Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 122
Filtrar
Mais filtros












Intervalo de ano de publicação
1.
Genes (Basel) ; 15(6)2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38927687

RESUMO

Crucian carp (Carassius auratus) is widely distributed in the world and has become an economically freshwater fish. The population in Lake Dali Nur can tolerate the extreme alkaline environment with alkalinity over 50 mmol/L (pH 9.6), thus providing a special model for exploring alkali-tolerant molecular markers in an extremely alkaline environment. In this study, we constructed a high-density and high-resolution linkage map with 16,224 SNP markers based on genotyping-by-sequencing (GBS) consisting of 152 progenies and conducted QTL studies for alkali-tolerant traits. The total length of the linkage map was 3918.893 cM, with an average distance of 0.241 cM. Two QTLs for the ammonia-N-tolerant trait were detected on LG27 and LG45. A QTL for the urea-N-tolerant trait was detected on LG27. Interestingly, mapping the two QTLs on LG27 revealed that the mapped genes were both located in the intron of CDC42. GO functional annotation and KEGG enrichment analysis results indicated that the biological functions might be involved in the cell cycle, cellular senescence, MAPK, and Ras signaling pathways. These findings suggest that CDC42 may play an important role in the process of dealing with extremely alkaline environments.


Assuntos
Mapeamento Cromossômico , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Animais , Mapeamento Cromossômico/métodos , Carpa Dourada/genética , Carpas/genética , Álcalis
2.
Plant Physiol Biochem ; 211: 108647, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38703497

RESUMO

Sweetpotato, Ipomoea batatas (L.) Lam., is an important worldwide crop used as feed, food, and fuel. However, its polyploidy, high heterozygosity and self-incompatibility makes it difficult to study its genetics and genomics. Longest vine length (LVL), yield per plant (YPP), dry matter content (DMC), starch content (SC), soluble sugar content (SSC), and carotenoid content (CC) are some of the major agronomic traits being used to evaluate sweetpotato. However limited research has actually examined how these traits are inherited. Therefore, after selecting 212 F1 from a Xin24 × Yushu10 crossing as the mapping population, this study applied specific-locus amplified fragment sequencing (SLAF-seq), at an average sequencing depth of 26.73 × (parents) and 52.25 × (progeny), to detect single nucleotide polymorphisms (SNPs). This approach generated an integrated genetic map of length 2441.56 cM and a mean distance of 0.51 cM between adjacent markers, encompassing 15 linkage groups (LGs). Based on the linkage map, 26 quantitative trait loci (QTLs), comprising six QTLs for LVL, six QTLs for YPP, ten QTLs for DMC, one QTL for SC, one QTL for SSC, and two QTLs for CC, were identified. Each of these QTLs explained 6.3-10% of the phenotypic variation. It is expected that the findings will be of benefit for marker-assisted breeding and gene cloning of sweetpotato.


Assuntos
Mapeamento Cromossômico , Ipomoea batatas , Locos de Características Quantitativas , Ipomoea batatas/genética , Ipomoea batatas/metabolismo , Locos de Características Quantitativas/genética , Polimorfismo de Nucleotídeo Único/genética , Ligação Genética , Fenótipo
3.
Front Plant Sci ; 15: 1329065, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38390301

RESUMO

Soybean [Glycine max (L.) Merr.] is a short-day crop for which breeders want to expand the cultivation range to more northern agro-environments by introgressing alleles involved in early reproductive traits. To do so, we investigated quantitative trait loci (QTL) and expression quantitative trait loci (eQTL) regions comprised within the E8 locus, a large undeciphered region (~7.0 Mbp to 44.5 Mbp) associated with early maturity located on chromosome GM04. We used a combination of two mapping algorithms, (i) inclusive composite interval mapping (ICIM) and (ii) genome-wide composite interval mapping (GCIM), to identify major and minor regions in two soybean populations (QS15524F2:F3 and QS15544RIL) having fixed E1, E2, E3, and E4 alleles. Using this approach, we identified three main QTL regions with high logarithm of the odds (LODs), phenotypic variation explained (PVE), and additive effects for maturity and pod-filling within the E8 region: GM04:16,974,874-17,152,230 (E8-r1); GM04:35,168,111-37,664,017 (E8-r2); and GM04:41,808,599-42,376,237 (E8-r3). Using a five-step variant analysis pipeline, we identified Protein far-red elongated hypocotyl 3 (Glyma.04G124300; E8-r1), E1-like-a (Glyma.04G156400; E8-r2), Light-harvesting chlorophyll-protein complex I subunit A4 (Glyma.04G167900; E8-r3), and Cycling dof factor 3 (Glyma.04G168300; E8-r3) as the most promising candidate genes for these regions. A combinatorial eQTL mapping approach identified significant regulatory interactions for 13 expression traits (e-traits), including Glyma.04G050200 (Early flowering 3/E6 locus), with the E8-r3 region. Four other important QTL regions close to or encompassing major flowering genes were also detected on chromosomes GM07, GM08, and GM16. In GM07:5,256,305-5,404,971, a missense polymorphism was detected in the candidate gene Glyma.07G058200 (Protein suppressor of PHYA-105). These findings demonstrate that the locus known as E8 is regulated by at least three distinct genomic regions, all of which comprise major flowering genes.

4.
PeerJ ; 12: e16570, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38313025

RESUMO

Background: Oil palm (Elaeis guineensis Jacq.) is one of the major oil-producing crops. Improving the quality and increasing the production yield of oil palm have been the primary focuses of both conventional and modern breeding approaches. However, the conventional breeding approach for oil palm is very challenging due to its longevity, which results in a long breeding cycle. Thus, the establishment of marker assisted selection (MAS) for oil palm breeding programs would speed up the breeding pipeline by generating new oil palm varieties that possess high commercial traits. With the decreasing cost of sequencing, Genotyping-by-sequencing (GBS) is currently feasible to many researchers and it provides a platform to accelerate the discovery of single nucleotide polymorphism (SNP) as well as insertion and deletion (InDel) markers for the construction of a genetic linkage map. A genetic linkage map facilitates the identification of significant DNA regions associated with the trait of interest via quantitative trait loci (QTL) analysis. Methods: A mapping population of 112 F1 individuals from a cross of Deli dura and Serdang pisifera was used in this study. GBS libraries were constructed using the double digestion method with HindIII and TaqI enzymes. Reduced representation libraries (RRL) of 112 F1 progeny and their parents were sequenced and the reads were mapped against the E. guineensis reference genome. To construct the oil palm genetic linkage map, informative SNP and InDel markers were used to discover significant DNA regions associated with the traits of interest. The nine traits of interest in this study were fresh fruit bunch (FFB) yield, oil yield (OY), oil to bunch ratio (O/B), oil to dry mesocarp ratio (O/DM) ratio, oil to wet mesocarp ratio (O/WM), mesocarp to fruit ratio (M/F), kernel to fruit ratio (K/F), shell to fruit ratio (S/F), and fruit to bunch ratio (F/B). Results: A total of 2.5 million SNP and 153,547 InDel markers were identified. However, only a subset of 5,278 markers comprising of 4,838 SNPs and 440 InDels were informative for the construction of a genetic linkage map. Sixteen linkage groups were produced, spanning 2,737.6 cM for the maternal map and 4,571.6 cM for the paternal map, with average marker densities of one marker per 2.9 cM and one per 2.0 cM respectively, were produced. A QTL analysis was performed on nine traits; however, only QTL regions linked to M/F, K/F and S/F were declared to be significant. Of those QTLs were detected: two for M/F, four for K/F and one for S/F. These QTLs explained 18.1-25.6% of the phenotypic variance and were located near putative genes, such as casein kinase II and the zinc finger CCCH domain, which are involved in seed germination and growth. The identified QTL regions for M/F, K/F and S/F from this study could be applied in an oil palm breeding program and used to screen palms with desired traits via marker assisted selection (MAS).


Assuntos
Melhoramento Vegetal , Locos de Características Quantitativas , Humanos , Locos de Características Quantitativas/genética , Mapeamento Cromossômico , Genótipo , Melhoramento Vegetal/métodos , Ligação Genética , DNA
5.
Plants (Basel) ; 12(24)2023 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-38140512

RESUMO

Anthurium andraeanum Linden is a prominent ornamental plant belonging to the family Araceae and is cultivated worldwide. The morphology characteristics are crucial because they significantly impact ornamental values, commercial properties, and the efficiency of space utilization in production. However, only a few related investigations have been conducted in anthurium to date. In this study, an F1 genetic segregation population containing 160 progenies was generated through hybridization between potted and cut anthurium varieties. Fifteen morphological traits were assessed and revealed substantial levels of genetic variation and widespread positive correlation. Based on specific length amplified fragment (SLAF) sequencing technology, 8171 single nucleotide polymorphism (SNP) markers were developed, and the high-density linkage map of 2202.27 cM in length distributed on 15 linkage groups was constructed successfully, with an average distance of 0.30 cM. Using the inclusive composite interval mapping (ICIM) method, 59 QTLs related to 15 key morphological traits were successfully identified, which explained phenotypic variance (PVE) ranging from 6.21% to 17.74%. Thirty-three of those associated with 13 traits were designated as major QTLs with PVE > 10%. These findings offer valuable insights into the genetic basis of quantitative traits and are beneficial for molecular marker-assisted selection (MAS) in anthurium breeding.

6.
Genes (Basel) ; 14(11)2023 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-38003047

RESUMO

Ornamental kale (Brassica oleracea var. acephala) is an attractive ornamental plant with a range of leaf colors and shapes. Breeding new varieties of ornamental kale has proven challenging due to its lengthy breeding cycle and the limited availability of genetic markers. In this study, a F1DH ornamental kale population comprising 300 DH lines was constructed using microspore culture. A high-density genetic map was developed by conducting whole-genome sequencing on 150 individuals from the F1DH population. The genetic map contained 1696 bin markers with 982,642 single-nucleotide polymorphisms (SNPs) spanning a total distance of 775.81 cM on all nine chromosomes with an average distance between markers of 0.46 cM. The ornamental kale genetic map contained substantially more SNP markers compared with published genetic maps for other B. oleracea crops. Furthermore, utilizing this high-density genetic map, we identified seven quantitative trait loci (QTLs) that significantly influence the leaf shape of ornamental kale. These findings are valuable for understanding the genetic basis of key agronomic traits in ornamental kale. The F1DH progenies provide an excellent resource for germplasm innovation and breeding new varieties of ornamental kale. Additionally, the high-density genetic map provides crucial insights for gene mapping and unraveling the molecular mechanisms behind important agronomic traits in ornamental kale.


Assuntos
Brassica , Humanos , Brassica/genética , Haploidia , Melhoramento Vegetal , Mapeamento Cromossômico , Locos de Características Quantitativas/genética
7.
BMC Genomics ; 24(1): 645, 2023 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-37891474

RESUMO

Takifugu fasciatus is an aquaculture species with high economic value. In recent years, problems such as environmental pollution and inbreeding have caused a serious decline in T. fasciatus germplasm resources. In this study, a high-density genetic linkage map was constructed by whole-genome resequencing. The map consists of 4891 bin markers distributed across 22 linkage groups (LGs), with a total genetic coverage of 2381.353 cM and a mean density of 0.535 cM. Quantitative trait locus (QTL) localization analysis showed that a total of 19 QTLs associated with growth traits of T. fasciatus in the genome-wide significance threshold range, distributed on 11 LGs. In addition, 11 QTLs associated with cold tolerance traits were identified, each scattered on a different LG. Furthermore, we used QTL localization analysis to screen out three candidate genes (IGF1, IGF2, ADGRB) related to growth in T. fasciatus. Meanwhile, we screened three candidate genes (HSP90, HSP70, and HMGB1) related to T. fasciatus cold tolerance. Our study can provide a theoretical basis for the selection and breeding of cold-tolerant or fast-growing T. fasciatus.


Assuntos
Locos de Características Quantitativas , Takifugu , Animais , Takifugu/genética , Mapeamento Cromossômico , Fenótipo , Ligação Genética , Polimorfismo de Nucleotídeo Único
8.
Genes (Basel) ; 14(9)2023 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-37761942

RESUMO

Despite their importance in food processing, perfumery and cosmetics, the inheritance of sweet orange aromatic compounds, as well as their yield in the fruit peel, has been little analyzed. In the present study, the segregation of aromatic compounds was studied in an F1 population of 77 hybrids resulting from crosses between clementine and blood sweet orange. Fruit-peel essential oils (PEOs) extracted by hydrodistillation were analyzed by gas chromatography coupled with flame ionization detection. Genotyping by sequencing was performed on the parents and the hybrids. The resulting "clementine × sweet blood orange" genetic map consists of 710 SNP markers distributed in nine linkage groups (LGs), representing the nine citrus chromosomes, and spanning 1054 centimorgans. Twenty quantitative trait loci (QTLs) were identified, explaining between 20.5 and 55.0% of the variance of the major aromatic compounds and PEO yield. The QTLs for monoterpenes and aliphatic aldehydes predominantly colocalized on LGs 5 and 8, as did the two QTLs for PEO yield. The sesquiterpene QTLs were located on LGs 1, 3, 6 and 8. The detection of major QTLs associated with the synthesis of aliphatic aldehydes, known for their strong aromatic properties, open the way for marker-assisted selection.


Assuntos
Citrus sinensis , Citrus , Óleos Voláteis , Locos de Características Quantitativas , Citrus/genética , Mapeamento Cromossômico , Frutas/genética , Frutas/química , Citrus sinensis/genética , Aldeídos
9.
Plant Dis ; 107(11): 3608-3615, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37272041

RESUMO

Powdery mildew, caused by Blumeria graminis f. sp. tritici (Bgt), is one of the most damaging foliage diseases of wheat across the world. Aegilops geniculata Roth is a valuable gene resource for enhancing wheat resistance to powdery mildew. This study identified Ae. geniculata accession PI 487224 as immune and PI 487228 as susceptible to powdery mildew. Genetic analysis of the F1, F2, and F2:3 progeny derived from PI 487224 × PI 487228 showed that powdery mildew resistance in PI 487224 was controlled by two independent dominant genes located on two different nonhomologous chromosomes. By combing bulked segregant RNA-Seq, genetic linkage analysis of a single resistance gene segregation population, and marker analysis of a set of 14 wheat-Ae. geniculata chromosome addition lines, one of the resistance genes, temperately designated PmAege7M, was mapped to a 4.9-cM interval flanked by markers STS7-55926 and SNP7-45792/STS7-65911 on the long arm of chromosome 7 Mg of PI 487224, spanning 604.73 to 622.82 Mb on the 7D long arm based on the Ae. tauschii reference genome (Aet_v4.0). The map and closely linked markers of PmAege7M from Ae. geniculata in this study will facilitate the transfer of PmAege7M into common wheat and fine mapping of the gene.


Assuntos
Aegilops , Triticum , Triticum/genética , Aegilops/genética , Marcadores Genéticos/genética , Genes de Plantas/genética , Mapeamento Cromossômico , Erysiphe/genética
10.
Front Plant Sci ; 14: 1144486, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37235013

RESUMO

The total number of spikelets (TSPN) and the number of fertile spikelets (FSPN) affect the final number of grains per spikelet in wheat. This study constructed a high-density genetic map using 55K single nucleotide polymorphism (SNP) arrays from a population of 152 recombinant inbred lines (RIL) from crossing the wheat accessions 10-A and B39. Twenty-four quantitative trait loci (QTLs) for TSPN and 18 QTLs for FSPN were localized based on the phenotype in 10 environments in 2019-2021. Two major QTLs, QTSPN/QFSPN.sicau-2D.4 (34.43-47.43 Mb) and QTSPN/QFSPN.sicau-2D.5(32.97-34.43 Mb), explained 13.97%-45.90% of phenotypic variation. Linked kompetitive allele-specific PCR (KASP) markers further validated these two QTLs and revealed that QTSPN.sicau-2D.4 had less effect on TSPN than QTSPN.sicau-2D.5 in 10-A×BE89 (134 RILs) and 10-A×Chuannong 16 (192 RILs) populations, and one population of Sichuan wheat (233 accessions). The alleles combination haplotype 3 with the allele from 10-A of QTSPN/QFSPN.sicau-2D.5 and the allele from B39 of QTSPN.sicau-2D.4 resulted in the highest number of spikelets. In contrast, the allele from B39 for both loci resulted in the lowest number of spikelets. Using bulk-segregant analysis-exon capture sequencing, six SNP hot spots that included 31 candidate genes were identified in the two QTLs. We identified Ppd-D1a from B39 and Ppd-D1d from 10-A and further analyzed Ppd-D1 variation in wheat. These results identified loci and molecular markers with potential utility for wheat breeding and laid a foundation for further fine mapping and cloning of the two loci.

11.
BMC Plant Biol ; 23(1): 278, 2023 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-37231361

RESUMO

BACKGROUND: Leaves are the main medicinal organ in Epimedium herbs, and leaf flavonoid content is an important criterion of Epimedium herbs. However, the underlying genes that regulate leaf size and flavonoid content are unclear, which limits the use of breeding for Epimedium development. This study focuses on QTL mapping of flavonoid and leaf-size related traits in Epimedium. RESULTS: We constructed the first high-density genetic map (HDGM) using 109 F1 hybrids of Epimedium leptorrhizum and Epimedium sagittatum over three years (2019-2021). Using 5,271 single nucleotide polymorphism (SNP) markers, an HDGM with an overall distance of 2,366.07 cM and a mean gap of 0.612 cM was generated by utilizing genotyping by sequencing (GBS) technology. Every year for three years, 46 stable quantitative trait loci (QTLs) for leaf size and flavonoid contents were discovered, including 31 stable loci for Epimedin C (EC), one stable locus for total flavone content (TFC), 12 stable loci for leaf length (LL), and two stable loci for leaf area (LA). For flavonoid content and leaf size, the phenotypic variance explained for these loci varied between 4.00 and 16.80% and 14.95 and 17.34%, respectively. CONCLUSIONS: Forty-six stable QTLs for leaf size and flavonoid content traits were repeatedly detected over three years. The HDGM and stable QTLs are laying the basis for breeding and gene investigation in Epimedium and will contribute to accelerating the identification of desirable genotypes for Epimedium breeding.


Assuntos
Epimedium , Epimedium/genética , Melhoramento Vegetal , Fenótipo , Polimorfismo de Nucleotídeo Único/genética , Flavonoides/genética , Ligação Genética , Folhas de Planta/genética
12.
Plants (Basel) ; 12(4)2023 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-36840276

RESUMO

The genetic dissection of agronomically important traits in closely related Japanese rice cultivars is still in its infancy mainly because of the narrow genetic diversity within japonica rice cultivars. In an attempt to unveil potential polymorphism between closely related Japanese rice cultivars, we used a next-generation-sequencing-based genotyping method: genotyping by random amplicon sequencing-direct (GRAS-Di) to develop genetic linkage maps. In this study, four recombinant inbred line (RIL) populations and their parents were used. A final RIL number of 190 for RIL71, 96 for RIL98, 95 for RIL16, and 94 for RIL91 derived from crosses between a common leading Japanese rice cultivar Koshihikari and Yamadanishiki, Taichung 65, Fujisaka 5, and Futaba, respectively, and the parent plants were subjected to GRAS-Di library construction and sequencing. Approximately 438.7 Mbp, 440 Mbp, 403.1 Mbp, and 392 Mbp called bases covering 97.5%, 97.3%, 98.3%, and 96.1%, respectively, of the estimated rice genome sequence at average depth of 1× were generated. Analysis of genotypic data identified 1050, 1285, 1708, and 1704 markers for each of the above RIL populations, respectively. Markers generated by GRAS-Di were organized into linkage maps and compared with those generated by GoldenGate SNP assay of the same RIL populations; the average genetic distance between markers showed a clear decrease in the four RIL populations when we integrated markers of both linkage maps. Genetic studies using these markers successfully localized five QTLs associated with heading date on chromosomes 3, 6, and 7 and which previously were identified as Hd1, Hd2, Hd6, Hd16, and Hd17. Therefore, GRAS-Di technology provided a low cost and efficient genotyping to overcome the narrow genetic diversity in closely related Japanese rice cultivars and enabled us to generate a high density linkage map in this germplasm.

13.
J Phycol ; 59(1): 193-203, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36330991

RESUMO

Different from the traditional knowledge about kelp, three sexual phenotypes (female, male, and monoecious) exist in the haploid gametophytes of Undaria pinnatifida. However, the sex-determining mechanisms remain unknown. Genetic linkage mapping is an efficient tool to identify sex-linked regions. In the present study, we resequenced a segregating gametophyte family based on the male genome of U. pinnatifida. A high-density genetic linkage map was constructed using 9887 SNPs, with an average distance of 0.41 cM between adjacent SNPs. On the basis of this genetic map and using the composite interval mapping method, we identified 62 SNPs significantly linked with the sexual phenotype. They were located at a position of 67.67 cM on the linkage group 23, corresponding to a physical range of 14.67 Mbp on the HiC_Scaffold_23 of the genome. Reanalysis of the previous specific length amplified fragment sequencing data according to the reference genome led to the identification of a sex-linked genomic region that encompassed the above-mentioned 14.67 Mbp region. Hence, this overlapped genomic range was likely the sex-determining region. Within this region, 129 genes were retrieved and 39 of them were annotated with explicit function, including the potential male sex-determining gene-encoding high mobility group (HMG) domain protein. Relative expression analysis of the HMG gene showed that its expression was higher in male gametophytes during the vegetative phase and monoecious gametophytes during both the vegetative and gametogenesis phases, but significantly lower in male gametophytes during the gametogenesis phase. These results provide a foundation for deciphering the sex-determining mechanism of U. pinnatifida.


Assuntos
Phaeophyceae , Undaria , Undaria/genética , Células Germinativas Vegetais , Ligação Genética , Genômica
14.
Plant Biotechnol J ; 21(2): 369-380, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36333116

RESUMO

Kiwifruit (Actinidia spp) is a woody, perennial and deciduous vine. In this genus, there are multiple ploidy levels but the main cultivated cultivars are polyploid. Despite the availability of many genomic resources in kiwifruit, SNP genotyping is still a challenge given these different levels of polyploidy. Recent advances in SNP array technologies have offered a high-throughput genotyping platform for genome-wide DNA polymorphisms. In this study, we developed a high-density SNP genotyping array to facilitate genetic studies and breeding applications in kiwifruit. SNP discovery was performed by genome-wide DNA sequencing of 40 kiwifruit genotypes. The identified SNPs were stringently filtered for sequence quality, predicted conversion performance and distribution over the available Actinidia chinensis genome. A total of 134 729 unique SNPs were put on the array. The array was evaluated by genotyping 400 kiwifruit individuals. We performed a multidimensional scaling analysis to assess the diversity of kiwifruit germplasm, showing that the array was effective to distinguish kiwifruit accessions. Using a tetraploid F1 population, we constructed an integrated linkage map covering 3060.9 cM across 29 linkage groups and performed QTL analysis for the sex locus that has been identified on Linkage Group 3 (LG3) in Actinidia arguta. Finally, our dataset presented evidence of tetrasomic inheritance with partial preferential pairing in A. arguta. In conclusion, we developed and evaluated a 135K SNP genotyping array for kiwifruit. It has the advantage of a comprehensive design that can be an effective tool in genetic studies and breeding applications in this high-value crop.


Assuntos
Actinidia , Genótipo , Actinidia/genética , Polimorfismo de Nucleotídeo Único/genética , Melhoramento Vegetal , Mapeamento Cromossômico/métodos , Poliploidia
15.
Gene ; 849: 146910, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36167181

RESUMO

Takifugu genus has been brought to the fore in scientific and practical research due to its compact genome, explosive speciation progress and economic value. Here we updated the chromosome-level genome of Takifugu bimaculatus by an ultra-high-density linkage map, a classic and accurate way of chromosome assembly. The map constituted a robust assembly frame, with 92.2% (372.77 Mb) of the draft genome cumulatively placed. With intraspecies and interspecies comparative genomic analysis, we developed a criterion to quantify the differences between assemblies and established a novel way to integrate information from multiple assemblies. The integrated assembly rectified potential mis-assemblies, greatly improving the genome contiguity and correctness. Our results rendered profound information on the genetic recombination of T. bimaculatus and provided new insights into effective genome assembly. The consolidated assembly will be a contributory tool of T. bimaculatus and broadly across the Takifugu by providing a convincing reference for genomic research.


Assuntos
Genoma , Takifugu , Animais , Takifugu/genética , Mapeamento Cromossômico , Genoma/genética , Genômica , Recombinação Genética , Ligação Genética
16.
Mol Ecol ; 32(6): 1478-1496, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-35119153

RESUMO

Speciation genomic studies have revealed that genomes of diverging lineages are shaped jointly by the actions of gene flow and selection. These evolutionary forces acting in concert with processes such as recombination and genome features such as gene density shape a mosaic landscape of divergence. We investigated the roles of recombination and gene density in shaping the patterns of differentiation and divergence between the cyclically parthenogenetic ecological sister-taxa, Daphnia pulicaria and Daphnia pulex. First, we assembled a phased chromosome-scale genome assembly using trio-binning for D. pulicaria and constructed a genetic map using an F2-intercross panel to understand sex-specific recombination rate heterogeneity. Finally, we used a ddRADseq data set with broad geographic sampling of D. pulicaria, D. pulex, and their hybrids to understand the patterns of genome-scale divergence and demographic parameters. Our study provides the first sex-specific estimates of recombination rates for a cyclical parthenogen, and unlike other eukaryotic species, we observed male-biased heterochiasmy in D. pulicaria, which may be related to this somewhat unique breeding mode. Additionally, regions of high gene density and recombination are generally more divergent than regions of suppressed recombination. Outlier analysis indicated that divergent genomic regions are probably driven by selection on D. pulicaria, the derived lineage colonizing a novel lake habitat. Together, our study supports a scenario of selection acting on genes related to local adaptation shaping genome-wide patterns of differentiation despite high local recombination rates in this species complex. Finally, we discuss the limitations of our data in light of demographic uncertainty.


Assuntos
Aclimatação , Genômica , Masculino , Feminino , Animais , Evolução Biológica , Daphnia/genética , Recombinação Genética/genética
17.
Plants (Basel) ; 11(23)2022 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-36501236

RESUMO

The fruit skin types of pear (Pyrus spp.) are divided into russet, smooth, and intermediate. One of the important traits in pear breeding programs is russet on pear fruit skin because it affects the commercial value. In the present study, a high-density genetic linkage map of 'Whangkeumbae' (smooth) × 'Minibae' (russet) was constructed. In addition, quantitative trait loci (QTL) analysis was performed to identify russet related QTL and develop a cleaved amplified polymorphism sequence (CAPS) marker. Together with SNPs derived from Axiom Pear 70K Genotyping Array and genotyping-by-sequencing derived SNPs and SSRs generated in previous study, an integrated genetic linkage map of 'Whangkeumbae' × 'Minibae' was constructed. A total of 1263 markers were anchored in 17 linkage groups (LGs) with a total genetic distance of 1894.02 cM and an average marker density of 1.48 cM. The chromosome coverage of 'Whangkeumbae' × 'Minibae' map was improved because the SNPs derived from Axiom Pear 70K Genotyping Array were anchored. QTL analysis was performed using previous russet phenotype data evaluated with russet coverage and Hunter a. As a result of QTL analysis, russet coverage- and Hunter a-related QTLs were identified in LG8 of the 'Whangkeumbae' × 'Minibae' map, and SNPs located in the QTL region were heterozygous in the 'Minibae'. Although the russet coverage- and Hunter a-related QTLs were commonly detected in LG8, the logarithm of odds values of SNPs in the QTL region were higher in QTL related to russet coverage than to Hunter a. The CAPS marker (CBp08ca01) was developed using an array SNP located in the russet coverage related QTL, and the genotype of CBp08ca01 showed a 1:1 ratio in 'Whangkeumbae' × 'Minibae' (χ2 = 0.65, p > 0.05). 'Whangkeumbae' and 'Minibae' were thought to have rr and Rr genotypes, respectively, and the genetic factors controlling the russet formation might be located in chromosome 8. The CBp08ca01 was able to select F1 individuals with less than 30% russet coverage. Thus, it will be a useful tool for marker-assisted selection in pears.

18.
Front Plant Sci ; 13: 1069618, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36466279

RESUMO

Luffa is an important medicinal and edible vegetable crop of Cucurbitaceae. Strong heterosis effects and strikingly complementary characteristics were found between the two domesticated Luffa cultivars, Luffa acutangula and Luffa cylindrica. To explore the genetic basis underlying their important agronomic traits, we constructed the first interspecific high-density genetic linkage map using a BC1 population of 110 lines derived from a cross between S1174 (Luffa acutangula) and P93075 (Luffa cylindrica). The map spanned a total of 2246.74 cM with an average distance of 0.48 cM between adjacent markers. Thereafter, a large-scale field-based quantitative trait loci (QTLs) mapping was conducted for 25 important agronomic traits and 40 significant genetic loci distributed across 11 chromosomes were detected. Notably, a vital QTL (qID2) located on chromosome 9 with a minimum distance of 23 kb was identified to be responsible for the internode diameter and explained 11% of the phenotypic variation. Lac09g006860 (LacCRWN3), encoding a nuclear lamina protein involved in the control of nuclear morphology, was the only gene harbored in qID2. Sequence alignment showed completely different promoter sequences between the two parental alleles of LacCRWN3 except for some nonsynonymous single nucleotide polymorphisms (SNPs) in exons, and the expression level in thick-stem P93075 was distinctively higher than that in thin-stem S1174. According to the natural variation analysis of a population of 183 inbred lines, two main haplotypes were found for LacCRWN3: the P93075-like and S1174-like, with the former haplotype lines exhibiting significantly thicker internode diameters than those of the latter haplotype lines. It showed that LacCRWN3, as the only CRWN3 gene in Cucurbitaceae, was the most likely candidate gene regulating the internode diameter of Luffa. Our findings will be beneficial for deciphering the molecular mechanism of key phenotypic traits and promoting maker-assisted breeding in Luffa.

19.
J Fungi (Basel) ; 8(11)2022 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-36422035

RESUMO

Fusarium circinatum is an economically important pathogen of pine and resides in the Fusarium fujikuroi species complex. Here we investigated the molecular processes underlying growth in F. circinatum by exploring the association between growth and the nutritional environment provided by the pine host. For this purpose, we subjected a mapping population consisting of F. circinatum X F. temperatum hybrid progeny to an analysis of growth rate on a pine-tissue derived medium. These data, together with the available genetic linkage map for F. circinatum, were then used to identify Quantitative Trait Loci (QTLs) associated with growth. The single significant QTL identified was then characterized using the available genome sequences for the hybrid progeny's parental isolates. This revealed that the QTL localized to two non-homologous regions in the F. circinatum and F. temperatum genomes. For one of these, the F. circinatum parent contained a two-gene deletion relative to the F. temperatum parent. For the other region, the two parental isolates encoded different protein products. Analysis of repeats, G+C content, and repeat-induced point (RIP) mutations further suggested a retrotransposon origin for the two-gene deletion in F. circinatum. Nevertheless, subsequent genome and PCR-based analyses showed that both regions were similarly polymorphic within a collection of diverse F. circinatum. However, we observed no clear correlation between the respective polymorphism patterns and growth rate in culture. These findings support the notion that growth is a complex multilocus trait and raise the possibility that the identified QTL contains multiple small-effect QTLs, of which some might be dependent on the genetic backgrounds. This study improved our current knowledge of the genetic determinants of vegetative growth in F. circinatum and provided an important foundation for determining the genes and processes underpinning its ability to colonize its host environment.

20.
Microb Genom ; 8(11)2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36326655

RESUMO

Dinoflagellates of the genus Alexandrium are responsible for harmful algal blooms and produce paralytic shellfish toxins (PSTs). Their very large and complex genomes make it challenging to identify the genes responsible for toxin synthesis. A family-based genomic association study was developed to determine the inheritance of toxin production in Alexandrium minutum and identify genomic regions linked to this production. We show that the ability to produce toxins is inheritable in a Mendelian way, while the heritability of the toxin profile is more complex. We developed the first dinoflagellate genetic linkage map. Using this map, several major results were obtained: 1. A genomic region related to the ability to produce toxins was identified. 2. This region does not contain any polymorphic sxt genes, known to be involved in toxin production in cyanobacteria. 3. The sxt genes, known to be present in a single cluster in cyanobacteria, are scattered on different linkage groups in A. minutum. 4. The expression of two sxt genes not assigned to any linkage group, sxtI and sxtG, may be regulated by the genomic region related to the ability to produce toxins. Our results provide new insights into the organization of toxicity-related genes in A. minutum, suggesting a dissociated genetic mechanism for the production of the different analogues and the ability to produce toxins. However, most of the newly identified genes remain unannotated. This study therefore proposes new candidate genes to be further explored to understand how dinoflagellates synthesize their toxins.


Assuntos
Dinoflagellida , Dinoflagellida/genética , Dinoflagellida/metabolismo , Toxinas Marinhas/genética , Toxinas Marinhas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...