RESUMO
The artificial solar saltworks fields of Hon Khoi are important industrial and biodiversity resources in southern Vietnam. Most hypersaline environments in this area are characterized by saturated salinity, nearly neutral pH, intense ultraviolet radiation, elevated temperatures and fast desiccation processes. However, the extremely halophilic prokaryotic communities associated with these stressful environments remain uninvestigated. To fill this gap, a metabarcoding approach was conducted to characterize these communities by comparing them with solar salterns in northern Vietnam as well as with the Italian salterns of Motya and Trapani. Sequencing analyses revealed that the multiple reuses of crystallization ponds apparently create significant perturbations and structural instability in prokaryotic consortia. However, some interesting features were noticed when we examined the diversity of ultra-small prokaryotes belonging to Patescibacteria and DPANN Archaea. Surprisingly, we found at least five deeply branched clades, two from Patescibacteria and three from DPANN Archaea, which seem to be quite specific to the Hon Khoi saltworks field ecosystem and can be considered as a part of biogeographical connotation. Further studies are needed to characterize these uncultivated taxa, to isolate and cultivate them, which will allow us to elucidate their ecological role in these hypersaline habitats and to explore their biotechnological and biomedical potential.
RESUMO
The Dallol geothermal area originated as a result of seismic activity and the presence of a shallow underground volcano, both due to the divergence of two tectonic plates. In its ascent, hot water dissolves and drags away the subsurface salts. The temperature of the water that comes out of the chimneys is higher than 100 °C, with a pH close to zero and high mineral concentration. These factors make Dallol a polyextreme environment. So far, nanohaloarchaeas, present in the salts that form the walls of the chimneys, have been the only living beings reported in this extreme environment. Through the use of complementary techniques: culture in microcosms, methane stable isotope signature and hybridization with specific probes, the methanogenic activity in the Dallol area has been assessed. Methane production in microcosms, positive hybridization with the Methanosarcinales probe and the δ13CCH4-values measured, show the existence of extensive methanogenic activity in the hydrogeothermic Dallol system. A methylotrophic pathway, carried out by Methanohalobium and Methanosarcina-like genera, could be the dominant pathway for methane production in this environment.
RESUMO
Imidazolium-based ionic liquids (IL) with short-alkyl side chain such as 1-ethyl-3-methyl-imidazolium chloride ([Emim]Cl) and 1-butyl-3-methyl-imidazolium chloride ([Bmim]Cl) has immense application potential including in lignocellulosic bioenergy production. But they are toxic to most microorganisms, and those isolated from different environments as IL-tolerant have salt tolerance capabilities. This study evaluates the relationship between salt and [Emim]Cl tolerance of microorganisms using different salinity sediments (2-19%) and brines (35%) of India's largest inland hypersaline lake, Sambhar in Rajasthan as the model system. While samples with 2% and 35% salinities do not yield any [Emim]Cl (100â¯mM) tolerant colonies, others have 6-50% colonies tolerant to the IL. Similar trend was observed with 50â¯mM [Bmim]Cl. Moderate halophilic isolates of genera Halomonas and Bacillus (growth in 0.7-3.0â¯M NaCl) isolated from the sediments could grow in as high as 375â¯mM [Emim]Cl, or 125â¯mM [Bmim]Cl facilitated by higher synthesis, and uptake of organic osmolytes; and up to 1.7-fold increased activity of active efflux pumps. [Bmim]Cl was more toxic than [Emim]Cl in all performed experiments. [Emim]Cl-adapted cells could trounce IL-induced stress. Interestingly, enrichment with 100â¯mM [Emim]Cl resulted in increase of IL-tolerant colonies in all sediments including the one with 2% salinity. However, the salt saturated brines (35%) do not yield any such colony even after repeated incubations. Extreme halophilic archaea, Natronomonas (growth in 3.0-4.0â¯M NaCl) isolated from such brines, were exceedingly sensitive to even 5â¯mM [Emim]Cl, or 1â¯mM [Bmim]Cl. Two additional extremophilic archaea, namely Haloferax and Haladaptatus were also sensitive to the tested ILs. Archaeal sensitivity is possibly due to the competitive interaction of [Emim]+ with their acidic proteome (15.4-17.5% aspartic and glutamic acids, against 10.7-12.9% in bacteria) that they maintain to stabilize the high amount of K+ ion accumulated by salt-in strategy. Thus, general salt adaptation strategies of moderate halophilic bacteria help them to restrain toxicity of these ILs, but extremophilic archaea are highly sensitive and demands meticulous use of these solvents to prevent environmental contamination.
Assuntos
Halobacteriaceae/efeitos dos fármacos , Halomonas/efeitos dos fármacos , Imidazóis/toxicidade , Líquidos Iônicos/toxicidade , Sedimentos Geológicos/química , Sedimentos Geológicos/microbiologia , Índia , Lagos/química , Lagos/microbiologia , Salinidade , Tolerância ao SalRESUMO
Carbon monoxide occurs at relatively high concentrations (≥800 parts per million) in Mars' atmosphere, where it represents a potentially significant energy source that could fuel metabolism by a localized putative surface or near-surface microbiota. However, the plausibility of CO oxidation under conditions relevant for Mars in its past or at present has not been evaluated. Results from diverse terrestrial brines and saline soils provide the first documentation, to our knowledge, of active CO uptake at water potentials (-41 MPa to -117 MPa) that might occur in putative brines at recurrent slope lineae (RSL) on Mars. Results from two extremely halophilic isolates complement the field observations. Halorubrum str. BV1, isolated from the Bonneville Salt Flats, Utah (to our knowledge, the first documented extremely halophilic CO-oxidizing member of the Euryarchaeota), consumed CO in a salt-saturated medium with a water potential of -39.6 MPa; activity was reduced by only 28% relative to activity at its optimum water potential of -11 MPa. A proteobacterial isolate from hypersaline Mono Lake, California, Alkalilimnicola ehrlichii MLHE-1, also oxidized CO at low water potentials (-19 MPa), at temperatures within ranges reported for RSL, and under oxic, suboxic (0.2% oxygen), and anoxic conditions (oxygen-free with nitrate). MLHE-1 was unaffected by magnesium perchlorate or low atmospheric pressure (10 mbar). These results collectively establish the potential for microbial CO oxidation under conditions that might obtain at local scales (e.g., RSL) on contemporary Mars and at larger spatial scales earlier in Mars' history.