that allows predicting the phenotypic effects of perturbations, and conditions for when the effects of perturbations of different origins are concordant. We find that this concordance is explained by two generic features of development, namely the dynamical dependence of the phenotype on itself and the fact that all perturbations must affect the developmental process to have an effect on the phenotype. We apply our theoretical framework to classical models of development and show that it can be used to predict the evolutionary response to selection using information of plasticity and to accelerate evolution in a desired direction. The framework we introduce provides a way to quantitatively interchange perturbations, opening an avenue of perturbation design to control the generation of variation.


Assuntos
Evolução Biológica , Biologia do Desenvolvimento , Fenótipo
12.
Methods Mol Biol ; 2760: 371-392, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38468099

RESUMO

Genetic engineering has revolutionized our ability to manipulate DNA and engineer organisms for various applications. However, this approach can lead to genomic instability, which can result in unwanted effects such as toxicity, mutagenesis, and reduced productivity. To overcome these challenges, smart design of synthetic DNA has emerged as a promising solution. By taking into consideration the intricate relationships between gene expression and cellular metabolism, researchers can design synthetic constructs that minimize metabolic stress on the host cell, reduce mutagenesis, and increase protein yield. In this chapter, we summarize the main challenges of genomic instability in genetic engineering and address the dangers of unknowingly incorporating genomically unstable sequences in synthetic DNA. We also demonstrate the instability of those sequences by the fact that they are selected against conserved sequences in nature. We highlight the benefits of using ESO, a tool for the rational design of DNA for avoiding genetically unstable sequences, and also summarize the main principles and working parameters of the software that allow maximizing its benefits and impact.


Assuntos
Engenharia Genética , Instabilidade Genômica , Humanos , DNA/genética , Proteínas/genética
13.
J Exp Biol ; 227(Suppl_1)2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38449333

RESUMO

In Developmental Plasticity and Evolution, Mary-Jane West-Eberhard argued that the developmental mechanisms that enable organisms to respond to their environment are fundamental causes of adaptation and diversification. Twenty years after publication of this book, this once so highly controversial claim appears to have been assimilated by a wealth of studies on 'plasticity-led' evolution. However, we suggest that the role of development in explanations for adaptive evolution remains underappreciated in this body of work. By combining concepts of evolvability from evolutionary developmental biology and quantitative genetics, we outline a framework that is more appropriate to identify developmental causes of adaptive evolution. This framework demonstrates how experimental and comparative developmental biology and physiology can be leveraged to put the role of plasticity in evolution to the test.


Assuntos
Evolução Biológica , Biologia
14.
Am Nat ; 203(4): E107-E127, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38489775

RESUMO

AbstractUnderstanding and predicting the evolutionary responses of complex morphological traits to selection remains a major challenge in evolutionary biology. Because traits are genetically correlated, selection on a particular trait produces both direct effects on the distribution of that trait and indirect effects on other traits in the population. The correlations between traits can strongly impact evolutionary responses to selection and may thus impose constraints on adaptation. Here, we used museum specimens and comparative quantitative genetic approaches to investigate whether the covariation among cranial traits facilitated or constrained the response to selection during the major dietary transitions in one of the world's most ecologically diverse mammalian families-the phyllostomid bats. We reconstructed the set of net selection gradients that would have acted on each cranial trait during the major transitions to feeding specializations and decomposed the selection responses into their direct and indirect components. We found that for all transitions, most traits capturing craniofacial length evolved toward adaptive directions owing to direct selection. Additionally, we showed instances of dietary transitions in which the complex interaction between the patterns of covariation among traits and the strength and direction of selection either constrained or facilitated evolution. Our work highlights the importance of considering the within-species covariation estimates to quantify evolvability and to disentangle the relative contribution of variational constraints versus selective causes for observed patterns.


Assuntos
Quirópteros , Seleção Genética , Humanos , Animais , Quirópteros/genética , Fenótipo , Folhas de Planta , Evolução Biológica
15.
G3 (Bethesda) ; 14(4)2024 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-38427952

RESUMO

Sexual dimorphism in traits of insects during the developmental stages could potentially be the direct or indirect result of sex-specific selection provided that genetic variation for sexual dimorphism is present. We investigated genetic variation in sexual dimorphism in a set of Drosophila melanogaster inbred lines for 2 traits: egg to adult development time and pupation site preference. We observed considerable genetic variation in sexual dimorphism among lines in both traits. The sexual dimorphic patterns remained relatively consistent across multiple trials, despite both traits being sensitive to environmental conditions. Additionally, we measured 2 sexually dimorphic adult morphological traits in 6 sampled lines and investigated correlations in the sexual dimorphism patterns with the 2 developmental traits. The abundance of genetic variation in sexual dimorphism for D. melanogaster developmental traits demonstrated in this study provides evidence for a high degree of evolvability of sex differences in preadult traits in natural populations.


Assuntos
Drosophila melanogaster , Caracteres Sexuais , Animais , Feminino , Masculino , Drosophila melanogaster/genética , Evolução Biológica , Seleção Genética , Variação Genética
16.
Virus Evol ; 10(1): veae006, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38425472

RESUMO

Despite a relatively low mutation rate, the large number of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections has allowed for substantial genetic change, leading to a multitude of emerging variants. Using a recently determined mutation rate (per site replication), as well as within-host parameter estimates for symptomatic SARS-CoV-2 infection, we apply a stochastic transmission-bottleneck model to describe the survival probability of de novo SARS-CoV-2 mutations as a function of bottleneck size and selection coefficient. For narrow bottlenecks, we find that mutations affecting per-target-cell attachment rate (with phenotypes associated with fusogenicity and ACE2 binding) have similar transmission probabilities to mutations affecting viral load clearance (with phenotypes associated with humoral evasion). We further find that mutations affecting the eclipse rate (with phenotypes associated with reorganization of cellular metabolic processes and synthesis of viral budding precursor material) are highly favoured relative to all other traits examined. We find that mutations leading to reduced removal rates of infected cells (with phenotypes associated with innate immune evasion) have limited transmission advantage relative to mutations leading to humoral evasion. Predicted transmission probabilities, however, for mutations affecting innate immune evasion are more consistent with the range of clinically estimated household transmission probabilities for de novo mutations. This result suggests that although mutations affecting humoral evasion are more easily transmitted when they occur, mutations affecting innate immune evasion may occur more readily. We examine our predictions in the context of a number of previously characterized mutations in circulating strains of SARS-CoV-2. Our work offers both a null model for SARS-CoV-2 mutation rates and predicts which aspects of viral life history are most likely to successfully evolve, despite low mutation rates and repeated transmission bottlenecks.

18.
Evolution ; 78(5): 934-950, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38393696

RESUMO

Epistasis is often portrayed as unimportant in evolution. While random patterns of epistasis may have limited effects on the response to selection, systematic directional epistasis can have substantial effects on evolutionary dynamics. Directional epistasis occurs when allele substitutions that change a trait also modify the effects of allele substitution at other loci in a systematic direction. In this case, trait evolution may induce correlated changes in allelic effects and additive genetic variance (evolvability) that modify further evolution. Although theory thus suggests a potentially important role for directional epistasis in evolution, we still lack empirical evidence about its prevalence and magnitude. Using a new framework to estimate systematic patterns of epistasis from line-crosses experiments, we quantify its effects on 197 size-related traits from diverging natural populations in 24 animal and 17 plant species. We show that directional epistasis is common and tends to become stronger with increasing morphological divergence. In animals, most traits displayed negative directionality toward larger size, suggesting that epistatic constraints reducing evolvability toward larger size. Dominance was also common but did not systematically alter the effects of epistasis.


Assuntos
Epistasia Genética , Animais , Plantas/genética , Plantas/anatomia & histologia , Evolução Biológica , Tamanho Corporal
19.
Evol Dev ; 26(2): e12473, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38414112

RESUMO

Progress in evolutionary developmental biology (evo-devo) has deepened our understanding of how intrinsic properties of embryogenesis, along with natural selection and population genetics, shape phenotypic diversity. A focal point of recent empirical and theoretical research is the idea that highly developmentally stable phenotypes are more conserved in evolution. Previously, we demonstrated that in Japanese medaka (Oryzias latipes), embryonic stages and genes with high stability, estimated through whole-embryo RNA-seq, are highly conserved in subsequent generations. However, the precise origin of the stability of gene expression levels evaluated at the whole-embryo level remained unclear. Such stability could be attributed to two distinct sources: stable intracellular expression levels or spatially stable expression patterns. Here we demonstrate that stability observed in whole-embryo RNA-seq can be attributed to stability at the cellular level (low variability in gene expression at the cellular levels). We quantified the intercellular variations in expression levels and spatial gene expression patterns for seven key genes involved in patterning dorsoventral and rostrocaudal regions during early development in medaka. We evaluated intracellular variability by counting transcripts and found its significant correlation with variation observed in whole-embryo RNA-seq data. Conversely, variation in spatial gene expression patterns, assessed through intraindividual left-right asymmetry, showed no correlation. Given the previously reported correlation between stability and conservation of expression levels throughout embryogenesis, our findings suggest a potential general trend: the stability or instability of developmental systems-and the consequent evolutionary diversity-may be primarily anchored in intrinsic fundamental elements such as the variability of intracellular states.


Assuntos
Desenvolvimento Embrionário , Oryzias , Animais , Seleção Genética , Regulação da Expressão Gênica no Desenvolvimento , Oryzias/genética , Oryzias/metabolismo
20.
Evol Lett ; 8(1): 172-187, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38370544

RESUMO

Predicting if, when, and how populations can adapt to climate change constitutes one of the greatest challenges in science today. Here, we build from contributions to the special issue on evolutionary adaptation to climate change, a survey of its authors, and recent literature to explore the limits and opportunities for predicting adaptive responses to climate change. We outline what might be predictable now, in the future, and perhaps never even with our best efforts. More accurate predictions are expected for traits characterized by a well-understood mapping between genotypes and phenotypes and traits experiencing strong, direct selection due to climate change. A meta-analysis revealed an overall moderate trait heritability and evolvability in studies performed under future climate conditions but indicated no significant change between current and future climate conditions, suggesting neither more nor less genetic variation for adapting to future climates. Predicting population persistence and evolutionary rescue remains uncertain, especially for the many species without sufficient ecological data. Still, when polled, authors contributing to this special issue were relatively optimistic about our ability to predict future evolutionary responses to climate change. Predictions will improve as we expand efforts to understand diverse organisms, their ecology, and their adaptive potential. Advancements in functional genomic resources, especially their extension to non-model species and the union of evolutionary experiments and "omics," should also enhance predictions. Although predicting evolutionary responses to climate change remains challenging, even small advances will reduce the substantial uncertainties surrounding future evolutionary responses to climate change.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...