Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.901
Filtrar
1.
Curr Pharm Des ; 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39092731

RESUMO

Microemulsion gel, as a promising transdermal nanoparticle delivery system, addresses the limitations of microemulsions and enhances their performance in drug delivery and release. This article aims to discuss the advantages of microemulsion gel, including improved drug bioavailability, reduced drug irritation, enhanced drug penetration and skin adhesion, and increased antimicrobial properties. It explores the methods for selecting microemulsion formulations and the general processes of microemulsion preparation, as well as commonly used oil phases, surfactants, and co-surfactants. Additionally, the biomedical applications of microemulsion gel in treating conditions, such as acne and psoriasis, are also discussed. Overall, this article elucidates the significant potential of microemulsion gel in topical drug delivery, providing insights into future development and clinical applications.

2.
Artigo em Inglês | MEDLINE | ID: mdl-39092793

RESUMO

Carbon black slurry electrodes are an effective means to improve flow battery performance by increasing the active surface area necessary for electrochemical reactions with a cost-effective material. Current challenges with this specific flow battery chemistry include the stability and flowability of the carbon black suspensions, especially in response to formulation choices. Advancing the manufacturing, operation, and performance of these redox flow batteries requires a deeper understanding of how slurry formulation impacts its rheological profile and ultimately battery performance. In response to this need, the linear and nonlinear rheological responses of activated carbon (AC) based slurry electrode materials used in an all-iron flow battery in the presence of a nonionic surfactant (Triton X-100) were measured. Results from these measurements show the slurry is a colloidal gel with elasticity remaining constant despite increasing surfactant concentration until α (= Csurf/CAC) < 0.65. However, at α ≥ 0.65, the slurry abruptly transitions to a fluid with no measurable yield stress. This critical surfactant concentration at which the rheological profile undergoes a dynamic change matches the concentration found previously for gel collapse of this system. Moreover, this transition is accompanied by a complete loss of electrical conductivity. From these data we conclude the site specific adsorption of surfactant molecules often used in slurry formulation has a significant and dramatic impact on the stability and flowability of these suspensions. Work presented herein demonstrates the importance of additive choices when formulating a slurry electrode.

3.
ACS Nano ; 2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-39092933

RESUMO

Understanding how colloidal soft materials interact with light is crucial to the rational design of optical metamaterials. Electromagnetic simulations are computationally expensive and have primarily been limited to model systems described by a small number of particles-dimers, small clusters, and small periodic unit cells of superlattices. In this work we study the optical properties of bulk, disordered materials comprising a large number of plasmonic colloidal nanoparticles using Brownian dynamics simulations and the mutual polarization method. We investigate the far-field and near-field optical properties of both colloidal fluids and gels, which require thousands of nanoparticles to describe statistically. We show that these disordered materials exhibit a distribution of particle-level plasmonic resonance frequencies that determines their ensemble optical response. Nanoparticles with similar resonant frequencies form anisotropic and oriented clusters embedded within the otherwise isotropic and disordered microstructures. These collectively resonating morphologies can be tuned with the frequency and polarization of incident light. Knowledge of particle resonant distributions may help to interpret and compare the optical responses of different colloidal structures, correlate and predict optical properties, and rationally design soft materials for applications harnessing light.

4.
Adv Mater ; : e2406915, 2024 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-39096070

RESUMO

Phase change materials (PCMs) are crucial for sustainable thermal management in energy-efficient construction and cold chain logistics, as they can store and release renewable thermal energy. However, traditional PCMs suffer from leakage and a loss of formability above their phase change temperatures, limiting their shape stability and versatility. Inspired by the muscle structure, formable PCMs with a hierarchical structure and solvent-responsive supramolecular networks based on polyvinyl alcohol (PVA)/wood composites are developed. The material, in its hydrated state, demonstrates low stiffness and pliability due to the weak hydrogen bonding between aligned wood fibers and PVA molecules. Through treatment of poly(ethylene glycol) (PEG) into the PVA/wood PEG gel (PEG/PVA/W) with strengthened hydrogen bonds, the resulting wood-based PCMs in the hard and melting states elevate the tensile stress from 10.14 to 80.86 MPa and the stiffness from 420 MPa to 4.8 GPa, making it 530 times stiffer than the PEG/PVA counterpart. Capable of morphing in response to solvent changes, these formable PCMs enable intricate designs for thermal management. Furthermore, supported by a comprehensive life cycle assessment, these shape-adaptable, recyclable, and biodegradable PCMs with lower environmental footprint present a sustainable alternative to conventional plastics and thermal management materials.

5.
BMC Biotechnol ; 24(1): 51, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39090578

RESUMO

This study explores the potential antibacterial applications of zinc oxide nanoparticles (ZnO NPs) enhanced with silver (Ag) using plant gel (ZnO-AgO NPs). The problem addressed is the increasing prevalence of pathogenic bacteria and the need for new, effective antimicrobial agents. ZnO NPs possess distinctive physicochemical properties that enable them to selectively target bacterial cells. Their small size and high surface area-to-volume ratio allow efficient cellular uptake and interaction with bacterial cells. In this study, the average size of the synthesized ZnO-Ag nanoparticles was 77.1 nm, with a significant standard deviation of 33.7 nm, indicating a wide size distribution. The nanoparticles demonstrated remarkable antibacterial efficacy against gram-negative and gram-positive bacteria, with inhibition zones of 14.33 mm for E. coli and 15.66 mm for B. subtilis at a concentration of 300 µg/ml. Minimum inhibitory concentrations (MIC) were determined to be 100 µg/ml for E. coli and 75 µg/ml for S. saprophyticus. Additionally, ZnO-Ag NPs exhibited excellent biocompatibility, making them appropriate for various pharmacological uses. This study utilizes Ferula latisecta gels, offering a sustainable and eco-friendly approach to nanoparticle synthesis. Incorporating of Ag into ZnO NPs significantly enhances their antimicrobial properties, with the combined results showing great inhibition effects on pathogenic microbes. The findings suggest that ZnO-Ag NPs could be a promising candidate for addressing the challenges posed by drug-resistant bacterial infections and enhancing antimicrobial treatments.


Assuntos
Antibacterianos , Ferula , Bactérias Gram-Negativas , Bactérias Gram-Positivas , Nanopartículas Metálicas , Testes de Sensibilidade Microbiana , Prata , Óxido de Zinco , Antibacterianos/farmacologia , Antibacterianos/química , Antibacterianos/síntese química , Prata/química , Prata/farmacologia , Nanopartículas Metálicas/química , Bactérias Gram-Positivas/efeitos dos fármacos , Óxido de Zinco/química , Óxido de Zinco/farmacologia , Bactérias Gram-Negativas/efeitos dos fármacos , Ferula/química , Géis/química , Géis/farmacologia , Escherichia coli/efeitos dos fármacos
6.
Artigo em Inglês | MEDLINE | ID: mdl-39054697

RESUMO

Organic synaptic transistors are a promising technology for advanced electronic devices with simultaneous computing and memory functions and for the application of artificial neural networks. In this study, the neuromorphic electrical characteristics of organic synaptic electrolyte-gated transistors are correlated with the microstructural and interfacial properties of the active layers. This is accomplished by utilizing a semiconducting/insulating polyblend-based pseudobilayer with embedded source and drain electrodes, referred to as PB-ESD architecture. Three variations of poly(3-hexylthiophene) (P3HT)/poly(methyl methacrylate) (PMMA) PB-ESD-based organic synaptic transistors are fabricated, each exhibiting distinct microstructures and electrical characteristics, thus serving excellent samples for exploring the critical factors influencing neuro-electrical properties. Poor microstructures of P3HT within the active layer and a flat active layer/ion-gel interface correspond to typical neuromorphic behaviors such as potentiated excitatory postsynaptic current (EPSC), paired-pulse facilitation (PPF), and short-term potentiation (STP). Conversely, superior microstructures of P3HT and a rough active layer/ion-gel interface correspond to significantly higher channel conductance and enhanced EPSC and PPF characteristics as well as long-term potentiation behavior. Such devices were further applied to the simulation of neural networks, which produced a good recognition accuracy. However, excessive PMMA penetration into the P3HT conducting channel leads to features of a depressed EPSC and paired-pulse depression, which are uncommon in organic synaptic transistors. The inclusion of a second gate electrode enables the as-prepared organic synaptic transistors to function as two-input synaptic logic gates, performing various logical operations and effectively mimicking neural modulation functions. Microstructure and interface engineering is an effective method to modulate the neuromorphic behavior of organic synaptic transistors and advance the development of bionic artificial neural networks.

7.
Food Chem ; 459: 140249, 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38981385

RESUMO

This research delves into the Maillard reaction (MR) in high-solid gelatin-saccharide mixtures consisting of 8% and 72% of allulose, fructose, or fructo-oligosaccharides, which were subjected to varied duration (0-60min) of thermal processing prior to gelation. Physicochemical properties of the gels, including color, chemical composition, protein crosslinking, mechanical strength, in-vitro digestibility and antioxidant activities, were characterized. At pH ∼5.5 and intermediate water activities (0.6-0.7), fast browning was observed through sugar degradation and sugar-amine interactions, which were intensified by prolonged heating. The MR reactivity of saccharides followed: AL > FRU > FOS. Characteristic products (MRPs, e.g., α-dicarbonyls, 5-hydroxymethylfurfural, and advanced glycation end products) were identified, with the spectra of MRPs varying significantly between monosaccharides and oligosaccharides. The MR-induced protein glycation and crosslinking exhibited certain negative impacts on the gel strength and in-vitro protein digestibility. Furthermore, all gelatin-saccharide mixtures exhibited augmented antioxidant properties, with the gelatin-AL mixtures displaying the highest free radical scavenging rates.

8.
Foods ; 13(13)2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38998647

RESUMO

An eco-friendly extraction process of polyphenols from conventional dried rosemary tissues and post-distillation waste residues was applied using ß-cyclodextrin as a co-solvent. The aqueous extracts were characterized by measuring the total phenolic content, and their phenolic compounds were identified and quantified by LC-MS. Sodium alginate solutions (2% w/w) with/without incorporation of rosemary aqueous extracts were prepared and used for the preparation of O/W emulsions containing 20% rapeseed oil and an 80% water phase. Hydrogel beads were then stored at 20 °C for 28 days. The quality of encapsulated oil during storage was evaluated by measurements of the peroxide value, p-anisidine value, free fatty acids, total oxidation value, and fatty acid composition, whilst the aqueous phase of the beads was analyzed for its total extractable phenolic content (TEPC). The experimental findings indicate that the incorporation of aqueous extracts from post-distillation rosemary residues in emulsion-filled hydrogel beads resulted in the lowest level of oxidation products in the encapsulated rapeseed oil (PV = 10.61 ± 0.02 meq/Kg oil, p-AnV = 4.41 ± 0.09, and FFA = 0.14 ± 0.00, expressed as % oleic acid content), indicating an acceptable oil quality until the end of the storage period.

9.
J Pept Sci ; : e3643, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39010663

RESUMO

Low-molecular-weight (LMW) gelators are a versatile class of compounds able to self-assemble and to form supramolecular materials, such as gels. The use of LMW peptides to produce these gels shows many advantages, because of their wide structure tunability, the low-cost and effective synthesis, and the in vivo biocompatibility and biodegradability, which makes them optimal candidates for release and delivery applications. In addition, in these materials, the binding of the hosts may occur through a variety of noncovalent interactions, which are also the main factors responsible for the self-assembly of the gelators, and through specific interactions with the fibers or the pores of the gel matrix. This review aims to report LMW gels based on amino acid and peptide derivatives used for the release of many different species (drugs, fragrances, dyes, proteins, and cells) with a focus on the possible strategies to incorporate the cargo in these materials, and to demonstrate how versatile these self-assembled materials are in several applications.

10.
J Texture Stud ; 55(4): e12855, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38992897

RESUMO

The effects of oil type, emulsifier type, and emulsion particle size on the texture, gel strength, and rheological properties of SPI emulsion-filled gel (SPI-FG) and TFSP emulsion-filled gel (TFSP-FG) were investigated. Using soybean protein isolate or sodium caseinate as emulsifiers, emulsions with cocoa butter replacer (CBR), palm oil (PO), virgin coconut oil (VCO), and canola oil (CO) as oil phases were prepared. These emulsions were filled into SPI and TFSP gel substrates to prepare emulsion-filled gels. Results that the hardness and gel strength of both gels increased with increasing emulsion content when CBR was used as the emulsion oil phase. However, when the other three liquid oils were used as the oil phase, the hardness and gel strength of TFSP-FG decreased with the increasing of emulsion content, but those of SPI-FG increased when SPI was used as emulsifier. Additionally, the hardness and gel strength of both TFSP-FG and SPI-FG increased with the decreasing of mean particle size of emulsions. Rheological measurements were consistent with textural measurements and found that compared with SC, TFSP-FG, and SPI-FG showed higher G' values when SPI was used as emulsifier. Confocal laser scanning microscopy (CLSM) observation showed that the distribution and stability of emulsion droplets in TFSP-FG and SPI-FG were influenced by the oil type, emulsifier type and emulsion particle size. SPI-stabilized emulsion behaved as active fillers in SPI-FG reinforcing the gel matrix; however, the gel matrix of TFSP-FG still had many void pores when SPI-stabilized emulsion was involved. In conclusion, compared to SPI-FG, the emulsion filler effect that could reinforce gel networks became weaker in TFSP-FG.


Assuntos
Emulsificantes , Emulsões , Géis , Tamanho da Partícula , Reologia , Proteínas de Soja , Proteínas de Soja/química , Emulsões/química , Emulsificantes/química , Géis/química , Óleos de Plantas/química , Óleo de Palmeira/química , Óleo de Brassica napus/química , Óleo de Coco/química , Dureza , Caseínas/química , Gorduras na Dieta
11.
Int J Biol Macromol ; 276(Pt 1): 133640, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38969047

RESUMO

The potential of using emulsion gels stabilized by binary plant protein nanoparticle mixtures for the encapsulation and delivery of lipophilic nutraceuticals was evaluated. The particle characteristics, physical stability, water diffusivity, microrheology, large amplitude oscillating shear (LAOS) properties, and in vitro digestion of emulsion gels prepared by different ratios of hydrolyzed rice glutelin fibrils (HRGFs) and pea protein nanoparticle (PNP) were characterized. The emulsion gel with P/H = 2:1 (0.84 µm) exhibited the best storage stability and freeze-thaw stability, as seen by the smaller oil droplet size (1.02 and 1.42 µm, respectively). Low-field pulsed NMR indicated that the majority of water in samples was highly mobile. All the samples were predominantly elastic-like materials. The P/H 2:1 emulsion gel had the lowest FI value (6.21 × 10-4 Hz), the highest MVI value (5.57 s/nm2), G'/ G″ values and enclosed area, showing that it had denser 3D network structures, higher stiffness values, and a high sensitivity to changes in strain. Additionally, P/H 2:1 emulsion gel had a relatively high lipid digestibility (96.1 %), curcumin bioaccessibility (58.9 %), and curcumin stability (94.2 %). This study showed that emulsion gels stabilized by binary protein nanoparticle mixtures (PNP/HRGF) have potential as edible delivery systems for lipophilic nutraceuticals.

12.
Food Res Int ; 191: 114703, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39059910

RESUMO

Fat plays a pivotal role in the appearance, flavor, texture, and palatability of food. However, excessive fat consumption poses a significant risk for chronic ailments such as obesity, hypercholesterolemia, and cardiovascular disease. Therefore, the development of green, healthy, and stable protein-based emulsion gel as an alternative to traditional fats represents a novel approach to designing low-fat food. This paper reviews the emulsification behavior of proteins from different sources to gain a comprehensive understanding of their potential in the development of emulsion gels with fat-analog properties. It further investigates the emulsifying potential of protein combined with diverse substances. Then, the mechanisms of protein-stabilized emulsion gels with fat-analog properties are discussed, mainly involving single proteins, proteins-polysaccharides, as well as proteins-polyphenols. Moreover, the potential applications of protein emulsion gels as fat analogues in the food industry are also encompassed. By combining natural proteins with other components such as polysaccharides, polyphenols, or biopolymers, it is possible to enhance the stability of the emulsion gels and improve its fat-analog texture properties. In addition to their advantages in protecting oil oxidation, limiting hydrogenated oil intake, and delivering bioactive substances, protein-based emulsion gels have potential in food 3D printing and the development of specialty fats for plant-based meat.


Assuntos
Emulsões , Géis , Emulsões/química , Géis/química , Proteínas/química , Polissacarídeos/química , Polifenóis/química , Humanos , Manipulação de Alimentos/métodos , Indústria Alimentícia , Gorduras na Dieta
13.
Pharmaceutics ; 16(7)2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-39065550

RESUMO

With increasing longevity globally, the search for effective and patient-friendly anti-aging solutions has been growing. Retinoic acid (Ret) is an FDA-approved anti-aging and anti-wrinkling formula, however, its poor solubility and poor tolerability hamper its use in cosmetically accepted formulations. In this study, cyclodextrins and arginine were investigated for improving the solubility and tolerability of retinoic acid through the formation of inclusion complexes and salt formation, respectively. Two different methods were employed: physical mixing and kneading. The prepared dispersions were investigated for molecular docking (MD), solubility, thermal and spectral analyses, cytotoxicity, and scratch assays. The optimized disperse systems were formulated in a gel formulation and characterized for rheological, in vitro release, and kinetics. The MD, DSC, and FTIR results indicated that both ß- and hydroxy propyl (HP) ß-cyclodextrins could host RA in their cavities and form inclusion complexes. Ret can form a salt with the basic amino acid arginine. Solubility studies of RA significantly (p < 0.01) enhanced by 14- to 81-fold increases with the investigated cyclodextrins and arginine. The cell viability recorded for Ret:HP ß-CD K and Ret:arginine K was significantly increased compared to that for Ret alone. The IC50% recorded for azelaic acid (mild to non-irritant control), Ret, Ret:HP ß-CD K, and Ret:arginine K were 1000, 485, 1100, and 895 µg/mL, respectively. The two carriers (HP ß-CD and the amino acid arginine) were able to significantly (p < 0.05) reduce the irritation potential of Ret. Furthermore, comparable gap closure rates were recorded for Ret alone, Ret:HP ß-CD K, and Ret:arginine K, indicating that inclusion complexation and ion pair formation reduced the irritation potentials without undermining the efficacy.

14.
Pharmaceutics ; 16(7)2024 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-39065572

RESUMO

Implantable drug delivery systems formed upon injection offer a host of advantages, including localized drug administration, sustained release, minimized side effects, and enhanced patient compliance. Among the various techniques utilized for the development of in situ forming drug implants, solvent-induced phase inversion emerges as a particularly promising approach. However, synthetic polymer-based implants have been associated with undesirable effects arising from polymer degradation. In response to this challenge, a novel category of drug delivery systems, known as phospholipids-based phase separation gels (PPSGs), has emerged. These gels, characterized by their low initial viscosity, exhibit injectability and undergo rapid transformation into in situ implants when exposed to an aqueous environment. A typical PPSG formulation comprises biodegradable components, such as phospholipids, pharmaceutical oil, and a minimal amount of ethanol. The minimized organic solvents in the composition show good biocompatibility. And the relatively simple composition holds promise for industrial-scale manufacturing. This comprehensive review provides an overview of the principles and advancements in PPSG systems, with specific emphasis on their suitability as drug delivery systems for a wide range of active pharmaceutical ingredients (APIs), spanning from small molecules to peptides and proteins. Additionally, we explore the critical parameters and underlying principles governing the formulation of PPSG-based drug delivery strategies, offering valuable insights on optimization strategies.

15.
Foods ; 13(14)2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-39063257

RESUMO

Many food proteins can be assembled into nanofibrils under pH conditions far from the isoelectric point and with a low ionic strength by heating them for a long period. These food protein nanofibrils (FPN) have outstanding functional and biological properties and are considered sustainable biomaterials in many fields. In this study, we review the recent developments in FPN gels and introduce the key factors in promoting food protein self-assembly in order to create functional gels. The major variables discussed are the morphology of nanofibrils, protein concentration, heating time, and the type and concentration of salts. We also highlight current advances in the formation and properties of different types of FPN gels. In addition, the various applications of FPN gels in bioactive and nutrient delivery, adsorbents for CO2 and toxic pollutants, cell scaffolding biomaterials, biosensors, and others are introduced and discussed.

16.
Int J Biol Macromol ; : 134110, 2024 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-39047994

RESUMO

ß-Carotene is widely used in food systems because of its biological activity; however, ß-carotene has poor chemical stability and low bioavailability. Thus, researchers use encapsulated delivery systems to overcome these disadvantages. In this study, we prepared emulsion gels to encapsulate ß-carotene, using Longzhua mushroom polysaccharide (LMP), which can autonomously form weak gels. The LMP emulsion gel (LEG) exhibited a high water-holding capacity of up to 95.06 %. All samples showed adequate storage stability for 28 days. Increasing the polysaccharide content in the emulsion gel enhanced the encapsulation efficiency of ß-carotene (96.76 %-98.27 %), the release of free fatty acids (68.21 %-81.44 %), and the photostability (80.65 %-91.27 %), thermal stability (73.84 %-97.08 %), and bioaccessibility (18.28 %-30.26 %) of ß-carotene. In conclusion, LEG is a promising fat-soluble material that can be used for food-grade encapsulated delivery systems.

17.
Angew Chem Int Ed Engl ; : e202406143, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38977427

RESUMO

Efficient synthesis of H2O2 via photocatalytic oxygen reduction without sacrificial agents is challenging due to inadequate proton supply from water and difficulty in maintaining O-O bond during O2 activation. Herein, we developed a straightforward strategy involving a proton-rich hydrogel cross-linked by metal ions [M(n)], which is designed to facilitate the selective production of H2O2 through proton relay and metal ion-assisted detachment of crucial intermediates. The hydrogel comprises CdS/graphene and alginate cross-linked by metal ions via O=C-O-M(n) bonds. Efficient O2 reduction and hydrogenation occurred, benefitting from the collaboration between proton-rich alginate and the photocatalytically active CdS/graphene. Meanwhile, the O=C-O-M(n) bonds enhance the electron density of α-carbon sites on graphene, crucial for O2 activation and *OOH intermediate detachment, preventing deeper O-O bond cleavage. The role of metal ions in promoting *OOH desorption was evident through Lewis acidity-dependent activity, with Y(III) demonstrating the highest activity followed by Lu(III), La(III), and Ca(II).

18.
Food Chem ; 457: 140214, 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38959683

RESUMO

This study investigated the gelling properties, rheological behaviour, and microstructure of heat-induced, low-salt myofibrillar protein (MP) gels containing different levels (2%, 4%, 6%, and 8%, w/w) of cross-linked (CTS) or acetylated (ATS) tapioca starch. The results indicated that either CTS or ATS significantly enhanced the gel strength and water-holding capacity of low-salt MP gels (P < 0.05), an outcome verified by the rheological behaviour test results under different modes. Furthermore, iodine-staining images indicated that the MP-dominated continuous phase gradually transited to a starch-dominated phase with increasing CTS or ATS levels, and 4% was the critical point for this phase transition. In addition, hydrophobic interactions and disulphide bonds constituted the major intermolecular forces of low-salt MP gels, effectively promoting phase transition. In brief, modified tapioca starches possess considerable potential application value in low-salt meat products.

19.
Food Chem ; 458: 140302, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38968706

RESUMO

Texture-modified, multi-nutrient composite foods are essential in clinical treatment for dysphagia individuals. Herein, fibrous whey protein-stabilized emulsion and different crystalline starches (wheat, corn, rice, potato, sweet potato, cassava, mung bean and pea) were used to structure composite emulsion gels (CEGs). These CEGs then underwent 3D printing to explore the feasibility of developing a dysphagia diet. The network of molded CEGs was mainly maintained by hydrophobic interactions and hydrogen bonds. Rice and cassava starches were better suited for structuring soft-textured CEGs. Compared with molded CEGs, 3D printing decreased hydrogen bonds and the compactness of the nano-aggregate structure within the gel system, forming a looser gel network and softening the CEGs. Interestingly, these effects were more pronounced for the CEGs with high initial hardness. This study provided new strategy to fabricate CEGs as dysphagia diet using fibrous whey protein and starch, and to design texture-modified foods for patients using 3D printing.

20.
Nano Lett ; 24(29): 9088-9095, 2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-38979827

RESUMO

Hydrogels consist of three-dimensional (3D) and complicated polymer networks that determine their physical properties. Among the methods for structural analyses of hydrogels, the real-space imaging of a polymer network of hydrogels on a nanometer scale is one of the optimal methods; however, it is highly challenging. In this study, we propose a direct observation method for cationic polymer networks using transmission electron microscopy (TEM). By combining the double network strategy and the mineral staining technique, we overcame the challenges of polymer aggregation and the low electron density of the polymer. An objective cationic network was incorporated into a neutral skeleton network to suppress shrinkage during subsequent staining. Titania mineralization along the cationic polymer strands provided sufficient electron density for the objective polymer network for TEM observation. This observation method enables the visualization of local structures in real space and plays a complementary role to scattering methods for soft matter structure analysis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...