Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 86
Filtrar
Mais filtros












Intervalo de ano de publicação
1.
Neurosci Biobehav Rev ; 162: 105715, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38734195

RESUMO

Obsessive-compulsive disorder (OCD) is a chronic and debilitating illness that has been considered a polygenic and multifactorial disorder, challenging effective therapeutic interventions. Although invaluable advances have been obtained from human and rodent studies, several molecular and mechanistic aspects of OCD etiology are still obscure. Thus, the use of non-traditional animal models may foster innovative approaches in this field, aiming to elucidate the underlying mechanisms of disease from an evolutionary perspective. The zebrafish (Danio rerio) has been increasingly considered a powerful organism in translational neuroscience research, especially due to the intrinsic features of the species. Here, we outline target mechanisms of OCD for translational research, and discuss how zebrafish-based models can contribute to explore neurobehavioral aspects resembling those found in OCD. We also identify possible advantages and limitations of potential zebrafish-based models, as well as highlight future directions in both etiological and therapeutic research. Lastly, we reinforce the use of zebrafish as a promising tool to unravel the biological basis of OCD, as well as novel pharmacological therapies in the field.


Assuntos
Modelos Animais de Doenças , Transtorno Obsessivo-Compulsivo , Pesquisa Translacional Biomédica , Peixe-Zebra , Animais , Transtorno Obsessivo-Compulsivo/fisiopatologia , Transtorno Obsessivo-Compulsivo/genética , Humanos , Comportamento Animal/fisiologia
2.
Nervenarzt ; 95(5): 416-422, 2024 May.
Artigo em Alemão | MEDLINE | ID: mdl-38568318

RESUMO

Treatment-resistant depression (TRD) is a complex disorder. Although no standardized definition has been established to date, there are promising and well-established treatment options for the condition. Looking at the current pharmacological and neuromodulatory strategies, there is an urgent need for fast-acting and well-tolerated treatment options. The search for new mechanisms of action goes beyond the monoamine hypothesis. For example, esketamine is already an established treatment method that is fast-acting and well tolerated, while psychedelics or esmethadone are currently still undergoing clinical trials. Compounds that can be used off-label, such as dextromethorphan or anti-inflammatory strategies are also presented. Pharmacological approaches that focus on the modulation of the glutamatergic system or belong to the class of psychedelics, appear to be of particular importance for current research and development. These particularly include substances that rapidly exert clinical effects and have a favorable side-effect profile.


Assuntos
Antidepressivos , Transtorno Depressivo Resistente a Tratamento , Humanos , Transtorno Depressivo Resistente a Tratamento/tratamento farmacológico , Transtorno Depressivo Resistente a Tratamento/terapia , Transtorno Depressivo Resistente a Tratamento/diagnóstico , Antidepressivos/uso terapêutico , Alucinógenos/uso terapêutico , Alucinógenos/efeitos adversos , Ketamina/uso terapêutico
3.
Biochimie ; 219: 21-32, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37541567

RESUMO

Non ketotic hyperglycinemia (NKH) is an inborn error of glycine metabolism caused by mutations in the genes encoding glycine cleavage system proteins. Classic NKH has a neonatal onset, and patients present with severe neurodegeneration. Although glycine accumulation has been implicated in NKH pathophysiology, the exact mechanisms underlying the neurological damage and white matter alterations remain unclear. We investigated the effects of glycine in the brain of neonatal rats and MO3.13 oligodendroglial cells. Glycine decreased myelin basic protein (MBP) and myelin-associated glycoprotein (MAG) in the corpus callosum and striatum of rats on post-natal day (PND) 15. Glycine also reduced neuroglycan 2 (NG2) and N-methyl-d-aspartate receptor subunit 1 (NR1) in the cerebral cortex and striatum on PND15. Moreover, glycine reduced striatal glutamate aspartate transporter 1 (GLAST) content and neuronal nucleus (NeuN), and increased glial fibrillary acidic protein (GFAP) on PND15. Glycine also increased DCFH oxidation and malondialdehyde levels and decreased GSH concentrations in the cerebral cortex and striatum on PND6, but not on PND15. Glycine further reduced viability but did not alter DCFH oxidation and GSH levels in MO3.13 cells after 48- and 72-h incubation. These data indicate that impairment of myelin structure and glutamatergic system and induction of oxidative stress are involved in the neuropathophysiology of NKH.


Assuntos
Hiperglicinemia não Cetótica , Humanos , Animais , Ratos , Hiperglicinemia não Cetótica/genética , Hiperglicinemia não Cetótica/metabolismo , Glicina , Bainha de Mielina/metabolismo , Oxirredução , Transmissão Sináptica , Homeostase
4.
Pharmacol Rep ; 75(6): 1341-1349, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37932583

RESUMO

The desire to find a gold-standard therapy for depression is still ongoing. Developing one universal and effective pharmacotherapy remains troublesome due to the high complexity and variety of symptoms. Over the last decades, the understanding of the mechanism of pathophysiology of depression and its key consequences for brain functioning have undergone significant changes, referring to the monoaminergic theory of the disease. After the breakthrough discovery of ketamine, research began to focus on the modulation of glutamatergic transmission as a new pharmacological target. Glutamate is a crucial player in mechanisms of a novel class of antidepressants, including hallucinogens such as ketamine. The role of glutamatergic transmission is also suggested in the antidepressant (AD) action of scopolamine and psilocybin. Despite fast, robust, and sustained AD action hallucinogens belonging to a group of rapid-acting antidepressants (RAA) exert significant undesired effects, which hamper their use in the clinic. Thus, the synergistic action of more than one substance in lower doses instead of monotherapy may alleviate the likelihood of adverse effects while improving therapeutic outcomes. In this review, we explore AD-like behavioral, synaptic, and molecular action of RAAs such as ketamine, scopolamine, and psilocybin, in combination with mGlu2/3 receptor antagonists.


Assuntos
Alucinógenos , Ketamina , Receptores de Glutamato Metabotrópico , Ketamina/farmacologia , Ketamina/uso terapêutico , Alucinógenos/farmacologia , Psilocibina , Antidepressivos/farmacologia , Antidepressivos/uso terapêutico , Depressão/tratamento farmacológico , Escopolamina/farmacologia
5.
Mol Neurobiol ; 2023 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-37980327

RESUMO

Metformin, a biguanide compound (N-1,1-dimethylbiguanide), is widely prescribed for diabetes mellitus type 2 (T2D) treatment. It also presents a plethora of properties, such as anti-oxidant, anti-inflammatory, anti-apoptosis, anti-tumorigenic, and anti-AGE formation activity. However, the precise mechanism of action of metformin in the central nervous system (CNS) needs to be clarified. Herein, we investigated the neuroprotective role of metformin in acute hippocampal slices exposed to methylglyoxal (MG), a highly reactive dicarbonyl compound and a key molecule in T2D developmental pathophysiology. Metformin protected acute hippocampal slices from MG-induced glutamatergic neurotoxicity and neuroinflammation by reducing IL-1ß synthesis and secretion and RAGE protein expression. The drug also improved astrocyte function, particularly with regard to the glutamatergic system, increasing glutamate uptake. Moreover, we observed a direct effect of metformin on glutamate transporters, where the compound prevented glycation, by facilitating enzymatic phosphorylation close to Lys residues, suggesting a new neuroprotective role of metformin via PKC ζ in preventing dysfunction in glutamatergic system induced by MG. Proposed neuroprotection role of metformin in acute hippocampal slices against impairment in glutamatergic system induced in a model of methylglyoxal glycotoxicity. Metformin reversed methylglyoxal (MG)-induced neuroinflammation by reducing pro-inflammatory IL-1ß synthesis and secretion and RAGE protein expression. Metformin did not alter the effect of MG on S100B secretion (1). Both MG and metformin also influenced astrocyte function in hippocampal slices. Metformin did not reverse the elevation in GLO1 activity induced by glycotoxicity; however, it abrogated the high GSH level and the expression of the co-factor of GLO1 (2). Both treatments per se changed bioenergetic metabolism and increased glucose uptake, extracellular lactate content, and pyruvate kinase (PK) activity. The increment in glucose uptake and lactate levels ceased during the co-incubation of MG with metformin. Metformin reversed the elevation of hexokinase activity by MG (3). We suggest a new role of metformin in the glutamate system, whereby it protects the hippocampus against the derangements of the glutamatergic system induced by MG, possibly by phosphorylation via PKC ζ (4). The neuroprotective action of metformin may be mediated by the phosphorylation of specific amino acid residues (Lysine) of the glutamate transporters (GLAST and GLT-1), since metformin activated the PKC ζ signaling and promoted cascades of phosphorylation in p38 MAPK and Akt proteins. The transporter protein phosphorylation prevented the Lys-glycation and the impairment of glutamate uptake induced by MG (5).

6.
Hippocampus ; 33(12): 1267-1276, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37795810

RESUMO

Traumatic experiences are closely associated with some psychiatric conditions such as post-traumatic stress disorder. Deconditioning-update promotes robust and long-lasting attenuation of aversive memories. The deconditioning protocol consists of applying weak/neutral footshocks during reactivations, so that the original tone-shock association is replaced by an innocuous stimulus that does not produce significant fear response. Here, we present the molecular bases that can support this mechanism. To this end, we used pharmacological tools to inhibit the activity of ionotropic glutamate receptors (NMDA-GluN2B and CP-AMPA), the activity of proteases (calpains), and the receptors that control intracellular calcium storage (IP3 receptors), as well as the endocannabinoid system (CB1). Our results indicate that blocking these molecular targets prevents fear memory update by deconditioning. Therefore, this study uncovered the molecular substrate of deconditioning-update strategy, and, broadly, shed new light on the traumatic memory destabilization mechanisms that might be used to break the boundaries regarding reconsolidation-based approaches to deal with maladaptive memories.


Assuntos
Extinção Psicológica , Memória , Memória/fisiologia , Extinção Psicológica/fisiologia , Medo/fisiologia
7.
Brain Sci ; 13(10)2023 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-37891860

RESUMO

The effectiveness of the esketamine nasal spray (ESK-NS) for treatment-resistant depression (TRD) has been confirmed by real-world studies. Available evidence derived from clinician-rated assessments might differ from patients' perceptions about the helpfulness of treatments. We aimed to verify the effect of ESK-NS from patients' view in 25 TRD patients (56% males, 55.1 ± 10.9 years) treated with ESK-NS (mean dose: 78.4 ± 11.43 mg) for three months and evaluated at different time-points through clinician-rated and self-administered scales, assessing changes in depression, anhedonia, sleep, cognition, suicidality, and anxiety. We observed an overall early improvement that lasted over time (endpoint total score reduction in Montgomery-Åsberg Depression Rating Scale, p < 0.001, Beck Depression Inventory, p = 0.003). Patients reported a significant self-rated decrease in anhedonia at two months (Snaith-Hamilton Pleasure Scale, p = 0.04) and in suicide ideation at endpoint (BDI subitem 9, p = 0.039) vs. earlier improvements detected by clinicians (one-month reduction in MADRS subitem 8, p = 0.005, and subitem 10, p = 0.007). These findings confirm the effectiveness of a three-month treatment with ESK-NS in TRD patients, highlighting an overall overlapping response from patients' and clinicians' perspectives, although with some differential effects on specific symptoms at given time-points. Including patients' viewpoints in routine assessments could inform clinical practice, ensuring a better characterization of clinical phenotypes to deliver personalized interventions.

8.
Psychiatry Clin Neurosci ; 77(10): 513-529, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37329495

RESUMO

Suicidality is a prevalent mental health condition, and managing suicidal patients is one of the most challenging tasks for health care professionals due to the lack of rapid-acting, effective psychopharmacological treatment options. According to the literature, suicide has neurobiological underpinnings that are not fully understood, and current treatments for suicidal tendencies have considerable limitations. To treat suicidality and prevent suicide, new treatments are required; to achieve this, the neurobiological processes underlying suicidal behavior must be thoroughly investigated. Although multiple neurotransmitter systems, particularly serotonergic systems, have been studied in the past, less has been reported in relation to disruptions in glutamatergic neurotransmission, neuronal plasticity, and neurogenesis that result from stress-related abnormalities of the hypothalamic-pituitary-adrenal system. Informed by the literature, which reports robust antisuicidal and antidepressive properties of subanaesthetic doses of ketamine, this review aims to provide an examination of the neurobiology of suicidality (and relevant mood disorders) with implications of pertinent animal, clinical, and postmortem studies. We discuss dysfunctions in the glutamatergic system, which may play a role in the neuropathology of suicidality and the role of ketamine in restoring synaptic connectivity at the molecular levels.


Assuntos
Ketamina , Suicídio , Animais , Humanos , Ideação Suicida , Suicídio/psicologia , Ketamina/farmacologia , Transtornos do Humor/tratamento farmacológico , Antidepressivos/farmacologia
9.
Naunyn Schmiedebergs Arch Pharmacol ; 396(11): 3033-3044, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37160481

RESUMO

Depression is a multifactorial and heterogeneous disease with several neurobiological mechanisms underlying its pathophysiology, including dysfunctional glutamatergic neurotransmission, which makes the exploration of the glutamate pathway an interesting strategy for developing novel rapid-acting antidepressant treatments. In the present study, we aimed to evaluate the possible glutamatergic pathway relation in the antidepressant-like action of 2-phenyl-3-(phenylselanyl)benzofuran (SeBZF1) in Swiss mice employing the tail suspension test (TST). Male Swiss mice received drugs targeting glutamate receptors before acute SeBZF1 administration at effective (50 mg/kg) or subeffective (1 mg/kg) doses by intragastric route (ig). TST and the open-field test (OFT) were employed in all behavioral experiments. The pretreatment of mice with N-methyl-D-aspartate (NMDA) (0.1 pmol/site, intracerebroventricular, icv, a selective agonist of the NMDA receptors), D-serine (30 µg/site, icv, a co-agonist at the NMDA receptor), arcaine (1 mg/kg, intraperitoneal, ip, an antagonist of the polyamine-binding site at the NMDA receptor), and 6,7-dinitroquinoxaline-2,3-dione (DNQX) (2,5 µg/site, icv, an antagonist of the AMPA/kainate type of glutamate receptors) inhibited the antidepressant-like effects of SeBZF1 (50 mg/kg, ig) in the TST. Coadministration of a subeffective dose of SeBZF1 with low doses of MK-801 (0.001 mg/kg, ip, a non-competitive NMDA receptor antagonist) or ketamine (0.1 mg/kg, ip, a non-selective antagonist of the NMDA receptors) produced significant antidepressant-like effects (synergistic action). These findings suggest the involvement of the glutamatergic system, probably through modulation of ionotropic glutamate receptors, in the antidepressant-like action of SeBZF1 in mice and contribute to a better understanding of the mechanisms underlying its pharmacological effects.


Assuntos
Benzofuranos , Ketamina , Masculino , Camundongos , Animais , Depressão/tratamento farmacológico , Depressão/metabolismo , Receptores de N-Metil-D-Aspartato , Antidepressivos/farmacologia , Antidepressivos/uso terapêutico , Ketamina/farmacologia , Benzofuranos/farmacologia , Elevação dos Membros Posteriores
10.
J Biochem Mol Toxicol ; 37(7): e23353, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37069807

RESUMO

Depression has a high rate of comorbidity with neuropathic pain. This study aims to investigate the effect of Mygalin, an acylpolyamine synthesized from a natural molecule in the hemolymph of the Acanthoscurria gomesiana spider, injected into the prelimbic (PrL) region of the medial prefrontal cortex on chronic neuropathic pain and depression comorbidity in rats. To investigate that comorbidity, neuropathic pain was induced by chronic constriction injury (CCI) of the sciatic nerve in male Wistar rats. The biotinylated biodextran amine (BDA) bidirectional neural tract tracer was microinjected into the PrL cortex to study brain connections. Rodents were further subjected to von Frey (mechanical allodynia), acetone (cold allodynia), and forced swim (depressive-like behavior) tests. BDA neural tract tracer-labeled perikarya were found in the dorsal columns of the periaqueductal gray matter (dPAG) and the dorsal raphe nucleus (DRN). Neuronal activity of DRN neurons decreased in CCI rats. However, PrL cortex treatment with Mygalin increased the number of spikes on DRN neurons. Mygalin treatment in the PrL cortex decreased both mechanical and cold allodynia and immobility behavior in CCI rats. PrL cortex treatment with N-methyl-D-aspartate (NMDA) receptor receptors attenuated the analgesic and antidepressive effects caused by Mygalin. The PrL cortex is connected with the dPAG and DRN, and Mygalin administration into the PrL increased the activity of DRN neurons. Mygalin in the PrL cortex produced antinociceptive and antidepressive-like effects, and the NMDA agonist reversed these effects.


Assuntos
Neuralgia , Aranhas , Ratos , Masculino , Animais , Depressão , Hiperalgesia , N-Metilaspartato/farmacologia , Ratos Wistar , Antidepressivos/farmacologia , Antidepressivos/uso terapêutico , Receptores de N-Metil-D-Aspartato , Comorbidade , Córtex Pré-Frontal
11.
Adv Exp Med Biol ; 1411: 487-512, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36949323

RESUMO

The glutamatergic system is the primary excitatory pathway within the CNS and is responsible for cognition, memory, learning, emotion, and mood. Because of its significant importance in widespread nervous system function, it is tightly regulated through multiple mechanisms, such as glutamate recycling, microglial interactions, and inflammatory pathways. Imbalance within the glutamatergic system has been implicated in a wide range of pathological conditions including neurodegenerative conditions, neuromuscular conditions, and mood disorders including depression. Major depressive disorder (MDD) is the most common mood disorder worldwide, has a high prevalence rate, and afflicts approximately 280 million people. While there are numerous treatments for the disease, 30-40% of patients are unresponsive to treatment and deemed treatment resistant; approximately another third experience only partial improvement (World Health Organization, Depression fact sheet [Internet], 2020). Esketamine, the S-enantiomer of ketamine, was approved by the Food and Drug Administration for treatment-resistant depression (TRD) in 2019 and has offered new hope to patients. It is the first treatment targeting the glutamatergic system through a complex mechanism. Numerous studies have implicated imbalance in the glutamatergic system in depression and treatment resistance. Esketamine and ketamine principally work through inhibition of the NMDA receptor, though more recent studies have implicated numerous other mechanisms mediating the antidepressant efficacy of these agents. These mechanisms include increase in brain-derived neurotrophic factor (BDNF), activation of mammalian target of the rapamycin complex (mTORC), and reduction in inflammation. Esketamine and ketamine have been shown to decrease inflammation in numerous ways principally through reducing pro-inflammatory cytokines (e.g., TNF-α, IL-6) (Loix et al., Acta Anaesthesiol Belg 62(1):47-58, 2011; Chen et al., Psychiatry Res 269:207-11, 2018; Kopra et al., J Psychopharmacol 35(8):934-45, 2021). This anti-inflammatory effect has also been shown to be involved in the antidepressive properties of both ketamine and esketamine (Chen et al., Psychiatry Res 269:207-11, 2018; Kopra et al., J Psychopharmacol 35(8):934-45, 2021).


Assuntos
Transtorno Depressivo Maior , Ketamina , Humanos , Ketamina/uso terapêutico , Transtorno Depressivo Maior/tratamento farmacológico , Transtorno Depressivo Maior/induzido quimicamente , Depressão/tratamento farmacológico , Antidepressivos/uso terapêutico , Inflamação/tratamento farmacológico , Inflamação/induzido quimicamente
12.
Neuropharmacology ; 223: 109348, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36423706

RESUMO

The efficacy of currently available medications for depression is unsatisfactory, and that has spurred the development of novel antidepressants based on a hypothesis other than the monoamine hypothesis. Recent studies have revealed the importance of the glutamatergic system as a drug target for depression, and the validity of this hypothesis has been underpinned by the discovery of the antidepressant effects of ketamine, leading to the market launch of Spravato® nasal spray which delivers (S)-ketamine (esketamine). However, both ketamine and esketamine have unwanted adverse effects that hinder their routine use in daily practice. Extensive studies have elucidated the mechanisms underlying the antidepressant effects of ketamine, and that has encouraged numerous drug discovery activities to search for agents that retain a ketamine-like antidepressant profile but with lesser adverse effect liabilities. The discovery activities have included attempts to identify 1) the active substance(s) in the circulation after ketamine administration and 2) agents that act on the proposed mechanisms of action of ketamine. Clinical trials of agents discovered in the course of these activities are underway, and in 2022, AUVELITY™ (AXS-05; dextromethorphan with bupropion) was approved by the United States Food and Drug Administration. Drug development of post-ketamine agents should provide novel antidepressants that are safer, but as potent and rapidly acting as ketamine.


Assuntos
Antidepressivos , Ketamina , Estados Unidos , Antidepressivos/efeitos adversos , Ketamina/efeitos adversos , Descoberta de Drogas , Bupropiona , Depressão/tratamento farmacológico
13.
Front Mol Neurosci ; 16: 1322750, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38249292

RESUMO

Genetic abnormalities affecting glutamate receptors are central to excitatory overload-driven neuronal mechanisms that culminate in seizures, making them pivotal targets in epilepsy research. Increasingly used to advance this field, the genetically audiogenic seizure hamster from Salamanca (GASH/Sal) exhibits generalized seizures triggered by high-intensity acoustic stimulation and harbors significant genetic variants recently identified through whole-exome sequencing. Here, we addressed the influence of the missense single-nucleotide polymorphism (C9586732T, p.His289Tyr) in the glutamate receptor ionotropic kainate-1 (Grik1) gene and its implications for the GASH/Sal seizure susceptibility. Using a protein 3D structure prediction, we showed a potential effect of this sequence variation, located in the amino-terminal domain, on the stability and/or conformation of the kainate receptor subunit-1 protein (GluK1). We further employed a multi-technique approach, encompassing gene expression analysis (RT-qPCR), Western blotting, and immunohistochemistry in bright-field and confocal fluorescence microscopy, to investigate critical seizure-associated brain regions in GASH/Sal animals under seizure-free conditions compared to matched wild-type controls. We detected disruptions in the transcriptional profile of the Grik1 gene within the audiogenic seizure-associated neuronal network. Alterations in GluK1 protein levels were also observed in various brain structures, accompanied by an unexpected lower molecular weight band in the inferior and superior colliculi. This correlated with substantial disparities in GluK1-immunolabeling distribution across multiple brain regions, including the cerebellum, hippocampus, subdivisions of the inferior and superior colliculi, and the prefrontal cortex. Notably, the diffuse immunolabeling accumulated within perikarya, axonal fibers and terminals, exhibiting a prominent concentration in proximity to the cell nucleus. This suggests potential disturbances in the GluK1-trafficking mechanism, which could subsequently affect glutamate synaptic transmission. Overall, our study sheds light on the genetic underpinnings of seizures and underscores the importance of investigating the molecular mechanisms behind synaptic dysfunction in epileptic neural networks, laying a crucial foundation for future research and therapeutic strategies targeting GluK1-containing kainate receptors.

15.
Life (Basel) ; 12(9)2022 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-36143389

RESUMO

T1AM, a derivative of thyroid hormones, and its major catabolite, TA1, produce effects on memory acquisition in rodents. In the present study, we compared the effects of exogenous T1AM and TA1 on protein belonging to signal transduction pathways, assuming that TA1 may strengthen T1AM's effects in brain tissue. A hybrid line of cancer cells of mouse neuroblastoma and rat glioma (NG 108-15), as well as a human glioblastoma cell line (U-87 MG) were used. We first characterized the in vitro model by analyzing gene expression of proteins involved in the glutamatergic cascade and cellular uptake of T1AM and TA1. Then, cell viability, glucose consumption, and protein expression were assessed. Both cell lines expressed receptors implicated in glutamatergic pathway, namely Nmdar1, Glur2, and EphB2, but only U-87 MG cells expressed TAAR1. At pharmacological concentrations, T1AM was taken up and catabolized to TA1 and resulted in more cytotoxicity compared to TA1. The major effect, highlighted in both cell lines, albeit on different proteins involved in the glutamatergic signaling, was an increase in phosphorylation, exerted by T1AM but not reproduced by TA1. These findings indicate that, in our in vitro models, T1AM can affect proteins involved in the glutamatergic and other signaling pathways, but these effects are not strengthened by TA1.

16.
Eur J Pharmacol ; 933: 175256, 2022 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-36088983

RESUMO

Many studies have indicated that the risk of cognitive impairment is higher in patients with rheumatoid arthritis (RA). Additionally, patients with RA may have a lower incidence of cognitive impairment with long-term use of ibuprofen. This study was aimed at investigating the impacts of RA on memory function and the mechanisms that ibuprofen may exhibit to improve memory function in rats with collagen-induced arthritis (CIA). Ibuprofen (30 mg/kg) was given twice daily to CIA rats for two weeks starting from Day 18 following the first immunization. Memory function was measured by the Morris water maze (MWM) test and long-term potentiation (LTP). The proinflammatory cytokine levels and downstream signaling pathways, including mitogen-activated protein kinase (MAPK) and nuclear factor kappa B (NF-κB), were examined. Furthermore, the glutamatergic system, including glutamate transporters/receptors and brain extracellular levels of glutamate, was investigated. The results showed that the impaired learning memory in CIA rats, examined by the MWM test and LTP, can be ameliorated by ibuprofen treatment. Along with the improvement in memory deficits, ibuprofen attenuated both neuroinflammation and the associated elevated levels of phosphorylated p38, JNK, and p65 in the hippocampus of CIA rats. In addition, the decreased excitatory amino acid transporter 2 level, the increased extracellular glutamate, and the upregulated hippocampal NMDA receptor 2B of CIA rats were all normalized by ibuprofen treatment. These findings suggest that the effect of ibuprofen on the memory improvement in CIA rats is associated with the normalization of the activated MAPK and NF-κB pathways and the aberrant glutamatergic system.


Assuntos
Artrite Experimental , Artrite Reumatoide , Animais , Artrite Experimental/induzido quimicamente , Artrite Experimental/complicações , Artrite Experimental/tratamento farmacológico , Citocinas/metabolismo , Transportador 2 de Aminoácido Excitatório , Glutamatos , Ibuprofeno/farmacologia , Ibuprofeno/uso terapêutico , Transtornos da Memória/tratamento farmacológico , Proteínas Quinases Ativadas por Mitógeno/metabolismo , NF-kappa B/metabolismo , Ratos
17.
Diagnostics (Basel) ; 12(7)2022 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-35885427

RESUMO

BACKGROUND: Tardive dyskinesia (TD) is an extrapyramidal side effect of the long-term use of antipsychotics. In the present study, the role of glutamatergic system genes in the pathogenesis of total TD, as well as two phenotypic forms, orofacial TD and limb-truncal TD, was studied. METHODS: A set of 46 SNPs of the glutamatergic system genes (GRIN2A, GRIN2B, GRIK4, GRM3, GRM7, GRM8, SLC1A2, SLC1A3, SLC17A7) was studied in a population of 704 Caucasian patients with schizophrenia. Genotyping was performed using the MassARRAY Analyzer 4 (Agena Bioscience™). Logistic regression analysis was performed to test for the association of TD with the SNPs while adjusting for confounders. RESULTS: No statistically significant associations between the SNPs and TD were found after adjusting for multiple testing. Since three SNPs of the SLC1A2 gene demonstrated nominally significant associations, we carried out a haplotype analysis for these SNPs. This analysis identified a risk haplotype for TD comprising CAT alleles of the SLC1A2 gene SNPs rs1042113, rs10768121, and rs12361171. Nominally significant associations were identified for SLC1A3 rs2229894 and orofacial TD, as well as for GRIN2A rs7192557 and limb-truncal TD. CONCLUSIONS: Genes encoding for mGlu3, EAAT2, and EAAT1 may be involved in the development of TD in schizophrenia patients.

18.
Biomarkers ; 27(4): 306-318, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35236200

RESUMO

INTRODUCTION: Drug addiction is associated with disruption of a multitude of biomarkers in various brain regions, particularly in the reward centre. The most pronounced are dopaminergic and glutamatergic biomarkers, which are affected at various levels. Neuropathological changes in biomarkers alter the homeostasis of the glutamatergic and dopaminergic nervous systems and promote addiction-associated characteristics such as repeated intake, maintenance, withdrawal, reinstatement, and relapse. Exercise has been shown to have a buffering effect on such biomarkers and reverse the effects of addictive substances. METHODS: A review of the literature searched in PubMed, examining drug addiction and physical exercise in relation to dopaminergic and glutamatergic systems at any of the three biomarker levels (i.e. neurotransmitter, receptor, or transporter). RESULTS: We review the collective impact of addictive substances on the dopaminergic and glutamatergic systems and the beneficial effect of exercise in terms of reversing the damage to these systems. We propose future directions, including implications of exercise as an add-on therapy, substance use disorder (SUD) prognosis and diagnosis and designing of optimised exercise and pharmaceutical regimens based on the aforementioned biomarkers. CONCLUSION: Exercise is beneficial for all types of drug addiction at all stages, by reversing molecular damages caused to dopaminergic and glutamatergic systems.


Assuntos
Dopamina , Transtornos Relacionados ao Uso de Substâncias , Biomarcadores , Dopamina/uso terapêutico , Exercício Físico , Humanos , Recompensa , Transtornos Relacionados ao Uso de Substâncias/tratamento farmacológico
19.
Biomolecules ; 13(1)2022 12 27.
Artigo em Inglês | MEDLINE | ID: mdl-36671441

RESUMO

L-Glutamic acid is the main excitatory neurotransmitter in the central nervous system (CNS). Its associated receptors localized on neuronal and non-neuronal cells mediate rapid excitatory synaptic transmission in the CNS and regulate a wide range of processes in the brain, spinal cord, retina, and peripheral nervous system. In particular, the glutamate receptors selective to α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) also play an important role in numerous neurological disorders and attract close attention as targets for the creation of new classes of drugs for the treatment or substantial correction of a number of serious neurodegenerative and neuropsychiatric diseases. For this reason, the search for various types of AMPA receptor ligands and studies of their properties are attracting considerable attention both in academic institutions and in pharmaceutical companies around the world. This review focuses mainly on the advances in this area published since 2017. Particular attention is paid to the structural diversity of new chemotypes of agonists, competitive AMPA receptor antagonists, positive and negative allosteric modulators, transmembrane AMPA regulatory protein (TARP) dependent allosteric modulators, ion channel blockers as well as their binding sites. This review also presents the studies of the mechanisms of action of AMPA receptor ligands that mediate their therapeutic effects.


Assuntos
Receptores de AMPA , Receptores de Glutamato , Receptores de AMPA/metabolismo , Ácido alfa-Amino-3-hidroxi-5-metil-4-isoxazol Propiônico/metabolismo , Encéfalo/metabolismo , Ácido Glutâmico/metabolismo
20.
Front Neurol ; 13: 1102672, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36619916

RESUMO

Background: Glutamate is one of the most important excitatory neurotransmitters in the mammalian brain and is involved in a variety of neurological disorders. Increasing evidence also shows that microRNA (miRNA) and mRNA pairs are engaged in a variety of pathophysiological processes. However, the miRNA and mRNA pairs that affect the glutamatergic system in post-traumatic epilepsy (PTE) remain unknown. Methods: PTE rats were induced by injecting 0.1 mol/L, 1 µL/min FeCl2 solution. Behavioral scores and EEG monitoring were used to evaluate whether PTE was successfully induced. RNA-seq was used to obtain mRNA and miRNA expression profiles. Bioinformatics analysis was performed to screen differentially expressed mRNAs and miRNAs associated with the glutamatergic system and then predict miRNA-mRNA interaction pairs. Real-time quantitative reverse transcription PCR was used to further validate the expression of the differential miRNAs and mRNAs. The microRNA-mRNA was subject to the Pearson correlation analysis. Results: Eight of the 91 differentially expressed mRNAs were associated with the glutamatergic system, of which six were upregulated and two were downregulated. Forty miRNAs were significantly differentially expressed, with 14 upregulated and 26 downregulated genes. The predicted miRNA-mRNA interaction network shows that five of the eight differentially expressed mRNAs associated with the glutamatergic system were targeted by multiple miRNAs, including Slc17a6, Mef2c, Fyn, Slc25a22, and Shank2, while the remaining three mRNAs were not targeted by any miRNAs. Of the 40 differentially expressed miRNAs, seven miRNAs were found to have multiple target mRNAs associated with the glutamatergic system. Real-time quantitative reverse transcription PCR validation and Pearson correlation analysis were performed on these seven targeted miRNAs-Slc17a6, Mef2c, Fyn, Slc25a22, and Shank2-and six additional miRNAs selected from the literature. Real-time quantitative reverse transcription PCR showed that the expression levels of the mRNAs and miRNAs agreed with the predictions in the study. Among them, the miR-98-5p-Slc17a6, miR-335-5p-Slc17a6, miR-30e-5p-Slc17a6, miR-1224-Slc25a22, and miR-211-5p-Slc25a22 pairs were verified to have negative correlations. Conclusions: Our results indicate that miRNA-mRNA interaction pairs associated with the glutamatergic system are involved in the development of PTE and have potential as diagnostic biomarkers and therapeutic targets for PTE.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...