Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
BMC Oral Health ; 24(1): 1310, 2024 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-39472894

RESUMO

BACKGROUND: The present study aimed to investigate the effects of infrared diode laser irradiation on the proliferation and differentiation capacity of periodontal ligament stem cells (hPDLSCs), which are optimal cell sources for periodontal regeneration. METHODS: hPDLSCs were isolated and characterized by flow cytometric analysis of mesenchymal stem cell markers, and their trilineage differentiation capacity was tested. hPDLSCs were then cultured and irradiated with infrared diode laser (970 nm) at a power of 200 mW and a fluence of 4 J/cm2 for 3 s. MTT assay was performed to assess cellular proliferation. Cell cycle analysis was performed, and the impact of infrared diode laser irradiation on the stemness and osteogenic differentiation potential of hPDLSCs was evaluated via RT‒PCR. RESULTS: Infrared diode laser application enhanced the stemness, viability, proliferation, and differentiation of PDLSCs. Stem cell markers (OCT4, SOX2, and NANOG) were significantly upregulated in hPDLSCs exposed to laser irradiation. There was significant overexpression of RUNX2, ALP, OPN, and OCN on day 14 after laser application. CONCLUSIONS: These findings provide valuable insights into the specific applications of infrared diode lasers to effectively regenerate periodontal tissues. The results can aid in the development of precise clinical protocols aimed at enhancing osseointegration and promoting tissue regeneration. Ultimately, the combination of infrared diode laser with hPDLSCs is promising for stimulating periodontal regeneration.


Assuntos
Diferenciação Celular , Proliferação de Células , Lasers Semicondutores , Ligamento Periodontal , Células-Tronco , Humanos , Ligamento Periodontal/citologia , Ligamento Periodontal/efeitos da radiação , Lasers Semicondutores/uso terapêutico , Diferenciação Celular/efeitos da radiação , Proliferação de Células/efeitos da radiação , Células-Tronco/efeitos da radiação , Osteocalcina/metabolismo , Regeneração/efeitos da radiação , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Fosfatase Alcalina/metabolismo , Fosfatase Alcalina/análise , Osteopontina/metabolismo , Osteogênese/efeitos da radiação , Fator 3 de Transcrição de Octâmero/metabolismo , Citometria de Fluxo , Fatores de Transcrição SOXB1/metabolismo , Sobrevivência Celular/efeitos da radiação , Células Cultivadas , Proteína Homeobox Nanog/metabolismo , Ciclo Celular/efeitos da radiação , Corantes , Sais de Tetrazólio , Tiazóis
2.
J Periodontol ; 2024 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-39311723

RESUMO

BACKGROUND: B-cell­specific Moloney MLV insertion site-1(Bmi-1)is a crucial osteopenic target molecule. The aim of this study is to explore the effects of Bmi-1 on alveolar bone resorption and the underlying mechanisms in vitro and vivo. METHODS: A Bmi-1-knockout (Bmi-1-/-) mouse model was used to investigate the effect of Bmi-1 on alveolar bone metabolism, with micro-computed tomography imaging, histology, and immunohistochemistry staining. Furthermore, we utilized a ligature-induced experimental periodontitis model to examine the impact of Bmi-1-knockdown (Bmi-1±) on inflammatory alveolar bone resorption. Finally, we stimulated human periodontal ligament stem cells (hPDLSCs) with lipopolysaccharide (LPS) to explore the potential mechanism of Bmi-1 overexpression in the process of osteogenesis. RESULTS: Compared with wild-type mice, Bmi-1-/- mice demonstrated more alveolar bone resorption by inhibiting osteogenesis, which was characterized by decreases in Runt-related transcription factor 2 and type 1 collagen formation. In addition, Bmi-1-/- mice had lower levels of autophagy markers such as Parkin and LC3, but higher levels of inflammation-related factors such as interleukin (IL)-6 and IL-1ß in periodontal tissues. In addition, Bmi-1-knockdown aggravated ligature-induced alveolar bone loss. Under in vitro inflammatory conditions, Bmi-1 overexpression stimulated osteoblast differentiation and inhibited the production of inflammatory factors, as well as the autophagy and apoptosis in hPDLSCs stimulated with LPS. When 3-methyladenine (3-MA), an autophagy inhibitor, was added, the osteogenic effect of Bmi-1 was further enhanced. CONCLUSIONS: Bmi-1 alleviates alveolar bone resorption by regulating autophagy, indicating that it could be a potential target for periodontitis prevention and treatment. PLAIN LANGUAGE SUMMARY: Periodontitis is a chronic inflammatory disease, which leads to progressive destruction of periodontal tissues, manifested as periodontal pocket formation, loss of periodontal attachment and alveolar bone resorption. Currently, there is a lack of effective treatments to regenerate damaged periodontal tissues. Therefore, it is of great clinical significance to explore new mechanisms of periodontitis and effective intervention targets. B-cell­specific Moloney MLV insertion site-1 (Bmi-1) is involved in the regulation of the cell cycle, DNA damage repair, autophagy, bone metabolism, tumor, and other physiopathological processes. Autophagy, as an important mechanism of intracellular self-regulation, plays an indispensable role in the destruction and repair of periodontal tissues. The aim of this study was to investigate the role of Bmi-1 on periodontal tissues and its intrinsic mechanism. The results revealed that Bmi-1 regulates autophagy to protect periodontal tissues, suggesting that it may be a potential target for the prevention and treatment of periodontitis.

3.
J Periodontal Res ; 59(5): 1031-1041, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38845170

RESUMO

AIMS: The study aimed to investigate the role of miR-146a-5p in osteogenesis of hPDLSCs irradiated with low-energy red LEDs. METHODS: After irradiation with 5 J/cm2 red LED, miR-146a-5p expression was detected by real-time quantitative polymerase chain reaction (RT-qPCR), and osteogenic markers expression was determined by RT-qPCR and Western blotting. Alkaline phosphatase (ALP) activity was assessed by ALP staining, and mineralization was assessed by Alizarin Red staining, respectively. Lentiviral vectors were designed to regulate miR-146a-5p expression. Dual-luciferase reporter assay was performed to confirm the targeted relationship between miR-146a-5p and MAPK1. Short hairpin RNA (shRNA) was used to regulate MAPK1 expression. RESULTS: RT-qPCR and western blotting revealed that 5 J/cm2 irradiation elevated the levels of the osteogenic markers osterix (OSX) and bone sialoprotein (BSP) in hPDLSCs. miR-146a-5p is downregulated in hPDLSCs under the low-energy red LED light irradiation. miR-146a-5p underexpression markedly promoted the osteogenic potential of hPDLSCs. miR-146a-5p targeted MAPK1. 5 J/cm2 red LED irradiation rescued the inhibitory effects of upregulated miR-146a-5p on osteogenic differentiation, and the positive influence of red LED irradiation could be reversed by downregulated MAPK1. CONCLUSION: These findings confirm that miR-146a-5p is involved in the effect of LED irradiation on the osteogenic differentiation of hPDLSCs by targeting MAPK1. Red LED irradiation may be a potential clinical adjunct therapy for periodontal regeneration.


Assuntos
Diferenciação Celular , MicroRNAs , Osteogênese , Ligamento Periodontal , Células-Tronco , Osteogênese/efeitos da radiação , Diferenciação Celular/efeitos da radiação , Ligamento Periodontal/citologia , Ligamento Periodontal/efeitos da radiação , Humanos , Células-Tronco/efeitos da radiação , Sialoproteína de Ligação à Integrina , Fosfatase Alcalina/metabolismo , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Células Cultivadas , Fator de Transcrição Sp7 , Luz , Reação em Cadeia da Polimerase em Tempo Real , Luz Vermelha
4.
Bioengineering (Basel) ; 11(6)2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38927838

RESUMO

Advanced glycation end product (AGE) accumulation due to diabetes causes vascular and neurological lesions, delaying healing. The use of stem cells could overcome these problems. Although many studies have shown the potential beneficial effects of stem cell therapies in the treatment of chronic and refractory skin ulcers, their delivery methods are still under investigation. Human periodontal ligament stem cells (hPDLSCs) can spontaneously differentiate into myofibroblasts in specific cultures; therefore, they have the potential to effectively treat diabetic wounds and may also have applications in the field of medical cosmetics. The myofibroblastic differentiation ability of hPDLSCs in the presence of AGEs was evaluated by the expression of α-SMA and COL1A1 using RT-qPCR and WB technology. Wound healing in diabetic mice, induced by streptozotocin (STZ) and assessed using H&E staining, Masson staining, and immunohistochemical (IHC) and immunofluorescence (IF) staining, was used to validate the effects of hPDLSCs. In the wound tissues, the expression of α-SMA, COL1A1, CD31, CD206, iNOS, and vimentin was detected. The findings indicated that in H-DMEM, the expression of COL1A1 exhibited a significant decrease, while α-SMA demonstrated an increase in P7 cells, ignoring the damage from AGEs (p < 0.05). In an STZ-induced diabetic C57BL/6J mice whole-skin defect model, the healing rate of the hPDLSCs treatment group was significantly higher than that in the models (on the 7th day, the rate was 65.247% vs. 48.938%, p < 0.05). hPDLSCs have been shown to spontaneously differentiate into myofibroblasts in H-DMEM and resist damage from AGEs in both in vivo and in vitro models, suggesting their potential in the field of cosmetic dermatology.

5.
Cell Biochem Funct ; 42(5): e4069, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38940455

RESUMO

Stem cells demonstrate differentiation and regulatory functions. In this discussion, we will explore the impacts of cell culture density on stem cell proliferation, adipogenesis, and regulatory abilities. This study aimed to investigate the impact of the initial culture density of human periodontal ligament stem cells (hPDLSCs) on the adipogenic differentiation of autologous cells. Our findings indicate that the proliferation rate of hPDLSCs increased with increasing initial cell density (0.5-8 × 104 cells/cm2). After adipogenic differentiation induced by different initial cell densities of hPDLSC, we found that the mean adipose concentration and the expression levels of lipoprotein lipase (LPL), CCAAT/enhancer binding protein α (CEBPα), and peroxisome proliferator-activated receptor γ (PPAR-γ) genes all increased with increasing cell density. To investigate the regulatory role of hPDLSCs in the adipogenic differentiation of other cells, we used secreted exocrine vesicles derived from hPDLSCs cultivated at different initial cell densities of 50 µg/mL to induce the adipogenic differentiation of human bone marrow stromal cells. We also found that the mean adipose concentration and expression of LPL, CEBPα, and PPARγ genes increased with increasing cell density, with an optimal culture density of 8 × 104 cells/cm2. This study provides a foundation for the application of adipogenic differentiation in stem cells.


Assuntos
Adipogenia , Diferenciação Celular , Ligamento Periodontal , Células-Tronco , Humanos , Ligamento Periodontal/citologia , Ligamento Periodontal/metabolismo , Células-Tronco/citologia , Células-Tronco/metabolismo , PPAR gama/metabolismo , PPAR gama/genética , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/citologia , Células Cultivadas , Lipase Lipoproteica/metabolismo , Lipase Lipoproteica/genética , Proliferação de Células , Contagem de Células , Proteína alfa Estimuladora de Ligação a CCAAT/metabolismo , Proteína alfa Estimuladora de Ligação a CCAAT/genética
6.
Cell Biol Int ; 48(6): 808-820, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38433534

RESUMO

Bone defects are characterized by a hypoxic environment, which affects bone tissue repair. However, the role of hypoxia in the repair of alveolar bone defects remains unclear. Human periodontal ligament stem cells (hPDLSCs) are high-quality seed cells for repairing alveolar bone defects, whose behavior changes under hypoxia. However, their mechanism of action is not known and needs to be elucidated. We hypothesized that hypoxia might be beneficial to alveolar bone defect repair and the osteogenic differentiation of hPDLSCs. To test this hypothesis, cobalt chloride (CoCl2) was used to create a hypoxic environment, both in vitro and in vivo. In vitro study, the best osteogenic effect was observed after 48 h of hypoxia in hPDLSCs, and the AKT/mammalian target of rapamycin/eukaryotic translation initiation factor 4e-binding protein 1 (AKT/mTOR/4EBP-1) signaling pathway was significantly upregulated. Inhibition of the AKT/mTOR/4EBP-1 signaling pathway decreased the osteogenic ability of hPDLSCs under hypoxia and hypoxia-inducible factor 1 alpha (HIF-1α) expression. The inhibition of HIF-1α also decreased the osteogenic capacity of hPDLSCs under hypoxia without significantly affecting the level of phosphorylation of AKT/mTOR/4EBP-1. In vitro study, Micro-CT and tissue staining results show better bone regeneration in hypoxic group than control group. These results suggested that hypoxia promoted alveolar bone defect repair and osteogenic differentiation of hPDLSCs, probably through AKT/mTOR/4EBP-1/HIF-1α signaling. These findings provided important insights into the regulatory mechanism of hypoxia in hPDLSCs and elucidated the effect of hypoxia on the healing of alveolar bone defects. This study highlighted the importance of physiological oxygen conditions for tissue engineering.


Assuntos
Perda do Osso Alveolar , Diferenciação Celular , Hipóxia Celular , Cobalto , Subunidade alfa do Fator 1 Induzível por Hipóxia , Osteogênese , Ligamento Periodontal , Humanos , Proteínas Adaptadoras de Transdução de Sinal/efeitos dos fármacos , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Perda do Osso Alveolar/metabolismo , Regeneração Óssea/efeitos dos fármacos , Proteínas de Ciclo Celular/metabolismo , Diferenciação Celular/efeitos dos fármacos , Células Cultivadas , Cobalto/farmacologia , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Osteogênese/efeitos dos fármacos , Ligamento Periodontal/metabolismo , Ligamento Periodontal/citologia , Fosfoproteínas/metabolismo , Proteínas Proto-Oncogênicas c-akt/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos , Células-Tronco/metabolismo , Serina-Treonina Quinases TOR/efeitos dos fármacos , Serina-Treonina Quinases TOR/metabolismo
7.
BMC Complement Med Ther ; 24(1): 113, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38448925

RESUMO

BACKGROUND: Triptolide is a widely utilized natural anti-inflammatory drug in clinical practice. Aim of this study was to evaluate effects of triptolide on hPDLSCs osteogenesis in an inflammatory setting and to investigate underlying mechanisms. METHODS: Using the tissue block method to obtain hPDLSCs from extracted premolar or third molar. Flow cytometry, osteogenic and adipogenic induction were carried out in order to characterise the features of the cells acquired. hPDLSC proliferative activity was assessed by CCK-8 assay to determine the effect of TNF-α and/or triptolide. The impact of triptolide on the osteogenic differentiation of hPDLSCs was investigated by ALP staining and quantification. Osteogenesis-associated genes and proteins expression level were assessed through PCR and Western blotting assay. Finally, BAY-117,082 was used to study the NF-κB pathway. RESULTS: In the group treated with TNF-α, there was an elevation in inflammation levels while osteogenic ability and the expression of both osteogenesis-associated genes and proteins decreased. In the group co-treated with TNF-α and triptolide, inflammation levels were reduced and osteogenic ability as well as the expression of both osteogenesis-associated genes and proteins were enhanced. At the end of the experiment, both triptolide and BAY-117,082 exerted similar inhibitory effects on the NF-κB pathway. CONCLUSION: The osteogenic inhibition of hPDLSCs by TNF-α can be alleviated through triptolide, with the involvement of the p-IκBα/NF-κB pathway in this mechanism.


Assuntos
Diterpenos , NF-kappa B , Fenantrenos , Fator de Necrose Tumoral alfa , Humanos , Osteogênese , Inibidor de NF-kappaB alfa , Ligamento Periodontal , Transdução de Sinais , Células-Tronco , Inflamação , Compostos de Epóxi
8.
Int J Med Sci ; 21(4): 664-673, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38464837

RESUMO

N6-Methyladenosine (m6A) has been reported to play a dynamic role in osteoporosis and bone metabolism. However, whether m6A is involved in the osteogenic differentiation of human periodontal ligament stem cells (hPDLSCs) remains unclear. Here, we found that methyltransferase-like 3 (METTL3) was up-regulated synchronously with m6A during the osteogenic differentiation of hPDLSCs. Functionally, lentivirus-mediated knockdown of METTL3 in hPDLSCs impaired osteogenic potential. Mechanistic analysis further showed that METTL3 knockdown decreased m6A methylation and reduced IGF2BP1-mediated stability of runt-related transcription factor 2 (Runx2) mRNA, which in turn inhibited osteogenic differentiation. Therefore, METTL3-based m6A modification favored osteogenic differentiation of hPDLSCs through IGF2BP1-mediated Runx2 mRNA stability. Our study shed light on the critical roles of m6A on regulation of osteogenic differentiation in hPDLSCs and served novel therapeutic approaches in vital periodontitis therapy.


Assuntos
Osteogênese , Ligamento Periodontal , Humanos , Diferenciação Celular/genética , Células Cultivadas , Subunidade alfa 1 de Fator de Ligação ao Core/genética , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Metiltransferases/genética , Metiltransferases/metabolismo , Osteogênese/genética , Células-Tronco
9.
J Dent Sci ; 19(1): 231-245, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38303843

RESUMO

Background/purpose: Nicotine is a widely known addictive and toxic substance in cigarette that exacerbates periodontitis. However, its deleterious effects on dental stem cells and subsequent implications in tissue regeneration remain unclear. This study aimed to explore the effects of nicotine on the regenerative capacity of human periodontal ligament stem cells (hPDLSCs) based on transcriptomics and proteomics, and determined possible targeted genes associated with smoking-related periodontitis. Materials and methods: hPDLSCs were treated with different concentrations of nicotine ranging from 10-3 to 10-8 M. Transcriptomics and proteomics were performed and confirmed employing Western blot, 5-ethynyl-2'-deoxyuridine (EdU), and alkaline phosphatase (ALP) staining. A ligature-induced periodontitis mouse model was established and administrated with nicotine (16.2 µg/10 µL) via gingival sulcus. The bone resorption was assessed by micro-computed tomography and histological staining. Key genes were identified using multi-omics analysis with verifications in hPDLSCs and human periodontal tissues. Results: Based on enrichments analysis, nicotine-treated hPDLSCs exhibited decreased proliferation and differentiation abilities. Local administration of nicotine in mouse model significantly aggravated bone resorption and undermined periodontal tissue regeneration by inhibiting the endogenous dental stem cells regenerative ability. HMGCS1, GPNMB, and CHRNA7 were hub-genes according to the network analysis and corelated with proliferation and differentiation capabilities, which were also verified in both cells and tissues. Conclusion: Our study investigated the destructive effects of nicotine on the regeneration of periodontal tissues from aspects of in vitro and in vivo with the supporting information from both transcriptome and proteome, providing novel targets into the molecular mechanisms of smoking-related periodontitis.

10.
Curr Stem Cell Res Ther ; 19(8): 1120-1128, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38279741

RESUMO

BACKGROUND AND OBJECTIVES: Orthodontic treatment involves the application of mechanical force to induce periodontal tissue remodeling and ultimately promote tooth movement. It is essential to study the response mechanisms of human periodontal ligament stem cells (hPDLSCs) to improve orthodontic treatment. METHODS: In this study, hPDLSCs treated with compressive force were used to simulate orthodontic treatment. Cell viability and cell death were assessed using the CCK-8 assay and TUNEL staining. Alkaline phosphatase (ALP) and alizarin red staining were performed to evaluate osteogenic differentiation. The binding relationship between IGF1 and METTL14 was assessed using RIP and dual-luciferase reporter assays. RESULTS: The compressive force treatment promoted the viability and osteogenic differentiation of hPDLSCs. Additionally, m6A and METTL14 levels in hPDLSCs increased after compressive force treatment, whereas METTL14 knockdown decreased cell viability and inhibited the osteogenic differentiation of hPDLSCs treated with compressive force. Furthermore, the upregulation of METTL14 increased m6A levels, mRNA stability, and IGF1 expression. RIP and dual-luciferase reporter assays confirmed the interaction between METTL14 and IGF1. Furthermore, rescue experiments demonstrated that IGF1 overexpression reversed the effects of METTL14 knockdown in hPDLSCs treated with compressive force. CONCLUSIONS: In conclusion, this study demonstrated that compressive force promotes cell viability and osteogenic differentiation of hPDLSCs by regulating IGF1 levels mediated by METTL14.


Assuntos
Diferenciação Celular , Fator de Crescimento Insulin-Like I , Metiltransferases , Osteogênese , Ligamento Periodontal , Células-Tronco , Humanos , Ligamento Periodontal/citologia , Ligamento Periodontal/metabolismo , Osteogênese/genética , Fator de Crescimento Insulin-Like I/metabolismo , Fator de Crescimento Insulin-Like I/genética , Diferenciação Celular/genética , Células-Tronco/metabolismo , Células-Tronco/citologia , Metiltransferases/metabolismo , Metiltransferases/genética , Sobrevivência Celular , Células Cultivadas , Adenosina/análogos & derivados , Adenosina/metabolismo
11.
J Periodontal Res ; 59(1): 162-173, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37905727

RESUMO

OBJECTIVE: The purpose of this study was to investigate resveratrol's specific role as an anti-inflammatory and osteogenic differentiation of hPDLSCs in periodontitis and to reveal the mechanisms involved. BACKGROUND: Numerous studies have shown that inhibiting the inflammatory response of periodontal tissues and promoting the regeneration of alveolar bone are crucial treatments for periodontitis. Resveratrol has been found to have certain anti-inflammatory property. However, the anti-inflammatory mechanism and osteogenic effect of resveratrol in periodontitis are poorly understood. MATERIALS AND METHODS: We constructed an in vitro periodontitis model by LPS stimulation of hPDLSCs and performed WB, RT-qPCR, and immunofluorescence to analyze inflammatory factors and related pathways. In addition, we explored the osteogenic ability of resveratrol in in vitro models. RESULTS: In vitro, resveratrol ameliorated the inflammatory response associated with activation of the NF-κB pathway through activation of the NRF2/HO-1 pathway, characterized by inhibition of p65/p50 nuclear translocation and the proinflammatory cytokines interleukin-1ß levels. Resveratrol also has a positive effect on osteogenic differentiation. CONCLUSIONS: Observations suggest that resveratrol modulates the inflammatory response in hPDLSCs via the NRF2/HO-1 and NF-κB pathways and promotes osteogenic differentiation.


Assuntos
NF-kappa B , Periodontite , Humanos , NF-kappa B/metabolismo , Resveratrol/farmacologia , Fator 2 Relacionado a NF-E2 , Osteogênese , Ligamento Periodontal , Anti-Inflamatórios/farmacologia , Diferenciação Celular , Células Cultivadas
12.
Clin Oral Investig ; 28(1): 64, 2023 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-38158464

RESUMO

OBJECTIVES: This study aimed to investigate the functions of 19 types of Wnt ligands during the process of osteogenic differentiation in human periodontal ligament stem cells (hPDLSCs), with particular attention to WNT3A and WNT4. MATERIALS AND METHODS: The expression levels of 19 types of Wnt ligands were examined using real-time quantitative polymerase chain reaction (real-time qPCR) during hPDLSCs osteogenic differentiation at 7, 10, and 14 days. Knockdown of WNT3A and WNT4 expression was achieved using adenovirus vectors, and conditioned medium derived from WNT3A and WNT4 overexpression plasmids was employed to investigate their roles in hPDLSCs osteogenesis. Osteogenic-specific genes were analyzed using real-time qPCR. Alkaline phosphatase (ALP) and alizarin red S activities and staining were employed to assess hPDLSCs' osteogenic differentiation ability. RESULTS: During hPDLSCs osteogenic differentiation, the expression of 19 types of Wnt ligands varied, with WNT3A and WNT4 showing significant upregulation. Inhibiting WNT3A and WNT4 expression hindered hPDLSCs' osteogenic capacity. Conditioned medium of WNT3A promoted early osteogenic differentiation, while WNT4 facilitated late osteogenesis slightly. CONCLUSION: Wnt ligands, particularly WNT3A and WNT4, play an important role in hPDLSCs' osteogenic differentiation, highlighting their potential as promoters of osteogenesis. CLINICAL RELEVANCE: Given the challenging nature of alveolar bone regeneration, therapeutic strategies that target WNT3A and WNT4 signaling pathways offer promising opportunities. Additionally, innovative gene therapy approaches aimed at regulating of WNT3A and WNT4 expression hold potential for improving alveolar bone regeneration outcomes.


Assuntos
Osteogênese , Ligamento Periodontal , Humanos , Osteogênese/genética , Meios de Cultivo Condicionados/farmacologia , Meios de Cultivo Condicionados/metabolismo , Células-Tronco , Diferenciação Celular/genética , Células Cultivadas
13.
Lasers Med Sci ; 38(1): 240, 2023 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-37851127

RESUMO

There are few studies on the effect of low-energy LED red light on periodontal tissue regeneration in an inflammatory environment. In this study, Cell Counting Kit-8 (CCK-8) assays were used to detect the effects of TNF-α at three different concentrations (0, 10 ng/ml, and 20 ng/ml) on the proliferation of human periodontal ligament stem cells (hPDLSCs), and 10 ng/ml was selected as the subsequent experimental stimulation concentration. CCK-8 assays were used to detect the effect of LED red light with energy density of 1 J/ cm2, 3 J/ cm2, and 5 J/cm2 on the proliferation of hPDLSCs. The promotion effect of energy density of 5 J/cm2 on the proliferation of hPDLSCS was the most obvious (p < 0.05). Set CON group, ODM group, ODM + 10 ng/ml TNF-α group, and ODM + 10 ng/ml TNF-α + 5 J/ cm2 LED red light group. Alkaline phosphatase staining and activity detection, alizarin red staining and calcium nodules quantitative detection of osteoblast differentiation products, real-time fluorescence quantitative PCR detection of osteoblast gene expression (Runx2, Col-I, OPN, OCN). The results showed that ODM showed the strongest osteoblast ability, followed by ODM + 10 ng/ml TNF-α + 5 J/ cm2 LED red light group. The osteoblast ability of ODM + 10 ng/ml TNF-α was decreased, but was not found in CON group. Western blot was used to detect the expression of NF-κB pathway protein and osteoblast-related proteins (Runx2, Col-I, OPN, OCN) after addition of PDTC inhibitor. The results showed that the expression of p-IκBα was increased and the expression of IκBα was decreased (p < 0.05). The expression of osteoblast protein increased after the addition of inhibitor (p < 0.05). Therefore, in an inflammatory environment constructed by 10 ng/ml TNF-α, 5 J/cm2 LED red light can upregulate the proliferation and osteogenesis of hPDLSCs by inhibiting NF-κB signaling pathway.


Assuntos
NF-kappa B , Fator de Necrose Tumoral alfa , Humanos , NF-kappa B/genética , NF-kappa B/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Subunidade alfa 1 de Fator de Ligação ao Core/genética , Inibidor de NF-kappaB alfa/metabolismo , Inibidor de NF-kappaB alfa/farmacologia , Ligamento Periodontal , Osteogênese/genética , Células Cultivadas , Diferenciação Celular , Proliferação de Células
14.
Oral Dis ; 2023 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-37427856

RESUMO

BACKGROUND: Periodontitis can eventually contribute to tooth loss. Zinc finger E-box binding homeobox 1 (ZEB1) is identified as overexpressed in the gingival tissue of mice with periodontitis. This study is designed to decipher the mechanism of ZEB1's involvement in periodontitis. METHODS: Human periodontal mesenchymal stem cells (hPDLSCs) were exposed to LPS to mimic the inflammation in periodontitis. Following ZEB1 silencing, FX1 (an inhibitor of Bcl-6) treatment or ROCK1 overexpression, cell viability, and apoptosis were analyzed. Alkaline phosphatase (ALP) staining, Alizarin red staining, RT-qPCR, and western blot were performed to evaluate osteogenic differentiation and mineralization. hPDLSCs were processed for luciferase reporter assay and ChIP-PCR to confirm the association between ZEB1 and ROCK1. RESULTS: The induction of ZEB1 silencing resulted in reduced cell apoptosis, enhanced osteogenic differentiation, and mineralization. Nevertheless, these effects were significantly blunted by FX1. ZEB1 was confirmed to bind to the promoter sites of ROCK1 and regulate the ROCK1/AMPK. Whereas ROCK1 overexpression reversed the effects of ZEB1 silencing on Bcl-6/STAT1, as well as cell proliferation and osteogenesis differentiation. CONCLUSION: hPDLSCs displayed decreased proliferation and weakened osteogenesis differentiation in response to LPS. These impacts were mediated by ZEB1 regulating Bcl-6/STAT1 via AMPK/ROCK1.

15.
Int J Med Sci ; 20(7): 958-968, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37324192

RESUMO

The treatment of bone loss due to periodontitis has posed a great challenge for physicians for decades. Therefore, it is of extraordinary significance to identify an effective regeneration scheme for alveolar bone. This study aimed to investigate long non-coding RNA (lncRNA) small nucleolar RNA host gene 5 (SNHG5) whether sponges microRNA-23b-3p (miR-23b-3p) to achieve the osteogenic differentiation of human periodontal ligament stem cells (hPDLSCs). Results revealed that the expression of SNHG5 was upregulated whereas that of miR-23b-3p was downregulated in osteogenic hPDLSCs. Alizarin red staining assays and qRT-PCR demonstrated that SNHG5 silencing or miR-23b-3p overexpression inhibits hPDLSCs osteogenic differentiation and vice versa. In addition, miR-23b-3p partially abolished the promotive effect of SNHG5 on osteogenic differentiation of hPDLSCs. Dual luciferase report and RNA pulldown assay verified that miR-23b-3p is a regulatory target of SNHG5 and that Runx2 is a gene target of miR-23b-3p. In brief, the results demonstrate that SNHG5 promotes the osteogenic differentiation of hPDLSCs by regulating the miR-23b-3p/Runx2 axis. Our study provides novel mechanistic insights into the critical role of lncRNA SNHG5 as a miR-23b-3p sponge to regulate Runx2 expression in hPDLSCs and may serve as a potential therapeutics target for periodontitis.


Assuntos
MicroRNAs , Periodontite , RNA Longo não Codificante , Humanos , Diferenciação Celular/genética , Células Cultivadas , MicroRNAs/genética , MicroRNAs/metabolismo , Osteogênese/genética , Ligamento Periodontal , Periodontite/genética , Periodontite/metabolismo , RNA Longo não Codificante/metabolismo , Células-Tronco
16.
BMC Oral Health ; 23(1): 422, 2023 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-37365568

RESUMO

BACKGROUND: Periodontitis is a chronic infectious disease of periodontal support tissue caused by microorganisms in dental plaque, which causes alveolar bone resorption and tooth loss. Periodontitis treatment goals include prevention of alveolar bone resorption and promotion of periodontal regeneration. We previously found that granulocyte colony-stimulating factor (G-CSF) was involved in periodontitis-related alveolar bone resorption through induction of an immune response and subsequent destruction of periodontal tissue. However, the mechanisms underlying the effects of G-CSF on abnormal bone remodeling have not yet been fully elucidated. Human periodontal ligament stem cells (hPDLSCs) are major modulators of osteogenic differentiation in periodontal tissues. Thus, the aim of this study was to investigated whether G-CSF acts effects on hPDLSC proliferation and osteogenic differentiation, as well as periodontal tissue repair. METHODS: hPDLSCs were cultured and identified by short tandem repeat analysis. The expression patterns and locations of G-CSF receptor (G-CSFR) on hPDLSCs were detected by immunofluorescence analysis. The effects of G-CSF on hPDLSCs in a lipopolysaccharide (LPS)-induced inflammatory microenvironment were investigated. Specifically, Cell-Counting Kit 8 (CCK8) and Alizarin red staining were used to examine hPDLSC proliferation and osteogenic differentiation; reverse transcription-polymerase chain reaction was performed to detect the expression patterns of osteogenesis-related genes (alkaline phosphatase [ALP], runt-related transcription factor 2 [Runx2], and osteocalcin [OCN]) in hPDLSCs; and Western blotting was used to detect the expression patterns of phosphatidylinositol 3-kinase (PI3K) and protein kinase B (Akt) of PI3K/Akt signaling pathway. RESULTS: hPDLSCs exhibited a typical spindle-shaped morphology and good clonogenic ability. G-CSFR was mostly localized on the cell surface membrane. Analyses showed that G-CSF inhibited hPDLSC proliferation. Also, in the LPS-induced inflammatory microenvironment, G-CSF inhibited hPDLSC osteogenic differentiation and reduced the expression levels of osteogenesis-related genes. G-CSF increased the protein expression levels of hPDLSC pathway components p-PI3K and p-Akt. CONCLUSIONS: We found that G-CSFR was expressed on hPDLSCs. Furthermore, G-CSF inhibited hPDLSC osteogenic differentiation in vitro in the LPS-induced inflammatory microenvironment.


Assuntos
Reabsorção Óssea , Periodontite , Humanos , Proteínas Proto-Oncogênicas c-akt , Lipopolissacarídeos/farmacologia , Osteogênese , Fosfatidilinositol 3-Quinases , Diferenciação Celular , Ligamento Periodontal , Fosfatidilinositol 3-Quinase , Fator Estimulador de Colônias de Granulócitos/farmacologia , Proliferação de Células , Células Cultivadas
17.
J Orthop Surg Res ; 18(1): 400, 2023 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-37264407

RESUMO

BACKGROUND: Human periodontal ligament stem cells (hPDLSCs) have a superior ability to promote the formation of new bones and achieve tissue regeneration. However, mesenchymal stem cells (MSCs) are placed in harsh environments after transplantation, and the hostile microenvironment reduces their stemness and hinders their therapeutic effects. Klotho is an antiaging protein that participates in the regulation of stress resistance. In our previous study, we demonstrated the protective ability of Klotho in hPDLSCs. METHODS: A cranial bone defect model of rats was constructed, and the hPDLSCs with or without Klotho pretreatment were transplanted into the defects. Histochemical staining and micro-computed tomography were used to detect cell survival, osteogenesis, and immunoregulatory effects of hPDLSCs after transplantation. The in vitro capacity of hPDLSCs was measured by a macrophage polarization test and the inflammatory level of macrophages. Furthermore, we explored autophagy activity in hPDLSCs, which may be affected by Klotho to regulate cell homeostasis. RESULTS: Pretreatment with the recombinant human Klotho protein improved cell survival after hPDLSC transplantation and enhanced their ability to promote bone regeneration. Furthermore, Klotho pretreatment can promote stem cell immunomodulatory effects in macrophages and modulate cell autophagy activity, in vivo and in vitro. CONCLUSION: These findings suggest that the Klotho protein protects hPDLSCs from stress after transplantation to maintain stem cell function via enhancing the immunomodulatory ability of hPDLSCs and inhibiting cell autophagy.


Assuntos
Ligamento Periodontal , Células-Tronco , Humanos , Ratos , Animais , Ligamento Periodontal/metabolismo , Microtomografia por Raio-X , Células-Tronco/metabolismo , Osteogênese , Regeneração Óssea , Proteínas/metabolismo , Autofagia , Diferenciação Celular , Células Cultivadas , Proliferação de Células/fisiologia
18.
Int J Mol Sci ; 24(9)2023 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-37175504

RESUMO

Periodontitis is a gingiva disease sustained by microbially associated and host-mediated inflammation that results in the loss of the connective periodontal tissues, including periodontal ligament and alveolar bone. Symptoms include swollen gingiva, tooth loss and, ultimately, ineffective mastication. Clinicians utilize regenerative techniques to rebuild and recover damaged periodontal tissues, especially in advanced periodontitis. Human periodontal ligament stem cells (hPDLSCs) are considered an appealing source of stem cells for regenerative therapy in periodontium. hPDLSCs manifest the main properties of mesenchymal stem cells, including the ability to self-renew and to differentiate in mesodermal cells. Significant progress has been made for clinical application of hPDLSCs; nevertheless, some problems remain, including the small number of cells isolated from each sample. In recent decades, hPDLSC ex vivo expansion and differentiation have been improved by modifying cell culture conditions, especially with the supplementation of cytokines' or growth factors' mix, chemicals, and natural compounds, or by using the decellularized extracellular matrix. Here, we analyzed the changes in stemness properties and differentiation potential of hPDLSCs when culturing in alternative media. In addition, we focused on the possibility of replacing FBS with human emoderivates to minimize the risks of xenoimmunization or zoonotic transmission when cells are expanded for therapeutic purposes.


Assuntos
Ligamento Periodontal , Periodontite , Humanos , Osteogênese , Células-Tronco , Diferenciação Celular , Células Cultivadas , Periodontite/terapia , Proliferação de Células
19.
Int J Mol Sci ; 24(8)2023 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-37108296

RESUMO

Stem cells have differentiation and regulation functions. Here, we discussed the impact of cell culture density on stem cell proliferation, osteoblastogenesis, and regulation. To discuss the effect of the initial culture density of human periodontal ligament stem cells (hPDLSCs) on the osteogenic differentiation of autologous cells, we found that the hPDLSC proliferation rate decreased with an increase in the initial plating density (0.5-8 × 104 cells/cm2) for the 48 h culture cycle. After hPDLSCs induced osteogenic differentiation for 14 days with different initial cell culture densities, the expression of osteoprotegerin (OPG) and runt-related transcription factor 2(RUNX2) and the OPG/ Receptor Activator of Nuclear Factor-κ B Ligand (RANKL) ratio were the highest in the hPDLSCs initially plated at a density of 2 × 104 cells/cm2, and the average cell calcium concentration was also the highest. To study hPDLSCs regulating the osteoblastic differentiation of other cells, we used 50 µg/mL of secreted exosomes derived from hPDLSCs cultured using different initial cell densities to induce human bone marrow stromal cell (hBMSC) osteogenesis. After 14 days, the results indicated that the gene expression of OPG, Osteocalcin(OCN,)RUNX2, and osterix and the OPG/RANKL ratio were the highest in the 2 × 104 cells/cm2 initial cell density group, and the average calcium concentration was also the highest. This provides a new idea for the clinical application of stem cell osteogenesis.


Assuntos
Células-Tronco Mesenquimais , Osteogênese , Humanos , Osteogênese/genética , Ligamento Periodontal , Subunidade alfa 1 de Fator de Ligação ao Core/genética , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Cálcio/metabolismo , Células Cultivadas , Células-Tronco/metabolismo , Diferenciação Celular , Proliferação de Células
20.
BMC Oral Health ; 23(1): 137, 2023 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-36894905

RESUMO

BACKGROUND: The aim of this study was to investigate the protective effect and mechanism of oridonin in an in vitro lipopolysaccharide (LPS)-induced human periodontal ligament stem cells (hPDLSCs) model of periodontitis. METHODS: Primary hPDLSCs were isolated and cultured, and then the expression of surface antigens CD146, STRO-1 and CD45 of hPDLSCs was detected by flow cytometry. The mRNA expression level of Runx2, OPN, Col-1, GRP78, CHOP, ATF4 and ATF6 in the cells was tested by qRT-PCR. MTT was taken to determine the cytotoxicity of oridonin at different concentrations (0-4 µM) on hPDLSCs. Besides, ALP staining, alizarin red staining and Oil Red O staining were utilized to assess the osteogenic differentiation (ALP concentration, mineralized calcium nodule formation) and adipogenic differentiation abilities of the cells. The proinflammatory factors level in the cells was measured by ELISA. The protein expression level of NF-κB/NLRP3 pathway-related proteins and endoplasmic reticulum (ER) stress-related markers in the cells were detected by Western blot. RESULTS: hPDLSCs with positive CD146 and STRO-1 expression and negative CD45 expression were successfully isolated in this study. 0.1-2 µM of oridonin had no significant cytotoxicity on the growth of hPDLSCs, while 2 µM of oridonin could not only greatly reduce the inhibitory effect of LPS on the proliferation and osteogenic differentiation of hPDLSCs cells, but also inhibit LPS-induced inflammation and ER stress in hPDLSCs cells. Moreover, further mechanism research showed that 2 µM of oridonin suppressed NF-κB/NLRP3 signaling pathway activity in LPS-induced hPDLSCs cells. CONCLUSIONS: Oridonin promotes proliferation and osteogenic differentiation of LPS-induced hPDLSCs in an inflammatory environment, possibly by inhibiting ER stress and NF-κB/NLRP3 pathway. Oridonin may have a potential role in the repair and regeneration of hPDLSCs.


Assuntos
Lipopolissacarídeos , NF-kappa B , Humanos , NF-kappa B/metabolismo , Lipopolissacarídeos/farmacologia , Lipopolissacarídeos/metabolismo , Ligamento Periodontal , Inflamassomos/metabolismo , Inflamassomos/farmacologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Osteogênese , Antígeno CD146/metabolismo , Antígeno CD146/farmacologia , Transdução de Sinais , Diferenciação Celular , Células-Tronco/metabolismo , Proliferação de Células , Células Cultivadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...