Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 142
Filtrar
Mais filtros












Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(17)2024 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-39273218

RESUMO

The pursuit of novel or modified substances based on a natural origin, like flavonoids, is essential in addressing the increasing number of diseases and bacterial resistance to antibiotics, as well as in maintaining intestinal balance and enhancing overall gut health. The primary goal of this research was to evaluate the impact of specific flavonoid compounds-chalcones, flavanones, and flavones-substituted with -Br, -Cl, -CH3, and -NO2 on both pathogenic and probiotic microorganisms. Additionally, this study aimed to understand these compounds' influence on standardized normal and pathologically altered intestinal microbiomes. 8-Bromo-6-chloroflavone 4'-O-ß-D-(4″-O-methyl)-glucopyranoside and 8-bromo-6-chloroflavanone showed the most promising results as bactericidal agents. They significantly limited or inhibited the growth of pathogenic bacteria without adversely affecting the probiotic's growth. Digestion in vitro studies indicated that 6-methyl-8-nitroflavone and 8-bromo-6-chloroflavone positively modulated the gut microbiome by increasing beneficial bacteria and reducing potentially pathogenic microbes. This effect was most notable in microbiomes characteristic of older individuals and those recovering from chemotherapy or antibiotic treatments. This study underscores the therapeutic potential of flavonoid compounds, particularly those with specific halogen and nitro substitutions, in enhancing gut health.


Assuntos
Flavonoides , Microbioma Gastrointestinal , Probióticos , Flavonoides/farmacologia , Flavonoides/química , Microbioma Gastrointestinal/efeitos dos fármacos , Humanos , Antibacterianos/farmacologia , Antibacterianos/química , Bactérias/efeitos dos fármacos , Bactérias/crescimento & desenvolvimento , Cinética
2.
J Chromatogr A ; 1734: 465311, 2024 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-39226749

RESUMO

The inorganic matrices such as metal concentrates, steel, cement, glass, clay, coal, graphite, rocks and sediments, ores etc. play a pivotal role in infrastructure development, transportation, and energy. The presence of non-metallic elements particularly halogens influence their quality, processing cost, and environment dynamics. The analysis of non-metals in such matrices is critically challenging due to their hardness, rigidity, and non-digestibility. This comprehensive review provides a critical comparison of various sample preparation methods in conjunction with pros and cons of advanced techniques for the detection of non-metals in complex matrices, particularly focusing on ion chromatography. Moreover, the review also addresses the challenges related to the enrichment and automation of non-metals analysis. In addition, the previous literature on non-metals determination in diverse range of inorganic matrices has been tabulated for the first time. These insights are intended to guide researchers, quality control analysts, environmental scientists, and policymakers in enhancing pollution monitoring and control strategies.


Assuntos
Halogênios , Halogênios/análise , Halogênios/química , Cromatografia por Troca Iônica/métodos , Monitoramento Ambiental/métodos
3.
Proc Natl Acad Sci U S A ; 121(39): e2401975121, 2024 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-39284062

RESUMO

While the dominant role of halogens in Arctic ozone loss during spring has been widely studied in the last decades, the impact of sea-ice halogens on surface ozone abundance over the northern hemisphere (NH) mid-latitudes remains unquantified. Here, we use a state-of-the-art global chemistry-climate model including polar halogens (Cl, Br, and I), which reproduces Arctic ozone seasonality, to show that Arctic sea-ice halogens reduce surface ozone in the NH mid-latitudes (47°N to 60°N) by ~11% during spring. This background ozone reduction follows the southward export of ozone-poor and halogen-rich air masses from the Arctic through polar front intrusions toward lower latitudes, reducing the springtime tropospheric ozone column within the NH mid-latitudes by ~4%. Our results also show that the present-day influence of Arctic halogens on surface ozone destruction is comparatively smaller than in preindustrial times driven by changes in the chemical interplay between anthropogenic pollution and natural halogens. We conclude that the impact of Arctic sea-ice halogens on NH mid-latitude ozone abundance should be incorporated into global models to improve the representation of ozone seasonality.

4.
Angew Chem Int Ed Engl ; 63(39): e202409779, 2024 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-38989722

RESUMO

Bromine chemistry is responsible for the catalytic ozone destruction in the atmosphere. The heterogeneous reactions of sea-salt aerosols are the main abiotic sources of reactive bromine in the atmosphere. Here, we present a novel mechanism for the activation of bromide ions (Br-) by O2 and H2O in the absence of additional oxidants. The laboratory and theoretical calculation results demonstrated that under dark conditions, Br-, O2 and H3O+ could spontaneously generate Br and HO2 radicals through a proton-electron transfer process at the air-water interface and in the liquid phase. Our results also showed that light and acidity could significantly promote the activation of Br- and the production of Br2. The estimated gaseous Br2 production rate was up to 1.55×1010 molecules cm-2 ⋅ s-1 under light and acidic conditions; these results showed a significant contribution to the atmospheric reactive bromine budget. The reactive oxygen species (ROS) generated during Br- activation could promote the multiphase oxidation of SO2 to produce sulfuric acid, while the increase in acidity had a positive feedback effect on Br- activation. Our findings highlight the crucial role of the proton-electron transfer process in Br2 production; here, H3O+ facilitates the activation of Br- by O2, serves as a significant source of atmospheric reactive bromine and exerts a profound impact on the atmospheric oxidation capacity.

5.
Mar Environ Res ; 199: 106626, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38950495

RESUMO

Understanding the distribution of halogenated organic compounds (HOCs) in marine sediments is essential for understanding the marine carbon and halogen cycling, and also important for assessing the ecosystem health. In this study, a method based on combustion-ion chromatography was developed for determination of the composition and abundance of HOCs in marine sediments. The method showed high accuracy, precision and reproducibility in determining the content of adsorbable organic halogens (AOX), including fluorine, chlorine and bromine (AOF, AOCl, AOBr) and the corresponding insoluble organic halogens (IOF, IOCl, IOBr, IOX), as well as total organic halogen contents (TOX). Application of the method in coastal and deep-sea sediments revealed high ratios of organic halogens in the organic carbon pool of marine sediments, suggesting that organic halogen compounds represent an important yet previously overlooked stock of carbon and energy in marine sediments. Both the TOX and the proportion of organohalogens in organic carbon (X:C ratio) showed an increasing trend from the coast to the deep-sea sediments, indicating an increased significance of HOCs in deep-sea environments. The developed method and the findings of this study lay the foundation for further studies on biogeochemical cycling of HOCs in the ocean.


Assuntos
Monitoramento Ambiental , Sedimentos Geológicos , Poluentes Químicos da Água , Sedimentos Geológicos/química , Sedimentos Geológicos/análise , Monitoramento Ambiental/métodos , Poluentes Químicos da Água/análise , Halogênios/análise , Halogênios/química , Hidrocarbonetos Halogenados/análise , Cromatografia/métodos
6.
Molecules ; 29(13)2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38999133

RESUMO

A new type of catalyst containing magnesium oxide modified with various modifiers ranging from bromine and iodine, to interhalogen compounds, hydrohalogenic acids, and alkyl halides have been prepared using chemical vapor deposition (CVD) and wet impregnation methods. The obtained systems were characterized using a number of methods: determination of the concentration of X- ions, surface area determination, powder X-ray diffraction (PXRD), surface acid-base strength measurements, TPD of probe molecules (acetonitrile, pivalonitrile, triethylamine, and n-butylamine), TPD-MS of reaction products of methyl iodide with MgO, and Fourier transform infrared spectroscopy (FTIR). The catalysts' activity and chemoselectivity during transfer hydrogenation from ethanol to acrolein to allyl alcohol was measured. A significant increase in the activity of modified MgO (up to 80% conversion) in the transfer hydrogenation of acrolein was found, while maintaining high chemoselectivity (>90%) to allyl alcohol. As a general conclusion, it was shown that the modification of MgO results in the suppression of strong basic sites of the oxide, with a simultaneous appearance of Brønsted acidic sites on its surface. Independently, extensive research on the reaction progress of thirty alkyl halides with MgO was also performed in order to determine its ability to neutralize chlorinated wastes.

7.
Acta Crystallogr D Struct Biol ; 80(Pt 6): 451-463, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38841886

RESUMO

Fragment-based drug design using X-ray crystallography is a powerful technique to enable the development of new lead compounds, or probe molecules, against biological targets. This study addresses the need to determine fragment binding orientations for low-occupancy fragments with incomplete electron density, an essential step before further development of the molecule. Halogen atoms play multiple roles in drug discovery due to their unique combination of electronegativity, steric effects and hydrophobic properties. Fragments incorporating halogen atoms serve as promising starting points in hit-to-lead development as they often establish halogen bonds with target proteins, potentially enhancing binding affinity and selectivity, as well as counteracting drug resistance. Here, the aim was to unambiguously identify the binding orientations of fragment hits for SARS-CoV-2 nonstructural protein 1 (nsp1) which contain a combination of sulfur and/or chlorine, bromine and iodine substituents. The binding orientations of carefully selected nsp1 analogue hits were focused on by employing their anomalous scattering combined with Pan-Dataset Density Analysis (PanDDA). Anomalous difference Fourier maps derived from the diffraction data collected at both standard and long-wavelength X-rays were compared. The discrepancies observed in the maps of iodine-containing fragments collected at different energies were attributed to site-specific radiation-damage stemming from the strong X-ray absorption of I atoms, which is likely to cause cleavage of the C-I bond. A reliable and effective data-collection strategy to unambiguously determine the binding orientations of low-occupancy fragments containing sulfur and/or halogen atoms while mitigating radiation damage is presented.


Assuntos
Halogênios , SARS-CoV-2 , Enxofre , Halogênios/química , Cristalografia por Raios X/métodos , Enxofre/química , SARS-CoV-2/química , Proteínas não Estruturais Virais/química , Humanos , Elétrons , Modelos Moleculares , Desenho de Fármacos , Ligação Proteica , Sítios de Ligação , COVID-19
8.
Proc Natl Acad Sci U S A ; 121(12): e2315058121, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38466839

RESUMO

Mercury (Hg) is a contaminant of global concern, and an accurate understanding of its atmospheric fate is needed to assess its risks to humans and ecosystem health. Atmospheric oxidation of Hg is key to the deposition of this toxic metal to the Earth's surface. Short-lived halogens (SLHs) can provide halogen radicals to directly oxidize Hg and perturb the budget of other Hg oxidants (e.g., OH and O3). In addition to known ocean emissions of halogens, recent observational evidence has revealed abundant anthropogenic emissions of SLHs over continental areas. However, the impacts of anthropogenic SLHs emissions on the atmospheric fate of Hg and human exposure to Hg contamination remain unknown. Here, we show that the inclusion of anthropogenic SLHs substantially increased local Hg oxidation and, consequently, deposition in/near Hg continental source regions by up to 20%, thereby decreasing Hg export from source regions to clean environments. Our modeling results indicated that the inclusion of anthropogenic SLHs can lead to higher Hg exposure in/near Hg source regions than estimated in previous assessments, e.g., with increases of 8.7% and 7.5% in China and India, respectively, consequently leading to higher Hg-related human health risks. These results highlight the urgent need for policymakers to reduce local Hg and SLHs emissions. We conclude that the substantial impacts of anthropogenic SLHs emissions should be included in model assessments of the Hg budget and associated health risks at local and global scales.


Assuntos
Mercúrio , Humanos , Mercúrio/toxicidade , Mercúrio/análise , Monitoramento Ambiental/métodos , Ecossistema , China , Índia
9.
J Mol Model ; 30(3): 81, 2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38393388

RESUMO

CONTEXT: Why are the halonium cations so effective in forming strongly-bound complexes? We directed our research to address this question and we present electrostatic potential data for the valence-state halogen atoms X and halonium cations X+, where X = Cl, Br, I. The electron densities and electrostatic potentials of the halonium cations show considerably greater anisotropy than do the valence state halogens. The distances from the electrostatic potential surface maxima to the halogen nuclei are about 0.5 Å smaller than the distances from the electrostatic potential surface minima to the nuclei, giving the halonium cations each a more disk-like shape than the corresponding neutral valence state halogens. Their surface electrostatic potentials are totally consistent with the directionalities of halonium cations in complexes and the strengths of their interactions. To add perspective to this brief report, we have included calculations of the isotropic cation K+ and noble gas Kr. METHODS: The calculations of the electrostatic potentials of the valence states of the halogen atoms Cl, Br and I and the halonium cations Cl+, Br+ and I+, as well as K+ and Kr, on 0.001 au contours of their electronic densities were carried out with Gaussian O9 and the Wave Function Analysis - Surface Analysis Suite (WFA-SAS) at the M06-2X/6-31 + G(d,p) and M06-2X/3-21G* levels.

10.
Environ Monit Assess ; 196(3): 275, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38363444

RESUMO

The economic development of a country directly depends upon industries. But this economic development should not be at the cost of our natural environment. A substantial amount of water is spent during paper production, creating water scarcity and generating wastewater. Therefore, the Pollution Control Board classifies this industry into red category. Water is used in different papermaking stages such as debarking, pulping or bleaching, washing, and finishing. The wastewater thus generated contains lignin and xenobiotic compounds such as resin acids, chlorinated lignin, phenols, furans, dioxins, chlorophenols, adsorbable organic halogens (AOX), extractable organic halogens (EOCs), polychlorinated biphenyls, plasticizers, and polychlorinated dibenzodioxins. Nowadays, several microorganisms are used in the detoxification of these hazardous effluents. Researchers have found that microbial degradation is the most promising treatment method to remove high biological oxygen demand (BOD) and chemical oxygen demand (COD) from wastewater. Microorganisms also remove AOX toxicity, chlorinated compounds, suspended solids, color, lignin, derivatives, etc. from the pulp and paper mill effluents. But in the current scenario, mill effluents are known to deteriorate the environment and therefore it is highly desirable to deploy advanced technologies for effluent treatment. This review summarizes the eco-friendly advanced treatment technologies for effluents generated from pulp and paper mills.


Assuntos
Águas Residuárias , Poluentes Químicos da Água , Poluentes Químicos da Água/análise , Eliminação de Resíduos Líquidos , Lignina , Descontaminação , Monitoramento Ambiental , Halogênios , Água , Resíduos Industriais/análise , Papel
11.
Wilderness Environ Med ; 35(1_suppl): 45S-66S, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38379474

RESUMO

To provide guidance to medical providers, wilderness users, and travelers, the Wilderness Medical Society convened an expert panel to develop evidence-based guidelines for treating water in situations where the potability of available water is not assured, including wilderness and international travel, areas impacted by disaster, and other areas without adequate sanitation. The guidelines present the available methods for reducing or eliminating microbiological contamination of water for individuals, groups, or households; evaluation of their effectiveness; and practical considerations. The evidence base includes both laboratory and clinical publications. The panel graded the recommendations based on the quality of supporting evidence and the balance between benefits and risks/burdens according to the criteria published by the American College of Chest Physicians.


Assuntos
Desastres , Medicina Selvagem , Humanos , Sociedades Médicas
12.
Angew Chem Int Ed Engl ; 63(3): e202316998, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38017354

RESUMO

H2 O2 is a widely used eco-friendly oxidant and a potential energy carrier. Photocatalytic H2 O2 production from water and O2 is an ideal approach with the potential to address the current energy crisis and environmental issues. Three zig-zag two-dimensional coordination polymers (2D CPs), named CuX-dptz, were synthesized by a rapid and facile method at room temperature, showing preeminent H2 O2 photoproduction performance under pure water and open air without any additives. CuBr-dptz exhibits a H2 O2 production rate high up to 1874 µmol g-1 h-1 , exceeding most reported photocatalysts under this condition, even comparable to those supported by sacrificial agents and O2 . The coordination environment of Cu can be modulated by halogen atoms (X=Cl, Br, I), which in turn affects the electron transfer process and finally determines the reaction activity. This is the first time that 2D CPs have been used for photocatalytic H2 O2 production in such challenging conditions, which provides a new pathway for the development of portable in situ H2 O2 photosynthesis devices.

13.
ACS Appl Mater Interfaces ; 15(42): 49116-49122, 2023 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-37815493

RESUMO

In recent years, functional electrolyte additives have been widely studied during the CO2 evolution reaction (CO2ER) and CO2 reduction reaction (CO2RR) processes for Li-CO2 batteries. Owing to different concerns, functions of these additives are also multiple and limited. In this work, the multiple impacts of functional electrolyte additives for Li-CO2 batteries are discussed. N-phenylpyrrolidine (PPD) and 1-(3-bromophenyl) pyrrole (Br-PPD) are investigated as additives successively. First, the corresponding charging potential during the CO2ER process can be reduced to 3.65 V with PPD; then the Li||Li symmetric cells with Br-PPD possess a superior long-term cycling of 800 h benefited from a stable solid electrolyte interphase (SEI) on the surface of a Li metal by using a Li anode protected with bromine functional groups. In Br-PPD-based Li-CO2 cells, the charging potential can be maintained at 3.70 V for 120 cycles even with a Super P cathode. In this work, the relationship between the structural properties of organic molecules and their electrochemical applications is discussed and investigated. This is essential for the targeted design and preparation of additives in rechargeable batteries.

14.
Environ Res ; 239(Pt 1): 117344, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37821067

RESUMO

During the East Antarctic International Ice Sheet Traverse (Eaiist, december 2019), in an unexplored part of the East Antarctic Plateau, snow samples were collected to expand our knowledge of the latitudinal variability of iodine, bromine and sodium as well as their relation in connection with emission processes and photochemical activation in this unexplored area. A total of 32 surface (0-5 cm) and 32 bulk (average of 1 m depth) samples were taken and analysed by Inductively Coupled Plasma Mass Spectrometry (ICP-MS). Our results show that there is no relevant latitudinal trend for bromine and sodium. For bromine they also show that it has no significant post-depositional mechanisms while its inland surface snow concentration is influenced by spring coastal bromine explosions. Iodine concentrations are several orders of magnitude lower than bromine and sodium and they show a decreasing trend in the surface samples concentration moving southward. This suggests that other processes affect its accumulation in surface snow, probably related to the radial reduction in the ozone layer moving towards central Antarctica. Even though all iodine, bromine and sodium present similar long-range transport from the dominant coastal Antarctic sources, the annual seasonal cycle of the ozone hole over Antarctica increases the amount of UV radiation (in the 280-320 nm range) reaching the surface, thereby affecting the surface snow photoactivation of iodine. A comparison between the bulk and surface samples supports the conclusion that iodine undergoes spring and summer snow recycling that increases its atmospheric lifetime, while it tends to accumulate during the winter months when photochemistry ceases.


Assuntos
Iodo , Bromo , Neve , Sódio , Regiões Antárticas
15.
Chemphyschem ; 24(22): e202300510, 2023 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-37609858

RESUMO

This study addresses a fundamental question in surface science: the adsorption of halogens on metal surfaces. Using synchrotron radiation-based high-resolution X-ray photoelectron spectroscopy (XPS), temperature-programmed XPS, low-energy electron diffraction (LEED) and density functional theory (DFT) calculations, we investigated the adsorption and thermal stability of bromine on Rh(111) in detail. The adsorption of elemental bromine on Rh(111) at 170 K was followed in situ by XPS in the Br 3d region, revealing two individual, coverage-dependent species, which we assign to fcc hollow- and bridge-bound atomic bromine. In addition, we find a significant shift in binding energy upon increasing coverage due to adsorbate-adsorbate interactions. Subsequent heating shows a high thermal stability of bromine on Rh(111) up to above 1000 K, indicating strong covalent bonding. To complement the XPS data, LEED was used to study the long-range order of bromine on Rh(111): we observe a (√3×√3)R30° structure for low coverages (≤0.33 ML) and a star-shaped compression structure for higher coverages (0.33-0.43 ML). Combining LEED and DFT calculations, we were able to visualize bromine adsorption on Rh(111) in real space for varying coverages.

16.
J Environ Manage ; 345: 118593, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37442041

RESUMO

Recycling and disposing wastewater from the pharmaceutical industry are of utmost importance in mitigating chemical waste generation, where unmanaged hazardous waste fluxes could cause massive environmental damage. Air stripping, steam stripping, distillation, and incineration offer significant emission reduction potentials for pharmaceutical applications; however, selecting specific process units is a complicated task due to the high number of influencing screening criteria. The mentioned chemical processes are modelled with the Aspen Plus program. This study examines the environmental impacts of adsorbable organic halogens (AOX) containing pharmaceutical process wastewater disposal by conducting life cycle impact assessments using the Product Environmental Footprint (PEF), IMPACT World + Endpoint V1.01, and Recipe 2016 Endpoint (H) V1.06 methods. The results show that the distillation-based separation of AOX compounds is characterized by the most favourable climate change impact and outranks the PEF single score of air stripping, steam stripping, and incineration by 6.3%, 29.1%, 52.0%, respectively. The energy-intensive distillation technology is further evaluated by considering a wide selection of energy sources (i.e., fossil fuel, nuclear, solar, wind onshore, and wind offshore) using PESTLE (Political, Economic, Social, Technological, Legal, Environmental) analysis combined with multi-criteria decision support to determine the most beneficial AOX disposal scenario. The best overall AOX regeneration performance and lowest climate change impact (7.25 × 10-3 kg CO2-eq (1 kg purified wastewater)-1) are obtained by supplying variable renewable electricity from onshore wind turbines, reaching 64.87% carbon emission reduction compared to the baseline fossil fuel-based process alternative.


Assuntos
Eliminação de Resíduos Líquidos , Águas Residuárias , Eliminação de Resíduos Líquidos/métodos , Vapor , Compostos Orgânicos , Halogênios , Técnicas de Apoio para a Decisão , Preparações Farmacêuticas
17.
Angew Chem Int Ed Engl ; 62(38): e202309682, 2023 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-37470309

RESUMO

Crystallographic and computational studies suggest the occurrence of favourable interactions between polarizable arenes and halogen atoms. However, the systematic experimental quantification of halogen⋅⋅⋅arene interactions in solution has been hindered by the large variance in the steric demands of the halogens. Here we have synthesized molecular balances to quantify halogen⋅⋅⋅arene contacts in 17 solvents and solvent mixtures using 1 H NMR spectroscopy. Calculations indicate that favourable halogen⋅⋅⋅arene interactions arise from London dispersion in the gas phase. In contrast, comparison of our experimental measurements with partitioned SAPT0 energies indicate that dispersion is sufficiently attenuated by the solvent that the halogen⋅⋅⋅arene interaction trend was instead aligned with increasing exchange repulsion as the halogen increased in size (ΔGX ⋅⋅⋅Ph =0 to +1.5 kJ mol-1 ). Halogen⋅⋅⋅arene contacts were slightly less disfavoured in solvents with higher solvophobicities and lower polarizabilities, but strikingly, were always less favoured than CH3 ⋅⋅⋅arene contacts (ΔGMe ⋅⋅⋅Ph =0 to -1.4 kJ mol-1 ).

18.
Small ; 19(47): e2303430, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37490528

RESUMO

Halogens, especially Br2 and I2 , as cathode materials for lithium-ion batteries exhibit high energy density with low cost, but poor cycling performance due to their high solubility in electrolyte solution. Herein, viologen-based cationic porous organic polymers (TpVXs, X = Cl, Br, or I) with abundant pores and ionic redox-active moieties are designed to immobilize halogen anions stoichiometrically. TpVBr and TpVI electrodes exhibit high initial specific capacity (116 and 132 mAh g-1 at 0.2 C) and high average discharge voltage (≈3.0 V) without any host materials. Notably, benefiting from the porous and ionic structure, TpVBr and TpVI present excellent long-term cycling stability (86% and 98% capacity retention after 600 cycles at 0.5 C), which are far superior to those of the state-of-the-art halogen electrodes. In addition, the charge storage mechanism is investigated by in situ Raman and ex situ X-ray photoelectron spectroscopy.

19.
Mar Biotechnol (NY) ; 25(4): 519-536, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37354383

RESUMO

The initiation of this study relies on a targeted genome-mining approach to highlight the presence of a putative vanadium-dependent haloperoxidase-encoding gene in the deep-sea hydrothermal vent fungus Hortaea werneckii UBOCC-A-208029. To date, only three fungal vanadium-dependent haloperoxidases have been described, one from the terrestrial species Curvularia inaequalis, one from the fungal plant pathogen Botrytis cinerea, and one from a marine derived isolate identified as Alternaria didymospora. In this study, we describe a new vanadium chloroperoxidase from the black yeast H. werneckii, successfully cloned and overexpressed in a bacterial host, which possesses higher affinity for bromide (Km = 26 µM) than chloride (Km = 237 mM). The enzyme was biochemically characterized, and we have evaluated its potential for biocatalysis by determining its stability and tolerance in organic solvents. We also describe its potential three-dimensional structure by building a model using the AlphaFold 2 artificial intelligence tool. This model shows some conservation of the 3D structure of the active site compared to the vanadium chloroperoxidase from C. inaequalis but it also highlights some differences in the active site entrance and the volume of the active site pocket, underlining its originality.


Assuntos
Ascomicetos , Cloreto Peroxidase , Exophiala , Fontes Hidrotermais , Cloreto Peroxidase/genética , Cloreto Peroxidase/química , Cloreto Peroxidase/metabolismo , Exophiala/metabolismo , Saccharomyces cerevisiae/metabolismo , Vanádio/metabolismo , Inteligência Artificial , Ascomicetos/genética
20.
Beilstein J Org Chem ; 19: 575-581, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37153645

RESUMO

A light-driven metal-free protocol for the synthesis of sulfone-containing indoles under mild conditions is reported. Specifically, the process is driven by the photochemical activity of halogen-bonded complexes formed upon complexation of a sacrificial donor, namely 1,4-diazabicyclo[2.2.2]octane (DABCO), with α-iodosulfones. The reaction provides a variety of densely functionalized products in good yields (up to 96% yield). Mechanistic investigations are reported. These studies provide convincing evidences for the photochemical formation of reactive open-shell species.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...