Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.751
Filtrar
1.
Environ Sci Technol ; 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-39351826

RESUMO

High-resolution characterization of magnetite nanoparticles (MNPs) derived from coal combustion activities is crucial to better understand their health-related risks. In this study, size distribution and elemental composition of individual MNPs from various coal fly ashes (CFAs) collected from a representative coal-fired power plant were analyzed using a single-particle inductively coupled plasma time-of-flight mass spectrometry technique. Majority (61-80%) of MNPs were identified as multimetal (mm)-MNPs, while the contribution of single metal (sm)-MNPs to the total increased throughout all the CFAs, reaching the highest in fly ash escaped through the stack (EFA). Among Fe-rich MNPs, Fe-sole and Fe-Al matrices were predominant, and Fe-sole MNPs were identified as the important carrier for toxic metals, with the highest mass contributions of toxic metals therein. Toxic potency results showed that the oxidative stress induced by MNPs was 1.2-2.2 times greater than those of <1 µm fractions in CFAs, while the reduction in cell viability showed no significant difference, elucidating that these MNPs can induce more distinct oxidative stress compared to cell toxicity. Based on structural equation model, MNP size can both directly and indirectly regulate the toxic potency, and the indirect regulation is through a size-dependent elemental composition of MNPs, including toxic metals. sm-MNPs and Fe-rich MNPs with Fe-sole, Fe-Cr, and Fe-Zn matrices can regulate the oxidative stress, whereas Cr, Zn, and Pb associated with Fe-sole, Fe-Al, Si-Fe, and Al-Fe MNPs showed significant effects on cell viability.

2.
Artigo em Inglês | MEDLINE | ID: mdl-39382806

RESUMO

Fly ash (FA) and red mud (RM) are industrial byproducts generated by thermal power plants and the aluminum industry, respectively. The huge generation of FA and RM is a significant global issue, and finding a safe and sustainable disposal method remains a challenge. These dumps contain harmful trace elements that have a significant impact on the environment and human health. It contributes to air, water, and soil pollution, disrupting the delicate balance of the ecosystems. It also introduces toxins into the food chain through biomagnification. Utilizing a vegetation cover can assist in addressing environmental health concerns associated with FA and RM dumps. Nevertheless, the presence of alkaline pH, toxic metals, the absence of soil microbes, and the pozzolanic properties of both FA and RM pose challenges to plant growth. Taking a comprehensive approach to the ecological restoration of these dumps through phytoremediation is crucial. This review examines the role of various factors in the ecological restoration of FA and RM dumps, specifically the use of naturally occurring plants. However, the issue of slow plant growth due to a lack of nutrients and microbial activities is being resolved through various advances, such as amendments in conjunction with organic matter, microbial inoculants, and the use of genetically modified plants. Research has demonstrated the benefits of using amendments to stimulate vegetation growth on FA and RM dumps. In this review, we explore various approaches to restoring FA and RM dumps and transforming them into productive sites that enhance the ecosystem services.

3.
Chemosphere ; 366: 143461, 2024 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-39369741

RESUMO

In recent years, the substantial increase in municipal solid waste incineration fly ash (MSWIFA) production has made its treatment a critical issue. However, the high toxicity of MSWIFA makes its utilization still in the exploratory stage. In this study, the heavy metal leaching rate, particle size distribution and activity index of MSWIFA were tested to investigate the detoxification and activation effects of Bacillus mucilaginosus on MSWIFA by introducing rhamnolipid. The results show that the microbial treatment can greatly increase the leaching rate of heavy metals in MSWIFA and its 28-day and 90-day activity indexes, especially by the synergistic treatment. For the Bacillus mucilaginosus and rhamnolipid treated MSWIFA (BR-MSWIFA), the maximum leaching rates follow the order from high to low of 85.57% Cr, 78% Cu, 76.38% Zn, 62.78% Pb and 37.65% Mn, while having a low mass loss of less than 5%, which is important for its reuse. Moreover, compared with the untreated MSWIFA (U-MSWIFA), the average particle sizes of Bacillus mucilaginosus treated MSWIFA (B-MSWIFA) and BR-MSWIFA decrease from 8.39 µm to 7.80 µm and 4.31 µm, and the 28-day activity indexes increase from 80.19% to 101.59% and 110.61%. The effect mechanism is that rhamnolipid not only can promote the growth, reproduction, and metabolic acid production of Bacillus mucilaginosus, but also disperse the extracellular polymeric substance (EPS) and MSWIFA particles, thus increase their contact area and the bioleaching. This study provided a theoretical foundation for the harmless treatment and resource utilization of solid wastes containing heavy metals.

4.
J Environ Manage ; 370: 122750, 2024 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-39362160

RESUMO

Melting treatment has emerged as a promising technology for managing municipal solid waste incineration (MSWI) fly ash owing to its advantageous features of effective detoxification and volume reduction. The melting treatment of MSWI fly ash involves the immobilization of heavy metals by crystals and liquid phase. Herein, the immobilization mechanism of heavy metals (Cu, Pb and Cd) by the crystals and the liquid phase was investigated using melting experiments, thermodynamic calculations and density functional theory (DFT) calculations. Results demonstrate that the immobilization of heavy metals is influenced by a combination of factors: the reaction of heavy metals, physical encapsulation ability of the liquid phase and chemical fixation ability of both the crystals and the liquid phase. An increase in the content of SiO2 and Al2O3 promotes the conversion of heavy metals oxides into heavy metals chlorides. Furthermore, an increase in the content and polymerization degree of the liquid phase facilitates the physical encapsulation of heavy metals chlorides. The chemical fixation ability of the crystals and the liquid phase differs for Cu and Pb, while Cd cannot be immobilized through chemical fixation. To enhance the immobilization of heavy metals during melting treatment, the chemical composition of MSWI fly ash should be adjusted within the anorthite region of the ternary phase diagram. This study provides valuable insights into the immobilization mechanism of heavy metals by the crystals and the liquid phase during the melting treatment of MSWI fly ash.

5.
Materials (Basel) ; 17(17)2024 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-39274618

RESUMO

This study presents test results and deep discussion regarding measurements of the fracture toughness of new concrete composites based on ternary blended cements (TCs). A composition of the most commonly used mineral additive (i.e., fly ash (FA)) in combination with nano-silica (NS) has been proposed as a partial replacement of the ordinary Portland cement (OPC) binder. The novelty of this article is related to the fact that ordinary concretes with FA + NS additives are most often used in construction practice, and there is a decided lack of fracture toughness test results concerning these materials. Therefore, in order to fill this gap in the literature, an extensive evaluation of the fracture mechanic parameters of TC was carried out. Four series of concretes were created, one of which was the reference concrete (REF), and the remaining three were TCs. The effect of a constant content of 5% NS and various FA contents, such as 0, 15%, and 25% wt., as a partial replacement of cement was studied. The parameters of the linear and nonlinear fracture mechanics were analyzed in this study (i.e., the critical stress intensity factor (KIcS), critical crack tip opening displacement (CTODc), and critical unit work of failure (JIc)). In addition, the main mechanical parameters (i.e., the compressive strength (fcm) and splitting tensile strength (fctm)) were evaluated. Based on the studies, it was found that the addition of 5% NS without FA increased the strength and fracture parameters of the concrete by approximately 20%. On the other hand, supplementing the composition of the binder with 5% NS in combination with the 15% FA additive caused an increase in all mechanical parameters by approximately another 20%. However, an increase in the FA content in the concrete mix of another 10% caused a smaller increase in all analyzed factors (i.e., by approximately 10%) compared with a composite with the addition of the NS modifier only. In addition, from an ecological point of view, by utilizing fine waste FA particles combined with extremely fine particles of NS to produce ordinary concretes, the demand for OPC can be reduced, thereby lowering CO2 emissions. Hence, the findings of this research hold practical importance for the future application of such materials in the development of green concretes.

6.
Materials (Basel) ; 17(17)2024 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-39274719

RESUMO

This study focuses on investigating the strength recovery of fire-damaged fly ash concrete (FAC) with a low substitution rate of 10% through post-fire curing. The chemical and microstructural changes were analyzed using X-ray diffraction (XRD), derivative thermogravimetry (DTG), scanning electron microscopy (SEM), energy dispersive X-ray spectrometry (EDS), and nitrogen adsorption. The findings indicate that the incorporation of fly ash slightly enhanced the strength after exposure to 400 °C; this was attributed to improved pozzolanic reactions, which were not observed at higher temperatures of 600 °C and 800 °C. Moreover, a positive effect on the recovery of compressive strength was observed due to the pozzolanic reaction. However, due to the relatively low fly ash content, depletion occurred at a later age, resulting in the inability to inhibit microstructural damage caused by the production of portlandite, thereby weakening the compressive strength. Interestingly, fly ash influenced the morphology of calcium carbonate and calcium silicate hydrate crystals, which is potentially ascribed to the role of high aluminum content acting as a crystallization-guiding agent.

7.
Materials (Basel) ; 17(17)2024 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-39274751

RESUMO

This paper deals with the issue of the bond of concrete with the new artificial aggregate Certyd to prestressing steel strands. The solution of the problem is of great importance in the development of the use of lightweight aggregate concrete for prestressed concrete elements. Experimental research on the bond stress-slip relationship of concrete to 15.7 mm non-pretensioned steel strand was carried out. The results of bond stress-slip tests for various embedment lengths (40, 80, 120, 240, 330 and 460 mm) for test specimens made of the same lightweight aggregate concrete mixture, in which the transfer of prestressing force took place at different levels of concrete maturity (after 3, 7 and 28 days of concrete maturing), are presented. Based on the obtained results, an analytical model of the bond stress-slip relationship of lightweight aggregate Certyd concrete to 15.7 mm non-pretensioned steel strand was proposed. The tests presented demonstrated that the lightweight aggregate (Certyd) concrete is suitable for the production of pretensioned concrete elements.

8.
Materials (Basel) ; 17(17)2024 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-39274823

RESUMO

With the growing global concerns regarding sustainable development in the building and construction industries, concentration only on the engineering properties of building materials can no longer meet the requirements. Although some studies have been implemented based on the lifecycle assessment of lightweight cement-based materials, very few attempts have been made pertaining to multi-criteria optimization, especially when fly ash cenospheres are used as lightweight aggregates and nano additives are incorporated as modifying admixtures. This investigation utilized cenospheres as fine aggregates to produce green, sustainable, lightweight cement mortar. Multi-walled carbon nanotubes at 0.05, 0.15, and 0.45% were binarily added, together with 0.2, 0.6, and 1.0% of nano silica to improve the mechanical performance. Strength tests were conducted to measure the flexural and compressive behaviors, combined with a cradle-to-gate lifecycle assessment and direct cost analysis to assess the environmental and economic viability. Integrated indexes and the TOPSIS method were adopted to systematically evaluate the mortar mixes and determine the optimal mix. The outcomes show that nano additives worked synergically to enhance the mechanical properties of the mortars. The utilization of cenospheres effectively reduced environmental impacts and improved economic feasibility. Nano additives significantly affected the sustainability and economic viability; in particular, the utilization of multi-walled carbon nanotubes increased the material costs. To minimize the impact of the price of multi-walled carbon nanotubes, it is proposed to binarily use less expensive nano silica. In the multi-parameter optimization, the mix with 0.05% multi-walled carbon nanotubes and 0.02% nano silica was recommended to be the optimal mix.

9.
Molecules ; 29(17)2024 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-39274919

RESUMO

In this study, the hydrophobic modification of coal gasification fly ash (FA) was investigated given the adverse effects of surface hydrophilic structures on the material field. The surface of FA was modified using stearic acid (SA), which successfully altered its hydrophilic structure. When the contact angle of S-FA increased from 23.4° to 127.2°, the activation index increased from 0 to 0.98, the oil absorption decreased from 0.564 g/g to 0.510 g/g, and the BET-specific surface area decreased from 13.973 m2/g to 3.218 m2/g. The failure temperature of SA on the surface of S-FA was 210 °C. The adsorption mechanism of FA was analyzed using density functional theory (DFT) and molecular dynamics (MD). The adsorption of water molecules by FA involved both chemical and physical adsorption, with active adsorption sites for Al, Fe, and Si. The adsorbed water molecules on the surface of FA formed hydrogen bonds with a bond length of 1.5-2.5 Å, leading to agglomeration. In addition, the long alkyl chain in SA mainly relied on the central carbon atom in the (-CH3) structure to obtain electrons in different directions from the H atoms in space, increasing the Coulomb repulsion with the O atoms in the water molecule and thereby achieving the hydrophobic effect. In the temperature range of 298 K to 358 K, the combination of FA and SA became stronger as the temperature increased.

10.
Materials (Basel) ; 17(18)2024 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-39336315

RESUMO

Understanding the strength development of alkali-activated materials (AAMs) with fly ash (FA) and granulated blast furnace slag (GBFS) is crucial for designing high-performance AAMs. This study investigates the strength development mechanism of AAMs using machine learning. A total of 616 uniaxial compressive strength (UCS) data points from FA-GBFS-based AAM mixtures were collected from published literature to train four tree-based machine learning models. Among these models, Gradient Boosting Regression (GBR) demonstrated the highest prediction accuracy, with a correlation coefficient (R-value) of 0.970 and a root mean square error (RMSE) of 4.110 MPa on the test dataset. The SHapley Additive exPlanations (SHAP) analysis revealed that water content is the most influential variable in strength development, followed by curing periods. The study recommends a calcium-to-silicon ratio of around 1.3, a sodium-to-aluminum ratio slightly below 1, and a silicon-to-aluminum ratio slightly above 3 for optimal AAM performance. The proposed design model was validated through laboratory experiments with FA-GBFS-based AAM mixtures, confirming the model's reliability. This research provides novel insights into the strength development mechanism of AAMs and offers a practical guide for elemental design, potentially leading to more sustainable construction materials.

11.
Materials (Basel) ; 17(18)2024 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-39336350

RESUMO

This study explores the utilization of municipal solid waste incineration fly ash (MSWIFA) in geopolymer concrete, focusing on compressive strength and heavy metal leachability. MSWIFA was sourced from a Shenzhen waste incineration plant and pretreated by washing to remove soluble salts. Geopolymer concrete was prepared incorporate with washed or unwashed MSWIFA and tested under different pH conditions (2.88, 4.20, and 10.0). Optimal compressive strength was achieved with a Si/Al ratio of 1.5, water/Na ratio of 10, and sand-binder ratio of 0.6. The washing pretreatment significantly enhanced compressive strength, particularly under alkaline conditions, with GP-WFA (washed MSWIFA) exhibiting a 49.6% increase in compressive strength, compared to a 21.3% increase in GP-FA (unwashed MSWIFA). Additionally, GP-WFA's compressive strength reached 41.7 MPa, comparable to that of the control (GP-control) at 43.7 MPa. Leaching tests showed that acidic conditions (pH 2.88) promoted heavy metal leaching, which increased over the leaching time, while an alkaline environment significantly reduced the leachability of heavy metals. These findings highlight the potential of using washed MSWIFA in geopolymer concrete, promoting sustainable construction practices, particularly in alkaline conditions.

12.
Sci Rep ; 14(1): 20953, 2024 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-39251791

RESUMO

Manufacturing ordinary Portland cement (OPC) poses significant challenges for sustainable construction practices. OPC manufacturing emits substantial greenhouse gases into the atmosphere and demands extensive raw materials. In pursuit of greener alternatives, researchers explore geopolymer concrete (GPC), a revolutionary material that entirely replaces OPC, comprising industrial wastes/by-products activated through an alkaline solution. The study aims to investigate the feasibility of incorporating quarry rock dust (QRD) into GPC production for environmentally sustainable structural applications. Circular columns (200 mm diameter, 1000 mm length) were formulated using GPC blends with fly ash, slag (SG), and QRD as a partial SG replacement. The structural performance of these columns, with and without steel fiber reinforcement, was evaluated under varied loading conditions. Results show that QRD is a valuable ingredient in GPC for structural concrete elements, offering performance comparable to traditional OPC concrete. Furthermore, the incorporation of steel fibers significantly enhances the peak axial loads, displacement response, and overall performance of GPC columns with or without QRD. Fiber-reinforced GPC columns demonstrated approximately 8-10% higher ultimate load capacity than equivalent OPC columns. Eccentricity was found to significantly reduce ductility, but fiber reinforcement offers substantial ductility improvements (25-55%).

13.
Sci Rep ; 14(1): 21064, 2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-39256504

RESUMO

Zeolite molecular sieves are potential adsorbents for wastewater treatment, characterized by high efficiency, simple process, easy regeneration, and low treatment cost. In this study, zeolite A molecular sieves were prepared using coal fly ash (CFA), which is an effective method for the utilization of CFA. The results showed that the CFA-based zeolite molecular sieves synthesized under optimized conditions exhibited excellent adsorption and removal rates (> 40%) for ammonia-nitrogen in wastewater of different concentrations and properties. The analysis of adsorption kinetics revealed that the adsorption process followed pseudo-second-order kinetics model, indicating that the adsorption of ammonia-nitrogen on zeolite is primarily controlled by chemisorption rather than physisorption. The adsorption process can be divided into two stages, with a higher adsorption rate and a smaller diffusion boundary layer thickness in the first stage, and a lower adsorption rate and an increased diffusion boundary layer thickness in the second stage. This indicates that as the adsorption proceeds, the internal diffusion resistance within the particles gradually increases, leading to a decrease in the adsorption rate until reaching equilibrium, where both the diffusion and adsorption become stable. The adsorption isotherms of ammonia-nitrogen on zeolite A conformed to the assumptions of the Langmuir model, suggesting that the adsorption mechanism primarily involves uniform monolayer adsorption on the surface without intermolecular interactions.

14.
Sci Rep ; 14(1): 21087, 2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-39256600

RESUMO

To solve the problem of a large amount of fly ash accumulation and study the axial compression and bearing capacity prediction of the self-compacting fly ash concrete filled circle steel tube (SCCFST) columns, eight specimens are designed to explore the impact of concrete strength grade, internal structural measures, and additional parameters. The stress, progression of deformation, and failure mode of each specimen are observed during the loading process. The load-displacement curves, load-strain curves, characteristic load and displacement, ductility, and stiffness degradation are analyzed. The findings revealed that shear deformation occurred predominantly in the middle and upper portions of the steel tubes. Enhancing the strength of the concrete or adopting internal structural measures could increase the bearing capacity and ductility of the specimens. The peak load and ductility could be increased by up to 17.6 and 53.6%, respectively. The proposed unified calculation equation for the axial compression bearing capacity of SCCFST columns demonstrates notable reliability and precision. Furthermore, these tests offer valuable references for the engineering application of various forms of SCCFST columns, which are of significant importance in practical engineering.

15.
Environ Pollut ; : 124982, 2024 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-39293653

RESUMO

Fly ash is predominately the inorganic byproduct of coal combustion for electrical power generation. It is composed of aluminosilicates with Fe, Mg, K, and Ca forming submicron to 100 µm spheres and amorphous particles. During combustion trace elements are incorporated into the heterogenous fine particles that can pose risks to the environment and human health. This study combines optical, rock magnetic, and geochemical analyses of fly ash originating from Appalachian coal to develop an integrated suite of environmental coal ash tracers. The non-magnetic portion of power plant fly ash has higher abundance of clear spheres and clear amorphous particles, combined with enrichment of As, B, Th, Ba, Li, Se, Cd, Pb, and Tl. The magnetic fraction is enriched in opaque and orange spheres and Cu, U, V, Mo, Cr, Ni, and Co. Plerospheres occur in either fraction. We investigated ash-bearing fluvial sediment from Emory-Clinch River system that was impacted by the instantaneous TVA spill in 2008 and Hyco Lake in North Carolina that was contaminated by chronic releases of fly ash since 1964. Five years after the TVA spill, most ash in the riverbed reflects one population with trace element concentrations proportional to percent total ash. This relationship does not hold for As and Se, volatile elements associated with the outer surface of clear spheres, which are affected by river transport. At Hyco Lake, small clear and opaque spheres correlate with trace elements released from storage ponds. The combination of trace elements, fly ash morphology and rock magnetism provides a powerful set of tools to assess the distribution of ash and potential impact on the environment. We conclude that dispersal of fly ash to the aquatic environment, especially small clear and opaque spheres, should be avoided in favor of dry landfills.

16.
Sci Total Environ ; 952: 175950, 2024 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-39218098

RESUMO

Information on the emission of coal combustion-sourced magnetite nanoparticles (MNPs) is lacking, which is critical for their health-related risks. In this study, MNPs in coal fly ashes (CFAs) from various coal-fired power plants (CFPPs) in China equipped with various dust removal devices were extracted and quantified using single particle ICP-MS. The number concentrations of MNPs in CFAs captured by dust removal increased with stage, while their size decreased. Among all the dust removal devices, electrostatic-fabric-integrated precipitators showed the best removal of MNPs. Furthermore, throughout all the coal combustion by-products in a typical CFPP, MNPs in EFA (fly ash escaped from the stack) showed the highest number concentration (1.2 × 107 particles/mg) and lowest size (78 nm). Although the mass of CFA escaping through the stack is extremely low, it still had an emission rate of 1.9 × 1015 particles/h, contributing 3.56 % of the total emissions of MNPs in number. In addition, the purity of MNPs and their associated toxic metals showed a size-dependent variation pattern. As the particle size of MNPs decreased, the proportion of Fe in MNPs increased from 43 % in bottom ash (BA) to 84 % in EFA, while the abundance of trace toxic metals in EFA was 3.3 times higher than that of BA. These MNPs with the highest purity can adsorb elevated concentrations of toxic metals, and can be discharged directly into the atmosphere, posing a risk of synergistic toxicity.

17.
Int J Biol Macromol ; 280(Pt 3): 135897, 2024 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-39313051

RESUMO

In this study, chitosan grafted salicylaldehyde/coal fly ash/algae (Chi-SL/CFA/Alg) was synthesized by assistance of hydrothermal process to be an effective adsorbent to remove cationic dye (malachite green: MG) from water. The physicochemical properties of the Chi-SL/CFA/Alg biomaterial were examined using SEM-EDX, pHpzc, specific surface area (BET), and FTIR analyses. The optimization process of the adsorption operation parameters for MG removal by Chi-SL/CFA/Alg were optimized using a Box-Behnken design (BBD). The selected adsorption operation parameters Chi-SL/CFA/Alg dosage (A: 0.02-0.1 g/100 mL), solution pH (B: 4-8), and contact time (C: 20-360 min). Analysis of variance (ANOVA) test was applied to determine the significant interaction between the adsorption operation parameters and to validate BBD output. The adsorption kinetics and isotherms of MG dye by Chi-SL/CFA/Alg were well described by pseudo-second order (PSO) kinetic and Freundlich isotherm model respectively. Thus, the maximum adsorption capacity (qmax) of MG dye by Chi-SL/CFA/Alg was found to be 493.7 mg/g at basic pH environment (pH = 8) and working temperature 25 °C. The adsorption mechanism can be ascribed to various interactions, including hydrogen bonding, π-π interactions, electrostatic attraction, and n-π interactions. Thus, Chi-SL/CFA/Alg can be considered as preferable and potential adsorbent for removing cationic dye from aqueous environment.

18.
Artigo em Inglês | MEDLINE | ID: mdl-39348018

RESUMO

This paper critically examines the carbon cycle and environmental impacts associated with building materials, encompassing diverse impact categories for both midpoint and endpoint scenarios. The research encompasses a comparative analysis of five distinct scenarios, contrasting the environmental performance of green against conventional counterparts. Notably, previous research endeavors did not investigate the effects of varying percentages with and without phase change materials (PCM). The primary objective is to assess the impact of integrating phase change materials (PCM) with varying percentages of fly ash (20% and 35%) on energy consumption and carbon emissions, particularly in cold climates like Norway. The study employs the ReCiPe2016 Midpoint (E) method, which offers a robust life cycle assessment (LCA) framework aligned with European standards, making it particularly suitable for this context. Energy Plus, within the Design Builder software, was used to simulate and calculate the impact of PCM on energy efficiency. The findings underscore those environmental impacts attributed to green buildings amount to 9.79 × 104 kg of CO2 equivalent, while conventional buildings account for 1.04 × 105 kg of CO2 equivalent. Furthermore, among the cases studied, the optimal scenario pertains to a green building utilizing 35% wind ash cement and PCM, resulting in the equivalent of 9.68 × 104 kg of CO2 emissions. Remarkably, the best-case scenario involves a green building boasting a robust steel interior structure and aluminum windows, whereas the worst-case scenario entails a typical building devoid of PCM implementation. Furthermore, energy consumption analysis indicates that scenario 5, which utilizes PCM and 35% fly ash, achieves a 15% reduction in cooling energy and a 6.9% reduction in heating energy compared to scenario 3, resulting in an annual energy consumption of 97,453.09 kWh.

19.
Materials (Basel) ; 17(18)2024 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-39336218

RESUMO

Rare earth elements are an essential critical raw material in the development of modern technologies and are highly sensitive to both supply chain disruptions and market turbulence. The presented study examines the characteristics of fuel, fly ash, and bottom ash from lignite combustion in power plant units. Also, we attempted to determine the amount of amorphous glass in the ashes and whether and to what extent the glass from the ash samples is bound to REY. The suitability of the ash was assessed as an alternative source of REY. The fuel and ash samples were acquired from power plants in Poland. The tests determined the fuel quality parameters, including the chemical and phase composition, of amorphous glass using ICP-MS and XRD methods, respectively. The study showed that all ash samples dissolved in 4% HF were enriched in REY. The efficiency of REY enrichment varied, and its presence in the residue samples was found to be in similar proportions compared to the raw sample. All ash residue samples were enriched in critical elements. The obtained values of the Coutl prospective coefficient allowed for the classification of some of the analyzed ashes and their residues after dissolution in 4% HF as prospective REY raw materials.

20.
Sci Rep ; 14(1): 21485, 2024 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-39277618

RESUMO

This study examines the influence of different grain size fractions of coal fly ash on the properties of clay-cement mortars used in flood levee construction. Dry aerodynamic separation and mesh sieving were used to obtain ultrafine, fine, and medium fractions of high-calcium and silica fly ash. The experimental results reveal that the rheological properties of fresh mortars are significantly influenced by these fractions. High-calcium fly ash mortars exhibit high reactivity and rapid increase in viscosity, with finer fractions showing the highest reactivity. Silica ashes show increased reactivity in the later stages of suspension hardening. Their spherical shape contributes to reducing internal friction during flow in initial technological operations. Furthermore, the compressive strength of hardened mortars improves as the particle size decreases for both ashes, resulting in a dense and uniform microstructure. The separation and fractionation of fly ashes contribute to the obtaining of fractions that influence the parameters of clay-cement suspension application on different scales. The results show the potential benefits of ash separation, which can bring advantages in terms of economic viability, engineering performance, and ecological sustainability.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...