Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 702
Filtrar
1.
EMBO Rep ; 2024 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-39242775

RESUMO

The recent discovery of non-proteinaceous ubiquitylation substrates broadened our understanding of this modification beyond conventional protein targets. However, the existence of additional types of substrates remains elusive. Here, we present evidence that nucleic acids can also be directly ubiquitylated via ester bond formation. DTX3L, a member of the DELTEX family E3 ubiquitin ligases, ubiquitylates DNA and RNA in vitro and that this activity is shared with DTX3, but not with the other DELTEX family members DTX1, DTX2 and DTX4. DTX3L shows preference for the 3'-terminal adenosine over other nucleotides. In addition, we demonstrate that ubiquitylation of nucleic acids is reversible by DUBs such as USP2, JOSD1 and SARS-CoV-2 PLpro. Overall, our study proposes reversible ubiquitylation of nucleic acids in vitro and discusses its potential functional implications.

2.
Cell ; 2024 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-39265577

RESUMO

DNA repair and autophagy are distinct biological processes vital for cell survival. Although autophagy helps maintain genome stability, there is no evidence of its direct role in the repair of DNA lesions. We discovered that lysosomes process topoisomerase 1 cleavage complexes (TOP1cc) DNA lesions in vertebrates. Selective degradation of TOP1cc by autophagy directs DNA damage repair and cell survival at clinically relevant doses of topoisomerase 1 inhibitors. TOP1cc are exported from the nucleus to lysosomes through a transient alteration of the nuclear envelope and independent of the proteasome. Mechanistically, the autophagy receptor TEX264 acts as a TOP1cc sensor at DNA replication forks, triggering TOP1cc processing by the p97 ATPase and mediating the delivery of TOP1cc to lysosomes in an MRE11-nuclease- and ATR-kinase-dependent manner. We found an evolutionarily conserved role for selective autophagy in DNA repair that enables cell survival, protects genome stability, and is clinically relevant for colorectal cancer patients.

3.
Sci Rep ; 14(1): 20476, 2024 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-39227621

RESUMO

Single-strand DNA-binding proteins SSB/RPA are ubiquitous and essential proteins that bind ssDNA in bacteria/eukaryotes and coordinate DNA metabolic processes such as replication, repair, and recombination. SSB protects ssDNA from degradation by nucleases, while also facilitating/regulating the activity of multiple partner proteins involved in DNA processes. Using Spi- assay, which detects aberrantly excised λ prophage from the E. coli chromosome as a measure of illegitimate recombination (IR) occurrence, we have shown that SSB inhibits IR in several DSB resection pathways. The conditional ssb-1 mutation produced a higher IR increase at the nonpermissive temperature than the recQ inactivation. A double ssb-1 recQ mutant had an even higher level of IR, while showing reduced homologous recombination (HR). Remarkably, the ssb gene overexpression complemented recQ deficiency in suppressing IR, indicating that the SSB function is epistatic to RecQ. Overproduced truncated SSBΔC8 protein, which binds to ssDNA, but does not interact with partner proteins, only partially complemented recQ and ssb-1 mutations, while causing an IR increase in otherwise wild-type bacteria, suggesting that ssDNA binding of SSB is required but not sufficient for effective IR inhibition, which rather entails interaction with RecQ and likely some other protein(s). Our results depict SSB as the main genome caretaker in E. coli, which facilitates HR while inhibiting IR. In enabling high-fidelity DSB repair under physiological conditions SSB is assisted by RecQ helicase, whose activity it controls. Conversely, an excess of SSB renders RecQ redundant for IR suppression.


Assuntos
DNA de Cadeia Simples , Proteínas de Ligação a DNA , Proteínas de Escherichia coli , Escherichia coli , RecQ Helicases , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/genética , RecQ Helicases/metabolismo , RecQ Helicases/genética , DNA de Cadeia Simples/metabolismo , DNA de Cadeia Simples/genética , Recombinação Genética , Mutação , Recombinação Homóloga
4.
J Biol Chem ; 300(9): 107688, 2024 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-39159820

RESUMO

Ribonucleotides in DNA cause several types of genome instability and can be removed by ribonucleotide excision repair (RER) that is finalized by DNA ligase 1 (LIG1). However, the mechanism by which LIG1 discriminates the RER intermediate containing a 5'-RNA-DNA lesion generated by RNase H2-mediated cleavage of ribonucleotides at atomic resolution remains unknown. Here, we determine X-ray structures of LIG1/5'-rG:C at the initial step of ligation where AMP is bound to the active site of the ligase and uncover a large conformational change downstream the nick resulting in a shift at Arg(R)871 residue in the Adenylation domain of the ligase. Furthermore, we demonstrate a diminished ligation of the nick DNA substrate with a 5'-ribonucleotide in comparison to an efficient end joining of the nick substrate with a 3'-ribonucleotide by LIG1. Finally, our results demonstrate that mutations at the active site residues of the ligase and LIG1 disease-associated variants significantly impact the ligation efficiency of RNA-DNA heteroduplexes harboring "wrong" sugar at 3'- or 5'-end of nick. Collectively, our findings provide a novel atomic insight into proficient sugar discrimination by LIG1 during the processing of the most abundant form of DNA damage in cells, genomic ribonucleotides, during the initial step of the RER pathway.

5.
DNA Repair (Amst) ; 142: 103752, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39167890

RESUMO

Quiescence is an important non-pathological state in which cells pause cell cycle progression temporarily, sometimes for decades, until they receive appropriate proliferative stimuli. Quiescent cells make up a significant proportion of the body, and maintaining genomic integrity during quiescence is crucial for tissue structure and function. While cells in quiescence are spared from DNA damage associated with DNA replication or mitosis, they are still exposed to various sources of endogenous DNA damage, including those induced by normal transcription and metabolism. As such, it is vital that cells retain their capacity to effectively repair lesions that may occur and return to the cell cycle without losing their cellular properties. Notably, while DNA repair pathways are often found to be downregulated in quiescent cells, emerging evidence suggests the presence of active or differentially regulated repair mechanisms. This review aims to provide a current understanding of DNA repair processes during quiescence in mammalian systems and sheds light on the potential pathological consequences of inefficient or inaccurate repair in quiescent cells.


Assuntos
Dano ao DNA , Reparo do DNA , Instabilidade Genômica , Humanos , Animais , Fase de Repouso do Ciclo Celular , Ciclo Celular , Replicação do DNA
6.
Mol Cell ; 84(16): 3044-3060.e11, 2024 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-39142279

RESUMO

G-quadruplexes (G4s) form throughout the genome and influence important cellular processes. Their deregulation can challenge DNA replication fork progression and threaten genome stability. Here, we demonstrate an unexpected role for the double-stranded DNA (dsDNA) translocase helicase-like transcription factor (HLTF) in responding to G4s. We show that HLTF, which is enriched at G4s in the human genome, can directly unfold G4s in vitro and uses this ATP-dependent translocase function to suppress G4 accumulation throughout the cell cycle. Additionally, MSH2 (a component of MutS heterodimers that bind G4s) and HLTF act synergistically to suppress G4 accumulation, restrict alternative lengthening of telomeres, and promote resistance to G4-stabilizing drugs. In a discrete but complementary role, HLTF restrains DNA synthesis when G4s are stabilized by suppressing primase-polymerase (PrimPol)-dependent repriming. Together, the distinct roles of HLTF in the G4 response prevent DNA damage and potentially mutagenic replication to safeguard genome stability.


Assuntos
DNA Primase , Replicação do DNA , Proteínas de Ligação a DNA , Quadruplex G , Instabilidade Genômica , Proteína 2 Homóloga a MutS , Fatores de Transcrição , Humanos , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/genética , Proteína 2 Homóloga a MutS/metabolismo , Proteína 2 Homóloga a MutS/genética , DNA Primase/metabolismo , DNA Primase/genética , Homeostase do Telômero , Dano ao DNA , Células HEK293 , Enzimas Multifuncionais/metabolismo , Enzimas Multifuncionais/genética , DNA Polimerase Dirigida por DNA
7.
Methods Mol Biol ; 2818: 45-63, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39126466

RESUMO

Hi-C, a genome-wide chromosome conformation capture assay, is a powerful tool used to study three-dimensional genome organization by converting physical pairwise interactions into counts of pairwise interactions. To study the many temporally regulated facets of meiotic recombination in S. cerevisiae, the Hi-C assay must be robust such that fine- and wide-scale comparisons between genetic datasets can be made. Here we describe an updated protocol for Hi-C (Hi-C2B) that generates reproducible libraries of interaction data with low noise and for a relatively low cost.


Assuntos
Cromossomos Fúngicos , Meiose , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Meiose/genética , Cromossomos Fúngicos/genética , Recombinação Genética , Genoma Fúngico
8.
DNA Repair (Amst) ; 141: 103731, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39089193

RESUMO

DNA replication is remarkably accurate with estimates of only a handful of mutations per human genome per cell division cycle. Replication stress caused by DNA lesions, transcription-replication conflicts, and other obstacles to the replication machinery must be efficiently overcome in ways that minimize errors and maximize completion of DNA synthesis. Replication fork reversal is one mechanism that helps cells tolerate replication stress. This process involves reannealing of parental template DNA strands and generation of a nascent-nascent DNA duplex. While fork reversal may be beneficial by facilitating DNA repair or template switching, it must be confined to the appropriate contexts to preserve genome stability. Many enzymes have been implicated in this process including ATP-dependent DNA translocases like SMARCAL1, ZRANB3, HLTF, and the helicase FBH1. In addition, the RAD51 recombinase is required. Many additional factors and regulatory activities also act to ensure reversal is beneficial instead of yielding undesirable outcomes. Finally, reversed forks must also be stabilized and often need to be restarted to complete DNA synthesis. Disruption or deregulation of fork reversal causes a variety of human diseases. In this review we will describe the latest models for reversal and key mechanisms of regulation.


Assuntos
Tolerância ao Dano no DNA , Animais , Humanos , DNA/metabolismo , DNA Helicases/metabolismo , DNA Helicases/genética , Reparo do DNA , Instabilidade Genômica
9.
Transgenic Res ; 2024 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-39196515

RESUMO

The production of transgenic animals using non-viral methods has raised questions regarding their long-term health and genomic stability. In this study, we evaluated these aspects in transgenic cattle over ten years, using transposon-mediated gene transfer. Our longitudinal analysis included a comprehensive health assessment and whole-genome DNA resequencing. We found no significant alterations in physiological parameters or health complications in transposon-mediated transgenic cattle that exceeded 10 years of age. Genomic analysis revealed that the rates of somatic mutations and copy number variations in transgenic cattle were comparable to those in non-transgenic cattle. Furthermore, structural variants were infrequent, suggesting that transposon-mediated gene insertion did not compromise genomic integrity. These findings highlight the viability of transposon systems for generating transgenic livestock, potentially expanding their applications in agriculture and biotechnology. This study contributes significantly to our understanding of the long-term implications of transgenesis in large animals and supports the safety and stability of this method.

10.
Dis Model Mech ; 17(8)2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39206868

RESUMO

The size and composition of the intracellular DNA precursor pool is integral to the maintenance of genome stability, and this relationship is fundamental to our understanding of cancer. Key aspects of carcinogenesis, including elevated mutation rates and induction of certain types of DNA damage in cancer cells, can be linked to disturbances in deoxynucleoside triphosphate (dNTP) pools. Furthermore, our approaches to treat cancer heavily exploit the metabolic interplay between the DNA and the dNTP pool, with a long-standing example being the use of antimetabolite-based cancer therapies, and this strategy continues to show promise with the development of new targeted therapies. In this Review, we compile the current knowledge on both the causes and consequences of dNTP pool perturbations in cancer cells, together with their impact on genome stability. We outline several outstanding questions remaining in the field, such as the role of dNTP catabolism in genome stability and the consequences of dNTP pool expansion. Importantly, we detail how our mechanistic understanding of these processes can be utilised with the aim of providing better informed treatment options to patients with cancer.


Assuntos
Desoxirribonucleotídeos , Instabilidade Genômica , Neoplasias , Humanos , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patologia , Desoxirribonucleotídeos/metabolismo , Animais
11.
Cell Rep ; 43(8): 114594, 2024 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-39116203

RESUMO

Homologous recombination (HR) plays an essential role in the repair of DNA double-strand breaks (DSBs), replication stress responses, and genome maintenance. However, unregulated HR during replication can impair genome duplication and compromise genome stability. The mechanisms underlying HR regulation during DNA replication are obscure. Here, we find that RTEL1 helicase, RAD51, and RAD51 paralogs are enriched at stalled replication sites. The absence of RTEL1 leads to an increase in the RAD51-mediated HR and fork reversal during replication and affects genome-wide replication, which can be rescued by co-depleting RAD51 and RAD51 paralogs. Interestingly, co-depletion of fork remodelers such as SMARCAL1/ZRANB3/HLTF/FBH1 and expression of HR-defective RAD51 mutants also rescues replication defects in RTEL1-deficient cells. The anti-recombinase function of RTEL1 during replication depends on its interaction with PCNA and helicase activity. Together, our data identify the role of RTEL1 helicase in restricting RAD51-mediated fork reversal and HR activity to facilitate error-free genome duplication.


Assuntos
DNA Helicases , Replicação do DNA , Recombinação Homóloga , Rad51 Recombinase , Rad51 Recombinase/metabolismo , Rad51 Recombinase/genética , DNA Helicases/metabolismo , DNA Helicases/genética , Humanos , Antígeno Nuclear de Célula em Proliferação/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/genética , Quebras de DNA de Cadeia Dupla , Instabilidade Genômica
12.
RNA Biol ; 21(1): 1-16, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-39049162

RESUMO

Transcription is a major contributor to genomic instability. The ribosomal RNA (rDNA) gene locus consists of a head-to-tail repeat of the most actively transcribed genes in the genome. RNA polymerase I (RNAPI) is responsible for massive rRNA production, and nascent rRNA is co-transcriptionally assembled with early assembly factors in the yeast nucleolus. In Saccharomyces cerevisiae, a mutant form of RNAPI bearing a fusion of the transcription factor Rrn3 with RNAPI subunit Rpa43 (CARA-RNAPI) has been described previously. Here, we show that the CARA-RNAPI allele results in a novel type of rRNA processing defect, associated with rDNA genomic instability. A fraction of the 35S rRNA produced in CARA-RNAPI mutant escapes processing steps and accumulates. This accumulation is increased in mutants affecting exonucleolytic activities of the exosome complex. CARA-RNAPI is synthetic lethal with monopolin mutants that are known to affect the rDNA condensation. CARA-RNAPI strongly impacts rDNA organization and increases rDNA copy number variation. Reduced rDNA copy number suppresses lethality, suggesting that the chromosome segregation defect is caused by genomic rDNA instability. We conclude that a constitutive association of Rrn3 with transcribing RNAPI results in the accumulation of rRNAs that escape normal processing, impacting rDNA organization and affecting rDNA stability.


Assuntos
DNA Ribossômico , Instabilidade Genômica , Mutação , RNA Polimerase I , Processamento Pós-Transcricional do RNA , RNA Ribossômico , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , DNA Ribossômico/genética , DNA Ribossômico/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , RNA Polimerase I/metabolismo , RNA Polimerase I/genética , RNA Ribossômico/genética , RNA Ribossômico/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas Pol1 do Complexo de Iniciação de Transcrição
13.
Sci Rep ; 14(1): 15740, 2024 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-38977862

RESUMO

Genome replication is frequently impeded by highly stable DNA secondary structures, including G-quadruplex (G4) DNA, that can hinder the progression of the replication fork. Human WRNIP1 (Werner helicase Interacting Protein 1) associates with various components of the replication machinery and plays a crucial role in genome maintenance processes. However, its detailed function is still not fully understood. Here we show that human WRNIP1 interacts with G4 structures and provide evidence for its contribution to G4 processing. The absence of WRNIP1 results in elevated levels of G4 structures, DNA damage and chromosome aberrations following treatment with PhenDC3, a G4-stabilizing ligand. Additionally, we establish a functional and physical relationship between WRNIP1 and the PIF1 helicase in G4 processing. In summary, our results suggest that WRNIP1 aids genome replication and maintenance by regulating G4 processing and this activity relies on Pif1 DNA helicase.


Assuntos
DNA Helicases , Replicação do DNA , Quadruplex G , Humanos , DNA Helicases/metabolismo , Dano ao DNA , Aberrações Cromossômicas , Proteínas de Transporte/metabolismo , Proteínas de Transporte/genética , ATPases Associadas a Diversas Atividades Celulares/metabolismo , ATPases Associadas a Diversas Atividades Celulares/genética , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/genética
14.
BMC Plant Biol ; 24(1): 662, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38987668

RESUMO

BACKGROUND: Enhancing crops' drought resilience is necessary to maintain productivity levels. Plants interact synergistically with microorganisms like Beauveria bassiana to improve drought tolerance. Therefore, the current study investigates the effects of biopriming with B. bassiana on drought tolerance in Malva parviflora plants grown under regular irrigation (90% water holding capacity (WHC)), mild (60% WHC), and severe drought stress (30% WHC). RESULTS: The results showed that drought stress reduced the growth and physiological attributes of M. parviflora. However, those bioprimed with B. bassiana showed higher drought tolerance and enhanced growth, physiological, and biochemical parameters: drought stress enriched malondialdehyde and H2O2 contents. Conversely, exposure to B. bassiana reduced stress markers and significantly increased proline and ascorbic acid content under severe drought stress; it enhanced gibberellic acid and reduced ethylene. Bioprimed M. parviflora, under drought conditions, improved antioxidant enzymatic activity and the plant's nutritional status. Besides, ten Inter-Simple Sequence Repeat primers detected a 25% genetic variation between treatments. Genomic DNA template stability (GTS) decreased slightly and was more noticeable in response to drought stress; however, for drought-stressed plants, biopriming with B. bassiana retained the GTS. CONCLUSION: Under drought conditions, biopriming with B. bassiana enhanced Malva's growth and nutritional value. This could attenuate photosynthetic alterations, up-regulate secondary metabolites, activate the antioxidant system, and maintain genome integrity.


Assuntos
Resistência à Seca , Malva , Beauveria/fisiologia , Beauveria/genética , Resistência à Seca/genética , Malva/genética , Malva/metabolismo , Malva/microbiologia
15.
RNA ; 30(9): 1122-1140, 2024 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-38986572

RESUMO

The cleavage and polyadenylation specificity factor (CPSF) complex plays a central role in the formation of mRNA 3' ends, being responsible for the recognition of the poly(A) signal sequence, the endonucleolytic cleavage step, and recruitment of poly(A) polymerase. CPSF has been extensively studied for over three decades, and its functions and those of its individual subunits are becoming increasingly well-defined, with much current research focusing on the impact of these proteins on the normal functioning or disease/stress states of cells. In this review, we provide an overview of the general functions of CPSF and its subunits, followed by a discussion of how they exert their functions in a surprisingly diverse variety of biological processes and cellular conditions. These include transcription termination, small RNA processing, and R-loop prevention/resolution, as well as more generally cancer, differentiation/development, and infection/immunity.


Assuntos
Fator de Especificidade de Clivagem e Poliadenilação , RNA Mensageiro , Fator de Especificidade de Clivagem e Poliadenilação/metabolismo , Fator de Especificidade de Clivagem e Poliadenilação/genética , Humanos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Animais , Poliadenilação , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patologia , Terminação da Transcrição Genética , Processamento de Terminações 3' de RNA
16.
EMBO J ; 43(14): 3044-3071, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38858601

RESUMO

MCM8 has emerged as a core gene in reproductive aging and is crucial for meiotic homologous recombination repair. It also safeguards genome stability by coordinating the replication stress response during mitosis, but its function in mitotic germ cells remains elusive. Here we found that disabling MCM8 in mice resulted in proliferation defects of primordial germ cells (PGCs) and ultimately impaired fertility. We further demonstrated that MCM8 interacted with two known helicases DDX5 and DHX9, and loss of MCM8 led to R-loop accumulation by reducing the retention of these helicases at R-loops, thus inducing genome instability. Cells expressing premature ovarian insufficiency-causative mutants of MCM8 with decreased interaction with DDX5 displayed increased R-loop levels. These results show MCM8 interacts with R-loop-resolving factors to prevent R-loop-induced DNA damage, which may contribute to the maintenance of genome integrity of PGCs and reproductive reserve establishment. Our findings thus reveal an essential role for MCM8 in PGC development and improve our understanding of reproductive aging caused by genome instability in mitotic germ cells.


Assuntos
RNA Helicases DEAD-box , Instabilidade Genômica , Proteínas de Manutenção de Minicromossomo , Estruturas R-Loop , Animais , Feminino , Humanos , Masculino , Camundongos , RNA Helicases DEAD-box/metabolismo , RNA Helicases DEAD-box/genética , Dano ao DNA , Células Germinativas/metabolismo , Proteínas de Manutenção de Minicromossomo/metabolismo , Proteínas de Manutenção de Minicromossomo/genética , Estruturas R-Loop/genética
17.
Artigo em Inglês | MEDLINE | ID: mdl-38862431

RESUMO

Ribonuclease P (RNase P) was first described in the 1970's as an endoribonuclease acting in the maturation of precursor transfer RNAs (tRNAs). More recent studies, however, have uncovered non-canonical roles for RNase P and its components. Here, we review the recent progress of its involvement in chromatin assembly, DNA damage response, and maintenance of genome stability with implications in tumorigenesis. The possibility of RNase P as a therapeutic target in cancer is also discussed.


Assuntos
Neoplasias , Precursores de RNA , RNA de Transferência , Ribonuclease P , Ribonuclease P/metabolismo , Ribonuclease P/genética , Humanos , RNA de Transferência/metabolismo , RNA de Transferência/genética , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/enzimologia , Precursores de RNA/metabolismo , Precursores de RNA/genética , Instabilidade Genômica , Animais , Dano ao DNA , Processamento Pós-Transcricional do RNA , Montagem e Desmontagem da Cromatina/genética
18.
Plant J ; 119(3): 1418-1432, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38824612

RESUMO

DNA-protein crosslinks (DPCs) are highly toxic DNA lesions represented by proteins covalently bound to the DNA. Persisting DPCs interfere with fundamental genetic processes such as DNA replication and transcription. Cytidine analog zebularine (ZEB) has been shown to crosslink DNA METHYLTRANSFERASE1 (MET1). Recently, we uncovered a critical role of the SMC5/6-mediated SUMOylation in the repair of DPCs. In an ongoing genetic screen, we identified two additional candidates, HYPERSENSITIVE TO ZEBULARINE 2 and 3, that were mapped to REGULATOR OF TELOMERE ELONGATION 1 (RTEL1) and polymerase TEBICHI (TEB), respectively. By monitoring the growth of hze2 and hze3 plants in response to zebularine, we show the importance of homologous recombination (HR) factor RTEL1 and microhomology-mediated end-joining (MMEJ) polymerase TEB in the repair of MET1-DPCs. Moreover, genetic interaction and sensitivity assays showed the interdependency of SMC5/6 complex, HR, and MMEJ in the homology-directed repair of MET1-DPCs in Arabidopsis. Altogether, we provide evidence that MET1-DPC repair in plants is more complex than originally expected.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Citidina , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Citidina/análogos & derivados , Citidina/metabolismo , Citidina/farmacologia , Reparo de DNA por Recombinação , Reparo do DNA , DNA de Plantas/genética , DNA de Plantas/metabolismo , Dano ao DNA
19.
Biochim Biophys Acta Mol Basis Dis ; 1870(7): 167280, 2024 10.
Artigo em Inglês | MEDLINE | ID: mdl-38851303

RESUMO

The Helicase-like Transcription Factor (HLTF) is a member of the SNF2-family of fork remodelers, primarily studied for its capacity to provide DNA Damage Tolerance (DDT) and to induce replication fork reversal (RFR). HLTF is recruited at stalled forks where both its ATPase motor and HIP116 Rad5p N-terminal (HIRAN) domains are necessary for regulating its interaction with DNA. HIRAN bestows specificity to ssDNA 3'-end and imparts branch migration as well as DNA remodeling capabilities facilitating damage repair. Both expression regulation and mutation rate affect HLTF activity. Gene hypermethylation induces loss of HLTF function, in particular in colorectal cancer (CRC), implying a tumour suppressor role. Surprisingly, a correlation between hypermethylation and HLTF mRNA upregulation has also been observed, even within the same cancer type. In many cancers, both complex mutation patterns and the presence of gene Copy Number Variations (CNVs) have been reported. These conditions affect the amount of functional HLTF and question the physiological role of this fork remodeler. This review offers a systematic collection of the presently strewed information regarding HLTF, its structural and functional characteristics, the multiple roles in DDT and the regulation in cancer progression highlighting new research perspectives.


Assuntos
Replicação do DNA , Neoplasias , Fatores de Transcrição , Humanos , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patologia , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , DNA Helicases/genética , DNA Helicases/metabolismo , Metilação de DNA , Regulação Neoplásica da Expressão Gênica , Reparo do DNA , Dano ao DNA , Animais , Mutação , Variações do Número de Cópias de DNA
20.
Cancer Cell ; 42(6): 946-967, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38729160

RESUMO

p53 was discovered 45 years ago as an SV40 large T antigen binding protein, coded by the most frequently mutated TP53 gene in human cancers. As a transcription factor, p53 is tightly regulated by a rich network of post-translational modifications to execute its diverse functions in tumor suppression. Although early studies established p53-mediated cell-cycle arrest, apoptosis, and senescence as the classic barriers in cancer development, a growing number of new functions of p53 have been discovered and the scope of p53-mediated anti-tumor activity is largely expanded. Here, we review the complexity of different layers of p53 regulation, and the recent advance of the p53 pathway in metabolism, ferroptosis, immunity, and others that contribute to tumor suppression. We also discuss the challenge regarding how to activate p53 function specifically effective in inhibiting tumor growth without harming normal homeostasis for cancer therapy.


Assuntos
Neoplasias , Proteína Supressora de Tumor p53 , Humanos , Proteína Supressora de Tumor p53/metabolismo , Proteína Supressora de Tumor p53/genética , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patologia , Animais , Ferroptose/genética , Transdução de Sinais , Apoptose , Processamento de Proteína Pós-Traducional
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...