Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.621
Filtrar
1.
Acad Radiol ; 2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-39089906

RESUMO

RATIONALE AND OBJECTIVES: To assess changes in the central executive network (CEN) of patients with mild cognitive impairment (MCI) associated with end-stage renal disease (ESRD). METHODS: A total of 121 patients with ESRD and 66 healthy controls (HCs) were enrolled. Patients were divided into an MCI group (n = 67) and a cognitively unimpaired group (n = 54). All participants underwent resting-state functional magnetic resonance imaging and were evaluated using the Montreal Cognitive Assessment (MoCA). The functional attributes of the CEN were calculated using three methods of functional connectivity (FC) analysis. Relationships among imaging features, cognitive scale scores, and clinical data were assessed, and a model was constructed to diagnose MCI in patients with ESRD. RESULTS: The comparison of the three groups showed that there were significant differences in the FC values of five connection pairs within the CEN, and the CEN demonstrated significant differences in connectivity to ten brain regions. In patients with MCI associated with ESRD, the information transmission efficiency of the CEN was reduced, which demonstrates the characteristics of a random network to some extent. Significant correlations were observed among imaging parameters, cognitive scale scores, and clinical data. The diagnostic model constructed based on these results demonstrated excellent discrimination and calibration. CONCLUSION: Alterations in the function of the CEN provide relevant bases for revealing the neuropathological mechanism of MCI in patients with ESRD. The diagnostic model developed in this study may help to establish more reliable imaging markers for detecting early cognitive impairment in this patient population.

2.
Front Aging Neurosci ; 16: 1418173, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39086757

RESUMO

Objective: White matter hyperintensity (WMH) in patients with cerebral small vessel disease (CSVD) is strongly associated with cognitive impairment. However, the severity of WMH does not coincide fully with cognitive impairment. This study aims to explore the differences in the dynamic functional network connectivity (dFNC) of WMH with cognitively matched and mismatched patients, to better understand the underlying mechanisms from a quantitative perspective. Methods: The resting-state functional magnetic resonance imaging (rs-fMRI) and cognitive function scale assessment of the patients were acquired. Preprocessing of the rs-fMRI data was performed, and this was followed by dFNC analysis to obtain the dFNC metrics. Compared the dFNC and dFNC metrics within different states between mismatch and match group, we analyzed the correlation between dFNC metrics and cognitive function. Finally, to analyze the reasons for the differences between the mismatch and match groups, the CSVD imaging features of each patient were quantified with the assistance of the uAI Discover system. Results: The 149 CSVD patients included 20 cases of "Type I mismatch," 51 cases of Type I match, 38 cases of "Type II mismatch," and 40 cases of "Type II match." Using dFNC analysis, we found that the fraction time (FT) and mean dwell time (MDT) of State 2 differed significantly between "Type I match" and "Type I mismatch"; the FT of States 1 and 4 differed significantly between "Type II match" and "Type II mismatch." Correlation analysis revealed that dFNC metrics in CSVD patients correlated with executive function and information processing speed among the various cognitive functions. Through quantitative analysis, we found that the number of perivascular spaces and bilateral medial temporal lobe atrophy (MTA) scores differed significantly between "Type I match" and "Type I mismatch," while the left MTA score differed between "Type II match" and "Type II mismatch." Conclusion: Different mechanisms were implicated in these two types of mismatch: Type I affected higher-order networks, and may be related to the number of perivascular spaces and brain atrophy, whereas Type II affected the primary networks, and may be related to brain atrophy and the years of education.

3.
Front Neurol ; 15: 1412117, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39087006

RESUMO

Background: The anterior cingulate gyrus (ACG) is an important regulatory region for pain-related information. However, the ACG is composed of subregions with different functions. The mechanisms underlying the brain networks of different subregions of the ACG in patients with migraine without aura (MwoA) are currently unclear. Methods: In the current study, resting-state functional magnetic resonance imaging (rsfMRI) and functional connectivity (FC) were used to investigate the functional characteristics of ACG subregions in MwoA patients. The study included 17 healthy volunteers and 28 MwoA patients. The FC calculation was based on rsfMRI data from a 3 T MRI scanner. The brain networks of the ACG subregions were compared using a general linear model to see if there were any differences between the two groups. Spearman correlation analysis was used to examine the correlation between FC values in abnormal brain regions and clinical variables. Results: Compared with healthy subjects, MwoA patients showed decreased FC between left subgenual ACG and left middle cingulate gyrus and right middle temporal gyrus. Meanwhile, MwoA patients also showed increased FC between pregenual ACG and right angular gyrus and increased FC between right pregenual ACG and right superior occipital gyrus. The FC values between pregenual ACG and right superior occipital gyrus were significantly positively correlated with the visual analogue scale. Conclusion: Disturbances of FC between ACG subregions and default model network and visual cortex may play a key role in neuropathological features, perception and affection of MwoA. The current study provides further insights into the complex scenario of MwoA mechanisms.

4.
Sleep Med Rev ; 77: 101977, 2024 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-39096646

RESUMO

Sleep plays an essential role in physiology, allowing the brain and body to restore itself. Despite its critical role, our understanding of the underlying processes in the sleeping human brain is still limited. Sleep comprises several distinct stages with varying depths and temporal compositions. Cerebral blood flow (CBF), which delivers essential nutrients and oxygen to the brain, varies across brain regions throughout these sleep stages, reflecting changes in neuronal function and regulation. This systematic review and meta-analysis assesses global and regional CBF across sleep stages. We included, appraised, and summarized all 38 published sleep studies on CBF in healthy humans that were not or only slightly (<24 h) sleep deprived. Our main findings are that CBF varies with sleep stage and depth, being generally lowest in NREM sleep and highest in REM sleep. These changes appear to stem from sleep stage-specific regional brain activities that serve particular functions, such as alterations in consciousness and emotional processing.

5.
Hum Brain Mapp ; 45(11): e26801, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39087903

RESUMO

Damage to the posterior language area (PLA), or Wernicke's area causes cortical reorganization in the corresponding regions of the contralateral hemisphere. However, the details of reorganization within the ipsilateral hemisphere are not fully understood. In this context, direct electrical stimulation during awake surgery can provide valuable opportunities to investigate neuromodulation of the human brain in vivo, which is difficult through the non-invasive approaches. Thus, in this study, we aimed to investigate the characteristics of the cortical reorganization of the PLA within the ipsilateral hemisphere. Sixty-two patients with left hemispheric gliomas were divided into groups depending on whether the lesion extended to the PLA. All patients underwent direct cortical stimulation with a picture-naming task. We further performed functional connectivity analyses using resting-state functional magnetic resonance imaging (MRI) in a subset of patients and calculated betweenness centrality, an index of the network importance of brain areas. During direct cortical stimulation, the regions showing positive (impaired) responses in the non-PLA group were localized mainly in the posterior superior temporal gyrus (pSTG), whereas those in the PLA group were widely distributed from the pSTG to the posterior supramarginal gyrus (pSMG). Notably, the percentage of positive responses in the pSMG was significantly higher in the PLA group (47%) than in the non-PLA group (8%). In network analyses of functional connectivity, the pSMG was identified as a hub region with high betweenness centrality in both the groups. These findings suggest that the language area can spread beyond the PLA to the pSMG, a hub region, in patients with lesion progression to the pSTG. The change in the pattern of the language area may be a compensatory mechanism to maintain efficient brain networks.


Assuntos
Neoplasias Encefálicas , Imageamento por Ressonância Magnética , Rede Nervosa , Área de Wernicke , Humanos , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/fisiopatologia , Masculino , Feminino , Pessoa de Meia-Idade , Adulto , Área de Wernicke/diagnóstico por imagem , Área de Wernicke/fisiopatologia , Área de Wernicke/fisiologia , Rede Nervosa/diagnóstico por imagem , Rede Nervosa/fisiopatologia , Glioma/diagnóstico por imagem , Glioma/fisiopatologia , Glioma/cirurgia , Glioma/patologia , Estimulação Elétrica , Idoso , Idioma , Conectoma , Lobo Parietal/diagnóstico por imagem , Lobo Parietal/fisiopatologia , Mapeamento Encefálico , Adulto Jovem
6.
Neuroimage Clin ; 43: 103645, 2024 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-39059208

RESUMO

BACKGROUND: Functional Magnetic Resonance Imaging (fMRI) has shown brain activity alterations in individuals with a history of attempted suicide (SA) who are diagnosed with depression disorder (DD) or bipolar disorder (BD). However, patterns of spontaneous brain activity and their genetic correlations need further investigation. METHODS: A voxel-based meta-analysis of 19 studies including 26 datasets, involving 742 patients with a history of SA and 978 controls (both nonsuicidal patients and healthy controls) was conducted. We examined fMRI changes in SA patients and analyzed the association between these changes and gene expression profiles using data from the Allen Human Brain Atlas by partial least squares regression analysis. RESULTS: SA patients demonstrated increased spontaneous brain activity in several brain regions including the bilateral inferior temporal gyrus, hippocampus, fusiform gyrus, and right insula, and decreased activity in areas like the bilateral paracentral lobule and inferior frontal gyrus. Additionally, 5,077 genes were identified, exhibiting expression patterns associated with SA-related fMRI alterations. Functional enrichment analyses demonstrated that these SA-related genes were enriched for biological functions including glutamatergic synapse and mitochondrial structure. Concurrently, specific expression analyses showed that these genes were specifically expressed in the brain tissue, in neurons cells, and during early developmental periods. CONCLUSION: Our findings suggest a neurobiological basis for fMRI abnormalities in SA patients with DD or BD, potentially guiding future genetic and therapeutic research.

7.
Artigo em Inglês | MEDLINE | ID: mdl-38969254

RESUMO

OBJECTIVE: To investigate the neural mechanism underlying functional reorganization and motor coordination strategies in patients with chronic low back pain (cLBP). DESIGN: A case-control study based on data collected during routine clinical practice. SETTING: This study was conducted at a university hospital. PARTICIPANTS: Fifteen patients with cLBP and 15 healthy controls. INTERVENTIONS: Not applicable. MAIN OUTCOME MEASURES: Whole brain blood oxygen level-dependent signals were measured using functional magnetic resonance imaging and amplitude of low-frequency fluctuation (ALFF) method to identify pain-induced changes in regional spontaneous brain activity. A novel approach based on the surface electromyogram (EMG) system and fine-wire electrodes was used to record EMG signals in the deep multifidus, superficial multifidus, and erector spinae. RESULTS: In cLBP, compared with healthy groups, ALFF was higher in the medial prefrontal, primary somatosensory, primary motor, and inferior temporal cortices, whereas it was lower in the cerebellum and anterior cingulate and posterior cingulate cortices. Furthermore, the decrease in the average EMG activity of the 3 lumbar muscles in the cLBP group was positively correlated with the ALFF values of the primary somatosensory cortex, motor cortex, precuneus, and middle temporal cortex but significantly negatively correlated with the ALFF values of the medial prefrontal and inferior temporal cortices. Interestingly, the correlation between the functional activity in the cerebellum and the EMG activity varied in the lumbar muscles. CONCLUSIONS: These findings suggest a functional association between changes in spontaneous brain activity and altered voluntary neuromuscular activation patterns of the lumbar paraspinal muscles, providing new insights into the mechanisms underlying pain chronicity as well as important implications for developing novel therapeutic targets of cLBP.

8.
Hum Brain Mapp ; 45(11): e26792, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39037170

RESUMO

Understanding how function and structure are organized and their coupling with clinical traits in individuals with autism spectrum disorder (ASD) is a primary goal in network neuroscience research for ASD. Atypical brain functional networks and structures in individuals with ASD have been reported, but whether these associations show heterogeneous hierarchy modeling in adolescents and adults with ASD remains to be clarified. In this study, 176 adolescent and 74 adult participants with ASD without medication or comorbidities and sex, age matched healthy controls (HCs) from 19 research groups from the openly shared Autism Brain Imaging Data Exchange II database were included. To investigate the relationship between the functional gradient, structural changes, and clinical symptoms of brain networks in adolescents and adults with ASD, functional gradient and voxel-based morphometry (VBM) analyses based on 1000 parcels defined by Schaefer mapped to Yeo's seven-network atlas were performed. Pearson's correlation was calculated between the gradient scores, gray volume and density, and clinical traits. The subsystem-level analysis showed that the second gradient scores of the default mode networks and frontoparietal network in patients with ASD were relatively compressed compared to adolescent HCs. Adult patients with ASD showed an overall compression gradient of 1 in the ventral attention networks. In addition, the gray density and volumes of the subnetworks showed no significant differences between the ASD and HC groups at the adolescent stage. However, adults with ASD showed decreased gray density in the limbic network. Moreover, numerous functional gradient parameters, but not VBM parameters, in adolescents with ASD were considerably correlated with clinical traits in contrast to those in adults with ASD. Our findings proved that the atypical changes in adolescent ASD mainly involve the brain functional network, while in adult ASD, the changes are more related to brain structure, including gray density and volume. These changes in functional gradients or structures are markedly correlated with clinical traits in patients with ASD. Our study provides a novel understanding of the pathophysiology of the structure-function hierarchy in ASD.


Assuntos
Transtorno do Espectro Autista , Imageamento por Ressonância Magnética , Rede Nervosa , Humanos , Transtorno do Espectro Autista/diagnóstico por imagem , Transtorno do Espectro Autista/fisiopatologia , Transtorno do Espectro Autista/patologia , Adolescente , Masculino , Feminino , Adulto , Adulto Jovem , Rede Nervosa/diagnóstico por imagem , Rede Nervosa/fisiopatologia , Rede Nervosa/patologia , Rede de Modo Padrão/diagnóstico por imagem , Rede de Modo Padrão/fisiopatologia , Rede de Modo Padrão/patologia , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Encéfalo/fisiopatologia , Criança , Pessoa de Meia-Idade
9.
BMC Med Imaging ; 24(1): 186, 2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-39054419

RESUMO

Autism Spectrum Disorder (ASD) is a neurodevelopmental condition that affects an individual's behavior, speech, and social interaction. Early and accurate diagnosis of ASD is pivotal for successful intervention. The limited availability of large datasets for neuroimaging investigations, however, poses a significant challenge to the timely and precise identification of ASD. To address this problem, we propose a breakthrough approach, GARL, for ASD diagnosis using neuroimaging data. GARL innovatively integrates the power of GANs and Deep Q-Learning to augment limited datasets and enhance diagnostic precision. We utilized the Autistic Brain Imaging Data Exchange (ABIDE) I and II datasets and employed a GAN to expand these datasets, creating a more robust and diversified dataset for analysis. This approach not only captures the underlying sample distribution within ABIDE I and II but also employs deep reinforcement learning for continuous self-improvement, significantly enhancing the capability of the model to generalize and adapt. Our experimental results confirmed that GAN-based data augmentation effectively improved the performance of all prediction models on both datasets, with the combination of InfoGAN and DQN's GARL yielding the most notable improvement.


Assuntos
Transtorno do Espectro Autista , Aprendizado Profundo , Neuroimagem , Humanos , Transtorno do Espectro Autista/diagnóstico por imagem , Neuroimagem/métodos , Criança , Redes Neurais de Computação , Masculino , Encéfalo/diagnóstico por imagem
10.
J Prev Alzheimers Dis ; 11(4): 881-888, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39044497

RESUMO

BACKGROUND: Stronger resting-state functional connectivity of the default mode and frontoparietal control networks has been associated with cognitive resilience to Alzheimer's disease related pathology and neurodegeneration in smaller cohort studies. OBJECTIVES: We investigated whether these networks are associated with longitudinal CR to AD biomarkers of beta-amyloid (Aß). DESIGN: Longitudinal mixed. SETTING: The Anti-Amyloid Treatment in Asymptomatic Alzheimer's Disease (A4) study and its natural history observation arm, the Longitudinal Evaluation of Amyloid Risk and Neurodegeneration (LEARN) study. PARTICIPANTS: A sample of 1,021 cognitively unimpaired older adults (mean age = 71.2 years [SD = 4.7 years], 61% women, 42% APOEε4 carriers, 52% Aß positive). MEASUREMENTS: Global cognitive performance (Preclinical Alzheimer's Cognitive Composite) was assessed over an average 5.4 year follow-up period (SD = 2 years). Cortical Aß and functional connectivity (left and right frontoparietal control and default mode networks) were estimated from fMRI and PET, respectively, at baseline. Covariates included baseline age, APOEε4 carrier status, years of education, adjusted gray matter volume, head motion, study group, cumulative treatment exposure, and cognitive test version. RESULTS: Mixed effects models revealed that functional connectivity of the left frontoparietal control network moderated the negative effect of Aß on cognitive change (p = .025) such that stronger connectivity was associated with reduced Aß-related cognitive decline. CONCLUSIONS: Our results demonstrate a potential protective effect of functional connectivity in preclinical AD, such that stronger connectivity in this network is associated with slower Aß-related cognitive decline.


Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides , Disfunção Cognitiva , Lobo Frontal , Imageamento por Ressonância Magnética , Lobo Parietal , Humanos , Feminino , Masculino , Idoso , Peptídeos beta-Amiloides/metabolismo , Lobo Parietal/diagnóstico por imagem , Estudos Longitudinais , Lobo Frontal/diagnóstico por imagem , Tomografia por Emissão de Pósitrons , Sintomas Prodrômicos , Rede Nervosa/diagnóstico por imagem , Rede Nervosa/fisiopatologia
11.
Front Pharmacol ; 15: 1426506, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39015373

RESUMO

Introduction: Tobacco smoking is the leading preventable cause of death, causing more than six million deaths annually worldwide, mainly due to cardiovascular disease and cancer. Many habitual smokers try to stop smoking but only about 7% are successful, despite widespread knowledge of the risks. Development of addiction to a range of substances is associated with progressive blunting of brain reward responses and sensitisation of stress responses, as described by the allostasis theory of addiction. There is pre-clinical evidence from rodents for a dramatic decrease in brain reward function during nicotine withdrawal. Methods: Here we tested the hypothesis that habitual smokers would also exhibit blunted reward function during nicotine withdrawal using a decision-making task and fMRI. Results: Our findings supported this hypothesis, with midbrain reward-related responses particularly blunted. We also tested the hypothesis that smokers with a longer duration of smoking would have more pronounced abnormalities. Contrary to expectations, we found that a shorter duration of smoking in younger smokers was associated with the most marked abnormalities, with blunted midbrain reward related activation including the dopaminergic ventral tegmental area. Discussion: Given the substantial mortality associated with smoking, and the small percent of people who manage to achieve sustained abstinence, further translational studies on nicotine addiction mechanisms are indicated.

12.
J Neurophysiol ; 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-39015075

RESUMO

Alzheimer's disease (AD) is a neurodegenerative disease, and mild cognitive impairment (MCI) is considered a transitional stage between healthy aging and dementia. Early detection of MCI can help slow down the progression of AD. At present, there are few studies exploring the characteristics of abnormal dynamic brain activity in AD. This article uses a method called Leading Eigenvector Dynamics Analysis (LEiDA) to study resting-state functional magnetic resonance imaging (rs-fMRI) data of AD, MCI, and cognitively normal (CN) participants. By identifying repetitive states of phase coherence, inter group differences in brain dynamic activity indicators are examined. And the neurobehavioral scales were used to assess the relationship between abnormal dynamic activities and cognitive function. The results showed that in the indicators of occurrence probability and lifetime, the globally synchronized state of the patient group decreased. The activity state of the limbic regions significantly detected the difference between AD and the other two groups. Compared to CN, AD and MCI have varying degrees of increase in default and visual regions activity states. In addition, in the analysis related to the cognitive scales, it was found that individuals with poorer cognitive abilities were less active in the globally synchronized state, and more active in limbic regions activity state and visual regions activity state. Taken together, these findings reveal abnormal dynamic activity of resting-state networks in patients with AD and MCI, provide new insights into the dynamic analysis of brain networks, and contribute to a deeper understanding of abnormal spatial dynamic patterns in AD patients.

13.
EBioMedicine ; 106: 105255, 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-39032426

RESUMO

BACKGROUND: Controllability analysis is an approach developed for evaluating the ability of a brain region to modulate function in other regions, which has been found to be altered in major depressive disorder (MDD). Both depressive symptoms and cognitive impairments are prominent features of MDD, but the case-control differences of controllability between MDD and controls can not fully interpret the contribution of both clinical symptoms and cognition to brain controllability and linked patterns among them in MDD. METHODS: Sparse canonical correlation analysis was used to investigate the associations between resting-state functional brain controllability at the network level and clinical symptoms and cognition in 99 first-episode medication-naïve patients with MDD. FINDINGS: Average controllability was significantly correlated with clinical features. The average controllability of the dorsal attention network (DAN) and visual network had the highest correlations with clinical variables. Among clinical variables, depressed mood, suicidal ideation and behaviour, impaired work and activities, and gastrointestinal symptoms were significantly negatively associated with average controllability, and reduced cognitive flexibility was associated with reduced average controllability. INTERPRETATION: These findings highlight the importance of brain regions in modulating activity across brain networks in MDD, given their associations with symptoms and cognitive impairments observed in our study. Disrupted control of brain reconfiguration of DAN and visual network during their state transitions may represent a core brain mechanism for the behavioural impairments observed in MDD. FUNDING: National Natural Science Foundation of China (82001795 and 82027808), National Key R&D Program (2022YFC2009900), and Sichuan Science and Technology Program (2024NSFSC0653).

14.
J Psychiatr Res ; 177: 59-65, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38972266

RESUMO

Abnormal functional connectivity (FC) within the fear network model (FNM) has been identified in panic disorder (PD) patients, but the specific local structural and functional properties, as well as effective connectivity (EC), remain poorly understood in PD. The purpose of this study was to investigate the structural and functional patterns of the FNM in PD. Magnetic resonance imaging data were collected from 33 PD patients and 35 healthy controls (HCs). Gray matter volume (GMV), degree centrality (DC), regional homogeneity (ReHo), and amplitude of low-frequency fluctuation (ALFF) were used to identify the structural and functional characteristics of brain regions within the FNM in PD. Subsequently, FC and EC of abnormal regions, based on local structural and functional features, and their correlation with clinical features were further examined. PD patients exhibited preserved GMV, ReHo, and ALFF in the brain regions of the FNM compared with HCs. However, increased DC in the bilateral amygdala was observed in PD patients. The amygdala and its subnuclei exhibited altered EC with rolandic operculum, insula, medial superior frontal gyrus, supramarginal gyrus, opercular part of inferior frontal gyrus, and superior temporal gyrus. Additionally, Hamilton Anxiety Scale score was positively correlated with EC from left lateral nuclei (dorsal portion) of amygdala to right rolandic operculum and left superior temporal gyrus. Our findings revealed a reorganized functional network in PD involving brain regions regulating exteroceptive-interoceptive signals, mood, and somatic symptoms. These results enhance our understanding of the neurobiological underpinnings of PD, suggesting potential biomarkers for diagnosis and targets for therapeutic intervention.

15.
Brain Res ; 1842: 149113, 2024 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-38972627

RESUMO

OBJECTIVES: To investigate alterations of whole-brain network after stroke and therapeutic mechanisms of robot-assisted gait training (RAGT). METHODS: 21 stroke patients and 20 healthy subjects were enrolled, with the stroke patients randomized to either control group (n = 11) or robot group (n = 10), and resting-state functional magnetic resonance imaging data were collected. The global network metrics were obtained using graph theory analysis and compared between stroke patients and healthy subjects, and the effect of the RAGT on the whole-brain networks was explored. RESULTS: Compared to healthy subjects, area under the curve (AUC) for small-worldness (σ), clustering coefficient (Cp), global efficiency (Eg) and mean local efficiency (Eloc) were significantly lower in stroke patients, whereas AUC for characteristic path length (Lp) were significantly higher. Compared with the control group, patients in robot group showed significant improvement in lower limb motor function, balance function and walking function after intervention, with a significant reduction in the AUC of Cp. Moreover, the improvement of walking function was positively correlated with the changes of AUC of σ and Eg, and negatively correlated with the changes of AUC of Cp. CONCLUSIONS: Small-worldness and network efficiency were significantly reduced after stroke, whereas RAGT decreased characteristic path length and promoted normalization of the whole-brain network, and this change was associated with improvement in walking function. Our findings reveal the mechanism by which RAGT regulates network reorganization and neuroplasticity after stroke.

16.
Front Neurol ; 15: 1363225, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38988597

RESUMO

Introduction: Although acupuncture is recommended by chronic obstructive pulmonary disease (COPD) treatment guidelines owing to its effects on dyspnea, the underlying neurobiological mechanisms of these effects remain unclear. This study aims to evaluate the efficacy of acupuncture in patients with stable COPD and explore the possible involvement of specific brain regions. Methods: This is a prospective, multicenter, single-blind, randomized controlled trial. A total of 90 participants will be recruited from three centers and will be randomly assigned in a 1:1 ratio to undergo acupuncture at acupoints on the disease-affected meridian (DAM) or non-acupoints on the non-affected meridian (NAM), in addition to routine pharmacological treatments. All participants will undergo 30 min of acupuncture three times a week for 8 weeks and will be followed up for 12 months. The primary outcome will be the severity of dyspnea, as measured using the Borg Dyspnea Scale and a visual analog scale at rest and after exercise. The secondary outcomes will include the multidimensional profile of dyspnea using Dyspnea-12, the modified Medical Research Council Dyspnea Scale, and the COPD assessment test; quality of life assessments using St George's Respiratory Questionnaire and the Hospital Anxiety and Depression Scale; and additional measurements of exacerbation frequency, pulmonary function, and the 6-min walking distance. Magnetic resonance imaging (MRI) will be performed before and after exercise to explore the potential neurobiological mechanisms of exertional dyspnea. Anxiety and depression will be measured and analyzed for their correlation with the activation of specific brain areas involved in dyspnea. Discussion: This randomized controlled trial aims to use a multidimensional evaluation of the efficacy of acupuncture in relieving dyspnea in patients with COPD in terms of emotion and quality of life and explore the neurobiological mechanisms underlying the effects of acupuncture on dyspnea from an imaging perspective. It is expected to provide strong evidence to support the use of acupuncture in relieving dyspnea in patients with COPD and those with aother diseases involving dyspnea. Additionally, it provides novel insights into the central mechanisms of acupuncture intervention and dyspnea. Trial registration: Chinese Clinical Trial Registry (https://www.chictr.org.cn/): ChiCTR2300071725.

17.
Elife ; 132024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38980147

RESUMO

Functional magnetic resonance imaging (fMRI) studies have documented cerebellar activity across a wide array of tasks. However, the functional contribution of the cerebellum within these task domains remains unclear because cerebellar activity is often studied in isolation. This is problematic, as cerebellar fMRI activity may simply reflect the transmission of neocortical activity through fixed connections. Here, we present a new approach that addresses this problem. Rather than focus on task-dependent activity changes in the cerebellum alone, we ask if neocortical inputs to the cerebellum are gated in a task-dependent manner. We hypothesize that input is upregulated when the cerebellum functionally contributes to a task. We first validated this approach using a finger movement task, where the integrity of the cerebellum has been shown to be essential for the coordination of rapid alternating movements but not for force generation. While both neocortical and cerebellar activity increased with increasing speed and force, the speed-related changes in the cerebellum were larger than predicted by an optimized cortico-cerebellar connectivity model. We then applied the same approach in a cognitive domain, assessing how the cerebellum supports working memory. Enhanced gating was associated with the encoding of items in working memory, but not with the manipulation or retrieval of the items. Focusing on task-dependent gating of neocortical inputs to the cerebellum offers a promising approach for using fMRI to understand the specific contributions of the cerebellum to cognitive function.


Assuntos
Cerebelo , Imageamento por Ressonância Magnética , Cerebelo/fisiologia , Cerebelo/diagnóstico por imagem , Humanos , Masculino , Adulto , Feminino , Adulto Jovem , Neocórtex/fisiologia , Neocórtex/diagnóstico por imagem , Memória de Curto Prazo/fisiologia , Dedos/fisiologia
18.
J Affect Disord ; 362: 459-467, 2024 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-39013522

RESUMO

BACKGROUND: Chronic pain and depression share common neural mechanisms, but their impacts on empathy are different. It is unclear how comorbid depressive symptoms affect empathy-related brain function in patients with chronic pain. METHODS: A total of 29 healthy participants and 107 patients with chronic back pain (CBP) were included in this study. All subjects underwent a functional MRI scan with concurrent empathic stimulation. Multiple linear regression, moderation analysis, and mediation analysis were used to explore the impacts of chronic pain and comorbid depression on empathy. RESULTS: The interaction between the pain intensity and the depressive symptoms affected the functional connectivity (FC) of the insula-middle frontal gyrus (MFG), and the severity of the self-rating depression scale (SDS) scores moderated the effect of the pain on the left insula-left MFG FC. Within the CBP group, the emotional contagion (EC) scores served as a mediator in the association between the SDS scores and the FC of the left middle cingulate cortex (MCC)-inferior temporal gyrus (ITG), and the level of cognitive empathy (CE) moderated the effect of the SDS scores on the left MCC-ITG FC. LIMITATIONS: There is a lack of research on the effects of depressive symptoms on empathy in individuals with different types of chronic pain. CONCLUSION: Depressive symptoms were strongly associated with the emotional contagion in patients with chronic back pain. Furthermore, the emotional contagion and the cognitive empathy regulated the effect of the comorbid depressive symptoms on the MCC-ITG connectivity in patients with chronic back pain.

19.
Int J Psychophysiol ; 203: 112392, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-39002638

RESUMO

The dorsolateral prefrontal cortex (dlPFC) is implicated in top-down regulation of emotion, but the detailed network mechanisms require further elucidation. To investigate network-level functions of the dlPFC in emotion regulation, this study measured changes in task-based activation, resting-state and task-based functional connectivity (FC) patterns following suppression of dlPFC excitability by 1-Hz repetitive transcranial magnetic stimulation (rTMS). In a sham-controlled within-subject design, 1-Hz active or sham rTMS was applied to the right dlPFC of 19 healthy volunteers during two separate counterbalanced sessions. Following active and sham rTMS, functional magnetic resonance imaging (fMRI) was conducted in the resting state (rs-fMRI) and during approach-avoidance task responses to pictures with positive and negative emotional content (task-based fMRI). Activation and generalized psychophysiological interaction analyses were performed on task-based fMRI, and seed-based FC analysis was applied to rs-fMRI data. Task-based fMRI revealed greater and more lateralized activation in the right hemisphere during negative picture responses compared to positive picture responses. After active rTMS, greater activation was observed in the left middle prefrontal cortex compared to sham rTMS. Further, rTMS reduced response times and error rates in approach to positive pictures compared to negative pictures. Significant FC changes due to rTMS were observed predominantly in the frontoparietal network (FPN) and visual network (VN) during the task, and in the default mode network (DMN) and VN at rest. Suppression of right dlPFC activity by 1-Hz rTMS alters large-scale neural networks and modulates emotion, supporting potential applications for the treatment of mood disorders.

20.
CNS Neurosci Ther ; 30(7): e14820, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38948947

RESUMO

AIMS: To investigate the alterations of the optic nerve and visual cortex in dysthyroid optic neuropathy (DON), a subgroup of thyroid eye disease (TED). METHODS: Multiple orbital imaging biomarkers related to optic nerve compression and the amplitude of low-frequency fluctuations (ALFF) of the brain were obtained from 47 patients with DON, 56 TED patients without DON (nDON), and 37 healthy controls (HC). Correlation analyses and diagnostic tests were implemented. RESULTS: Compared with HC, the nDON group showed alterations in orbital imaging biomarkers related to optic nerve compression in posterior segments, as well as ALFF of the right inferior temporal gyrus and left fusiform gyrus. DON differed from nDON group mainly in the modified muscle index of the posterior segment of optic nerve, and ALFF of orbital part of right superior frontal gyrus, right hippocampus, and right superior temporal gyrus. Orbital and brain imaging biomarkers were significantly correlated with each other. Diagnostic models attained an area under a curve of 0.80 for the detection of DON. CONCLUSION: The combined orbital and brain imaging study revealed alterations of the visual pathway in patients with TED and DON as well as provided diagnostic value. The initiation of alterations in the visual cortex in TED may precede the onset of DON.


Assuntos
Oftalmopatia de Graves , Imageamento por Ressonância Magnética , Doenças do Nervo Óptico , Córtex Visual , Humanos , Masculino , Feminino , Pessoa de Meia-Idade , Oftalmopatia de Graves/diagnóstico por imagem , Oftalmopatia de Graves/complicações , Córtex Visual/diagnóstico por imagem , Adulto , Imageamento por Ressonância Magnética/métodos , Doenças do Nervo Óptico/diagnóstico por imagem , Órbita/diagnóstico por imagem , Nervo Óptico/diagnóstico por imagem , Idoso
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...