RESUMO
The oxidation-induced phospholipids (PLs) underwent structural and compositional analysis, alongside the establishment of a simulation system to verify the link between phospholipid oxidation and flavor substances formation in sturgeon caviar. Structural alterations of PLs were tracked using 31P and 1H nuclear magnetic resonance (NMR), electron spin resonance spectroscopy (ESR), and Raman spectroscopy. The findings revealed a reduction in phosphatidylcholine (PC) and phosphatidylethanolamine (PE) from 82.3% and 10.4% to 58.2% and 5.8% respectively. Free radical signals exhibited an initial increase followed by a decrease. The diminished intensity in Raman spectra at 970 and 1080 cm-1 indicated reduced fat unsaturation attributable to PLs oxidation. Correlation analysis highlighted a significant association between PC and PE containing C22:6, C20:5, C20:4, and C18:2 with flavor substances, suggesting their role as key precursors for flavor development. This study established a theoretical basis for understanding the change of flavor quality in sturgeon caviar during storage.
Assuntos
Peixes , Oxirredução , Fosfolipídeos , Animais , Fosfolipídeos/química , Aromatizantes/química , Paladar , Produtos Pesqueiros/análiseRESUMO
Yogurt is popular as a natural and healthy food, but its flavor greatly affects acceptability by consumers. Flavor compounds of yogurt is generally produced by the metabolism of lactose, protein and fat, and the resulting flavors include carbonyls, acids, esters and alcohols, etc. Each flavor compounds could individually provide the corresponding flavor, or it can be combined with other compounds to form a new flavor. The flavor network was formed among the metabolites of milk components, and acetaldehyde, as the central compounds, played a role in connecting the whole network. The flavor compounds can be affected by many factors, such as the use of different raw milks, ways of homogenization, sterilization, fermentation, post ripening, storage condition and packaging materials, etc., which can affect the overall flavor of yogurt. This paper provides an overview of the volatile flavor compounds in yogurt, the pathways of production of the main flavor compounds during yogurt fermentation, and the factors that influence the flavor of yogurt including type of raw milk, processing, and storage. It also tries to provide theoretical guidance for the product of yogurt in ideal flavor, but further research is needed to provide a more comprehensive description of the flavor system of yogurt.
RESUMO
The unknown effect of sesame lignans on aroma formation in sesame oil via the Maillard reaction (MR) and lipid oxidation was investigated. Sesamin, sesamolin, or sesamol was added to 3 models: lysine+glucose (MR), cold-pressed sesame oil (SO), and MR + SO, and were heated at 120 °C for 60 min. All three lignans suppressed SO oxidation while increasing DPPH scavenging ability (p < 0.05). Lignans increased depletions of lysine and glucose and MR browning (p < 0.05). Lignans reduced most aroma-active pyrazines, aldehydes, ketones, alcohols, and esters (p < 0.05). Sesamol and sesamolin increased perceptions of the preferable aromas of nutty, roasted sesame, and popcorn while reducing the undesirable green and rancid aromas (p < 0.05). Sesamol demonstrated a stronger effect on lipid oxidation, MR browning, aroma formation, and sensory perception than sesamin and sesamolin. This study suggests that sesame lignans can modulate aroma formation and sensory perception of sesame oil by interacting with the MR and lipid oxidation pathways.
Assuntos
Lignanas , Reação de Maillard , Odorantes , Oxirredução , Óleo de Gergelim , Sesamum , Lignanas/química , Óleo de Gergelim/química , Sesamum/química , Odorantes/análise , Humanos , Fenóis/química , Dioxóis/química , Benzodioxóis/químicaRESUMO
The formation mechanism behind the sophisticated aromas of sesame oil (SO) has not been elucidated. The interaction effects of the Maillard reaction (MR) and lipid oxidation on the aroma formation of fragrant sesame oil were investigated in model reaction systems made of l-lysine (Lys) and d-glucose (Glc) with or without fresh SO (FSO) or oxidized SO (OSO). The addition of OSO to the Lys-Glc model increased the MR browning at 294 nm and 420 nm and enhanced the DPPH radical scavenging activity greater than the addition of FSO (p < 0.05). The presence of lysine and glucose inhibited the oxidation of sesame oil, reduced the loss of γ-tocopherol, and facilitated the formation of sesamol (p < 0.05). The Maillard-lipid interaction led to the increased concentrations of some of the alkylpyrazines, alkylfurans, and MR-derived ketones and acids (p < 0.05) while reducing the concentrations of other pyrazines, lipid-derived furans, aliphatic aldehydes, ketones, alcohols, and acids (p < 0.05). The addition of FSO to the MR model enhanced the characteristic roasted, nutty, sweet, and fatty aromas in sesame oil (p < 0.05), while excessive lipid oxidation (OSO) brought about an unpleasant oxidized odor and reduced the characteristic aromas. This study helps to understand the sophisticated aroma formation mechanism in sesame oil and provides scientific instruction for precise flavor control in the production of sesame oil.
Assuntos
Glucose , Lisina , Reação de Maillard , Odorantes , Oxirredução , Óleo de Gergelim , Óleo de Gergelim/química , Glucose/química , Odorantes/análise , Lisina/química , Fenóis/química , BenzodioxóisRESUMO
Paojiao, a typical Chinese traditional fermented pepper, is favored by consumers for its unique flavor profile. Microorganisms, organic acids, amino acids, and volatile compounds are the primary constituents influencing the development of paojiao's flavor. To elucidate the key flavor compounds and core microorganisms of Qicaipaojiao (QCJ), this study conducted a comprehensive analysis of the changes in taste substances (organic acids and amino acids) and volatile flavor compounds during QCJ fermentation. Key flavor substances in QCJ were identified using threshold aroma value and odor activity value and the core microorganisms of QCJ were determined based on the correlation between dominant microorganisms and the key flavor substances. During QCJ fermentation, 16 key taste substances (12 free amino acids and 4 organic acids) and 12 key aroma substances were identified. The fermentation process involved 10 bacteria and 7 fungal genera, including Lactiplantibacillus, Leuconostoc, Klebsiella, Pichia, Wickerhamomyces, and Candida. Correlation analysis revealed that the core functional microorganisms encompassed representatives from 8 genera, including 5 bacterial genera (Lactiplantibacillus, Weissella, Leuconostoc, Klebsiella, and Kluyvera) and 3 fungal genera (Rhodotorula, Phallus, and Pichia). These core functional microorganisms exhibited significant correlations with approximately 70 % of the key flavor substances (P < 0.05). This study contributes to an enhanced understanding of flavor formation mechanisms and offers valuable insight into flavor quality control in food fermentation processes.
Assuntos
Bactérias , Capsicum , Fermentação , Odorantes , Paladar , Compostos Orgânicos Voláteis , Capsicum/microbiologia , Compostos Orgânicos Voláteis/análise , Compostos Orgânicos Voláteis/metabolismo , Odorantes/análise , Bactérias/metabolismo , Bactérias/classificação , Microbiologia de Alimentos , Fungos/metabolismo , Fungos/classificação , Aminoácidos/análise , Aminoácidos/metabolismo , Alimentos Fermentados/microbiologia , Alimentos Fermentados/análise , Redes e Vias Metabólicas , Aromatizantes/metabolismo , Aromatizantes/análiseRESUMO
Sensory analysis and untargeted lipidomics were employed to study the impact of phospholipase B (PLB) on lipid oxidation and flavor in steamed sturgeon meat, revealing the inherent relationship between lipid oxidation and flavor regulation. The research verified that PLB effectively suppresses fat oxidation and improves the overall taste of steamed sturgeon meat. Furthermore, the PLB group identified 52 compounds, and the content of odor substances such as isoamyl alcohol and hexanal was reduced compared with other groups. Finally, lipid substances containing eicosapentaenoic acid (EPA) or docosahexaenoic acid (DHA) were screened out from 32 kinds of differential phospholipids. Through Pearson correlation analysis, it was observed that certain differential phospholipids such as PC (22:6) and PC (22:5) exhibited varying correlations with odor substances like hexanal and isovaleraldehyde. These findings suggest that PLB specifically affects certain phospholipids, leading to the production of distinct volatile substances through oxidative degradation.
RESUMO
Nonanal, (E)-2-nonenal, (E,E)-2,4-nonadienal, and (E,Z)-2,6-nonadienal were used to study the effect of number and position of the unsaturated bond in aliphatic aldehydes on meat flavorings. Cysteine-Amadori and thiazolidine derivatives were synthesized, identified by UPLC-TOF/MS and NMR, and quantitatively by UPLC-MS/MS. The polyunsaturated aldehydes exhibited higher inhibition than monounsaturated aldehydes, and monounsaturated aldehydes exhibited higher inhibition than saturated aldehydes, mainly manifested by the inhibition of the cysteine-Amadori formation and acceleration of the thiazolidine derivatives formation. The effect of unsaturated bonds position in aliphatic aldehydes on the initial Maillard reaction stage was similar. The cysteine played an important role in catalyzing the reaction of aliphatic aldehydes. A total of 109 volatile compounds derived by heating prepared thiazolidine derivatives degradation were detected by GC-MS. Formation pathways of volatile compounds were proposed by retro-aldol, oxidation, etc. Particularly, a route to form thiazole by the decarboxylation reaction of thiazolidine derivatives which derivatives from formaldehyde reacting with cysteine was proposed.
RESUMO
Cantonese soy sauce (CSS) is an important Chinese condiment due to its distinctive flavor. Microorganisms play a significant role in the flavor formation of CSS during fermentation. However, the correlation between microbes and flavor compounds as well as the potential fermentation mechanism remained poorly uncovered. Here we revealed the dynamic changes of microbial structure and characteristics metabolites as well as their correlation of CSS during the fermentation process. Metagenomics sequencing analysis showed that Tetragenococcus halophilus, Weissella confusa, Weissella paramesenteroides, Aspergillus oryzae, Lactiplantibacillus plantarum, Weissella cibaria were top six dominant species from day 0 to day 120. Sixty compounds were either positively or tentatively identified through untargeted metabolomics profile and they were 27 peptides, amino acids and derivatives, 8 carbohydrates and conjugates, 14 organic acids and derivatives, 5 amide compounds, 3 flavonoids and 3 nucleosides. Spearman correlation coefficient indicated that Tetragenococcus halophilus, Zygosaccharomyces rouxii, Pediococcus pentosaceus and Aspergillus oryzae were significantly related with the formation of taste amino acids and derivatives, peptides and functional substances. Additionally, the metabolisms of flavor amino acids including 13 main free amino acids were also profiled. These results provided valuable information for the production practice in the soy sauce industry.
Assuntos
Aspergillus oryzae , Enterococcaceae , Alimentos de Soja , Fermentação , Aminoácidos , Aspergillus oryzae/genética , PeptídeosRESUMO
Based on the widespread application and under-research of mechanized preparation Cantonese soy sauce koji (MP), absolute quantitative approaches were utilized to systematically analyze the flavor formation mechanism in MP. The results indicated that the enzyme activities increased greatly during MP fermentation, and 4 organic acids, 15 amino acids, and 2 volatiles were identified as significantly different flavor actives. The flavor parameters of MP4 were basically identical to those of MP5. Furthermore, microorganisms were dominated by Staphylococcus, Weissella, and Aspergillus in MP, and their biomass demonstrated an increasing trend. A precise enumeration of microorganisms exposed the inaccuracy of relative quantitative data. Concurrently, Staphylococcus and Aspergillus were positively correlated with numerous enzymes and flavor compounds, and targeted strains for enhancing MP quality. The flavor formation network comprises pathways including carbohydrate metabolism, lipid metabolism and oxidation, and protein degradation and amino acid metabolism. In summary, the fermentation period of MP can be substantially shortened without compromising the product quality. These findings lay the groundwork for refining parameters in modern production processes.
Assuntos
Alimentos de Soja , Fermentação , Metabolômica , Aminoácidos , ÁcidosRESUMO
To investigate the mechanism of flavor formation during the traditional preparation Cantonese soy sauce koji (TP), the changes of microorganisms, physicochemical properties, and flavor compounds in TP were comprehensively and dynamically monitored by absolute quantitative methods. Results demonstrated that inoculating Aspergillus oryzae 3.042 in TP was crucial role in enhancing enzyme activity properties. Absolute quantification of flavor combined with multivariate statistical analysis yielded 5 organic acids, 15 amino acids, and 2 volatiles as significantly different flavors of TP. Amplicon sequencing and RT-qPCR revealed that the dominant genera were Staphylococcus, Weissella, Enterobacter, Lactic streptococci, Lactobacillus, and Aspergillus, which exhibited a increasing trend in TP. Correlation analysis exhibited that Staphylococcus and Aspergillus were the pivotal genera contributing to the enzyme activities and flavor of TP. The flavor formation network involved lipid and protein degradation, carbohydrate metabolism and other pathways. Simultaneously, TP can appropriately increase the fermentation time to improve product quality.
Assuntos
Aspergillus oryzae , Alimentos de Soja , Alimentos de Soja/análise , Fermentação , Aminoácidos/metabolismo , Ácidos/metabolismoRESUMO
Lipid is an important precursor for volatile flavor formation, but it is not clear how to study the reactions involved in forming key volatile flavor compounds in peanut oil. In this paper, we innovatively established a flavor research model to investigate the contribution of different chemical reactions to the aroma compounds of peanut oil. The results showed that lipid participation in thermal reactions is necessary for forming major aroma compounds in hot-pressed peanut oil. Compared to the Maillard reaction, the lipid oxidation-Maillard reaction produces more compounds with 46 volatile substances identified. During the heating process, six new key substances were formed and the level of unsaturated fatty acids decreased by 7.28%. Among them, linoleic acid may be an important precursor for the formation of aroma components of hot-pressed peanut oil. Our study could provide theoretical guidance for understanding the volatile flavor mechanism of peanut oil and improving volatile flavor.
Assuntos
Reação de Maillard , Compostos Orgânicos Voláteis , Óleo de Amendoim/química , Metabolismo dos Lipídeos , OdorantesRESUMO
The present study used a comprehensive analysis combining headspace solid-phase microextraction gas chromatography-mass spectrometry (HS-SPME-GC-MS) and ultra-performance liquid chromatography-electrospray ionization-tandem mass spectrometry (UPLC-ESI-MS/MS) to investigate changes in volatile compounds and phospholipid molecules in grilled lambs. The results revealed 19 key volatile compounds (OAV > 1) involved in the grilling process of lambs. Additionally, UPLC-ESI-MS/MS analysis detected 142 phospholipid molecules in grilled lamb, with phosphatidylcholine exhibiting the highest content (36.62 %), followed by phosphatidyl ethanolamine, phosphatidylinositol, phosphatidylserine, phosphatidyl glycerol, and phosphatidic acid. Through partial least squares analysis, 63 key differential phospholipids were identified. Principal component analysis of the key differential phospholipids and volatile compounds indicated that phosphatidylcholine and phosphatidyl ethanolamine phospholipids are the key substrates in forming volatile compounds in grilled lambs. This information is essential for precisely regulating the flavor profile, enhancing the grilling process, and minimizing the production of harmful compounds in grilled meat products.
RESUMO
This study aimed to understand the community successions driven by different starters and their effects on the flavor development of Chinese fermented sausages. The results showed that the bacterial genus (67.6%) and pH (32.4%) were the key factors influencing the volatile profile. Inoculated the starters composed of Pediococcus and staphylococci maintained the stable community succession patterns dominated by staphylococci (samples T and S). Although the highly acidic environment (pH < 5.2) caused the community to exhibit a fluctuation in succession pattern, the inoculation of Latilactobacillus paracasei (sample Y) maintained microbial diversity and was conducive to the accumulation of aldehydes and esters. In sample P, inoculated the starter with Latilactobacillus and Staphylococcus also maintained microbial diversity, the moderately acidic environment (pH > 5.4) resulted in a stable succession pattern of the microbial community, and it was not conducive to the accumulation of aldehydes, alcohols and esters.
RESUMO
Dried salted fish is a traditional dry-cured fish that is sprinkled with salt before the curing process. With a unique flavor as well as diverse varieties, dry-cured fish is popular among consumers worldwide. The presence of various microbial communities during the curing process leads to numerous metabolic reactions, especially lipid oxidation and protein degradation, which influence the formation of flavor substances. However, during industrial curing, the quality of dry-cured fish is difficult to control, leading to the formation of products with diverse flavors. This review describes the curing process of dried salted fish, the key microorganisms involved in the curing process of typical dried salted fish products at home and abroad, and the correlation between biological metabolism and flavor formation and the underlying mechanism. This review also investigates the prospects of dried salted fish products, proposing methods for the analysis of improved curing processes and the mechanisms of dried salted fish. Through a comprehensive understanding of this review, modern production challenges can be addressed to achieve greater control of microbial growth in the system and improved product safety. In addition to advancing our understanding of the processes by which volatile flavor compounds are formed in conventional dry-cured fish products, we expect that this work will also offer a theoretical framework for enhancing their flavor in food processing.
RESUMO
The fermentation-driving ability of Daqu has been widely reported, while the potential influence of substances in Daqu on Baijiu flavor formation has attracted increasing interest. Pseudo-targeted metabolomics integrated proteomics combined with sensory evaluation strategy was applied to investigate the correlation between flavor characteristics and metabolic profiling of Daqu, and the mechanism of flavor formation was also elucidated. The 4-hydroxy-2,5-dimethylfuran-3-one (3.5 mg kg-1) and 2,3-dihydro-1 h-inden-5-ol (894.3 µg kg-1) were identified as the unique substances in qingcha qu, which were vital for raspberry flavor formation and associated with the up-regulation of amino acid metabolism. The dec-9-enoic acid (37.4 mg kg-1) was screened out as the substance related to the formation of cream flavor in hongxin qu produced through the shortening of fatty acid carbon chains and unsaturated modification of long chain fatty and acceleration of carbon metabolism in hongxin qu mediated by filamentous Aspergillus spp. was related to the smoky aroma enhancement.
Assuntos
Odorantes , Rubus , Odorantes/análise , Bebidas Alcoólicas/análise , Fermentação , MetabolômicaRESUMO
Fermented foods are important components of the human diet. There is increasing awareness of abundant nutritional and functional properties present in fermented foods that arise from the transformation of substrates by microbial communities. Thus, it is significant to unravel the microbial communities and mechanisms of characteristic flavor formation occurring during fermentation. There has been rapid development of high-throughput and other omics technologies, such as metaproteomics and metabolomics, and as a result, there is growing recognition of the importance of integrating these approaches. The successful applications of multi-omics approaches and bioinformatics analyses have provided a solid foundation for exploring the fermentation process. Compared with single-omics, multi-omics analyses more accurately delineate microbial and molecular features, thus they are more apt to reveal the mechanisms of fermentation. This review introduces fermented foods and an overview of single-omics technologies - including metagenomics, metatranscriptomics, metaproteomics, and metabolomics. We also discuss integrated multi-omics and bioinformatic analyses and their role in recent research progress related to fermented foods, as well as summarize the main potential pathways involved in certain fermented foods. In the future, multilayered analyses of multi-omics data should be conducted to enable better understanding of flavor formation mechanisms in fermented foods.
RESUMO
The Amadori compound of glucose and glycyl-l-glutamine (Gly-Gln-ARP) was prepared and characterized by UPLC-MS/MS and NMR. Gly-Gln-ARP could be thermally degraded into Gly-Gln and other secondary reaction products like glycyl-l-glutamic acid and its ARP via deamidation. The thermal processing temperature exerted a tremendous influence on the flavor formation of ARP. Furans were mainly formed at 100 °C, while an elevated temperature of 120 °C facilitated the massive accumulation of α-dicarbonyl compounds through the retro-aldolization of deoxyglucosone, and then increased the formation of pyrazines. The extra-added amino acids further promoted the formation of pyrazines at 120 °C, especially Glu, Lys, and His, further increasing the total concentration of pyrazines to 457 ± 6.26, 563 ± 65.5, and 411 ± 59.2 µg/L, respectively, exceeding the pure heated control at 140 °C (296 ± 6.67 µg/L). The total concentration of furans was enhanced to (20.7 × 103) ± 8.17 µg/L by extra-added Gln. Different increasing effects were observed on the type and flavor intensity of formed pyrazines and furans from different extra-added amino acids.
Assuntos
Aminoácidos , Pirazinas , Temperatura , Furanos , Cromatografia Líquida , Espectrometria de Massas em Tandem , Ácido Glutâmico/química , Reação de MaillardRESUMO
To investigate the differences of volatile and non-volatile metabolites between oyster enzymatic hydrolysates and boiling concentrates, molecular sensory analysis and untargeted metabolomics were employed. "Grassy," "fruity," "oily/fatty," "fishy," and "metallic" were identified as sensory attributes used to evaluate different processed oyster homogenates. Sixty-nine and 42 volatiles were identified by gas chromatography-ion mobility spectrometry and gas chromatography-mass spectrometry, respectively. Pentanal, 1-penten-3-ol, hexanal, (E)-2-pentenal, heptanal, (E)-2-hexenal, 4-octanone, (E)-4-heptenal, 3-octanone, octanal, nonanal, 1-octen-3-ol, benzaldehyde, (E)-2-nonenal, and (E, Z)-2,6-nonadienal were detected as the key odorants (OAV > 1) after enzymatic hydrolysis. Hexanal, (E)-4-heptenal, and (E)-2-pentenal were significantly associated with off-odor, and 177 differential metabolites were classified. Aspartate, glutamine, alanine, and arginine were the key precursors affecting the flavor profile. Linking sensory descriptors to volatile and nonvolatile components of different processed oyster homogenates will provide information for the process and quality improvement of oyster products.
RESUMO
Golden pomfret (Trachinotus ovatus) is an important farmed fish in Asia, often consumed following salting and natural microbial fermentation. Flavor development in fermented foods depends on the metabolism of fermenting microbes, especially amino acid metabolism. However, the microbes involved in golden pomfret fermentation and the mechanism by which they regulate flavor development are largely unknown. Accordingly, in this study, we investigated the microbial community and volatile and non-volatile compounds during the traditional fermentation of golden pomfret, focusing on amino acid metabolism. Thirty-five volatile compounds were detected. Glutamate, alanine, and leucine were the main amino acids responsible for the development of the characteristic taste of fermented golden pomfret. Metagenomic analyses were performed, and microbial genes for amino acid metabolism were functionally annotated, revealing the underlying mechanisms of flavor development during fish fermentation. Halobacterium, Clostridium, Natrinema, Alkalibacillus, Natrialba, and Vibrio were the dominant microbial genera with a major contribution to amino acid metabolism during fermentation and were strongly correlated with the majority of volatile compounds. The study provides a theoretical reference for the mechanism of flavor formation and important information on the microbial sources of volatile compounds derived from amino acids.