Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 708
Filtrar
1.
Elife ; 132024 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-39150053

RESUMO

Diabetes, a prevalent chronic condition, significantly increases the risk of mortality from COVID-19, yet the underlying mechanisms remain elusive. Emerging evidence implicates Cathepsin L (CTSL) in diabetic complications, including nephropathy and retinopathy. Our previous research identified CTSL as a pivotal protease promoting SARS-CoV-2 infection. Here, we demonstrate elevated blood CTSL levels in individuals with diabetes, facilitating SARS-CoV-2 infection. Chronic hyperglycemia correlates positively with CTSL concentration and activity in diabetic patients, while acute hyperglycemia augments CTSL activity in healthy individuals. In vitro studies reveal high glucose, but not insulin, promotes SARS-CoV-2 infection in wild-type cells, with CTSL knockout cells displaying reduced susceptibility. Utilizing lung tissue samples from diabetic and non-diabetic patients, alongside Leprdb/dbmice and Leprdb/+mice, we illustrate increased CTSL activity in both humans and mice under diabetic conditions. Mechanistically, high glucose levels promote CTSL maturation and translocation from the endoplasmic reticulum (ER) to the lysosome via the ER-Golgi-lysosome axis. Our findings underscore the pivotal role of hyperglycemia-induced CTSL maturation in diabetic comorbidities and complications.


People with diabetes are at greater risk of developing severe COVID-19 and dying from the illness, which is caused by a virus known as SARS-CoV-2. The high blood sugar levels associated with diabetes appear to be a contributing factor to this heightened risk. However, diabetes is a complex condition encompassing a range of metabolic disorders, and it is therefore likely that other factors may contribute. Previous research identified a link between an enzyme called cathepsin L and more severe COVID-19 in people with diabetes. Elevated cathepsin L levels are known to contribute to diabetes complications, such as kidney damage and vision loss. It has also been shown that cathepsin L helps SARS-CoV-2 to enter and infect cells. This raised the question of whether elevated cathepsin L is responsible for the increased COVID-19 vulnerability in patients with diabetes. To investigate, He, Zhao et al. monitored disease severity and cathepsin L levels in patients with COVID-19. This confirmed that people with diabetes had more severe COVID-19 and that higher levels of cathepsin L are linked to more severe disease. Analysis also revealed that cathepsin L activity increases as blood glucose levels increase. In laboratory experiments, cells exposed to glucose or fluid from the blood of people with diabetes were more easily infected with SARS-CoV-2, with cells genetically modified to lack cathepsin L being more resistant to infection. Further experiments revealed this was due to glucose promoting maturation and migration of cathepsin L in the cells. The findings of He, Zhao et al. help to explain why people with diabetes are more likely to develop severe or fatal COVID-19. Therefore, controlling blood glucose levels in people with diabetes may help to prevent or reduce the severity of the disease. Additionally, therapies targeting cathepsin L could also potentially help to treat COVID-19, especially in patients with diabetes, although more research is needed to develop and test these treatments.


Assuntos
COVID-19 , Catepsina L , Hiperglicemia , SARS-CoV-2 , COVID-19/mortalidade , COVID-19/metabolismo , Catepsina L/metabolismo , Catepsina L/genética , Humanos , Animais , Camundongos , SARS-CoV-2/genética , Masculino , Feminino , Complicações do Diabetes , Pessoa de Meia-Idade , Comorbidade , Diabetes Mellitus , Retículo Endoplasmático/metabolismo , Lisossomos/metabolismo , Adulto , Idoso , Complexo de Golgi/metabolismo
2.
J Liver Cancer ; 2024 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-39210668

RESUMO

Local ablation for hepatocellular carcinoma (HCC), a non-surgical option that directly targets and destroys tumor cells, has advanced significantly since the 1990s. Therapies with different energy sources, such as radiofrequency ablation, microwave ablation, and cryoablation, employ different mechanisms to induce tumor necrosis. The precision, safety, and effectiveness of these therapies have increased with advances in guiding technologies and device improvements. Consequently, local ablation has become the firstline treatment for early-stage HCC. The lack of organized evidence and expert opinions regarding patient selection, pre-procedure preparation, procedural methods, swift post-treatment evaluation, and follow-up has resulted in clinicians following varied practices. Therefore, an expert consensus-based practical recommendation for local ablation was developed by a group of experts in radiology and hepatology from the Research Committee of the Korean Liver Cancer Association in collaboration with the Korean Society of Image-guided Tumor Ablation to provide useful information and guidance for performing local ablation and for the pre- and posttreatment management of patients.

3.
Korean J Radiol ; 25(9): 773-787, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39197823

RESUMO

Local ablation for hepatocellular carcinoma (HCC), a non-surgical option that directly targets and destroys tumor cells, has advanced significantly since the 1990s. Therapies with different energy sources, such as radiofrequency ablation, microwave ablation, and cryoablation, employ different mechanisms to induce tumor necrosis. The precision, safety, and effectiveness of these therapies have increased with advances in guiding technologies and device improvements. Consequently, local ablation has become the first-line treatment for early-stage HCC. The lack of organized evidence and expert opinions regarding patient selection, pre-procedure preparation, procedural methods, swift post-treatment evaluation, and follow-up has resulted in clinicians following varied practices. Therefore, an expert consensus-based practical recommendation for local ablation was developed by a group of experts in radiology and hepatology from the Research Committee of the Korean Liver Cancer Association in collaboration with the Korean Society of Image-guided Tumor Ablation to provide useful information and guidance for performing local ablation and for the pre- and post-treatment management of patients.


Assuntos
Carcinoma Hepatocelular , Consenso , Neoplasias Hepáticas , Humanos , Técnicas de Ablação/métodos , Carcinoma Hepatocelular/cirurgia , Carcinoma Hepatocelular/diagnóstico por imagem , Ablação por Cateter/métodos , Neoplasias Hepáticas/cirurgia , Neoplasias Hepáticas/diagnóstico por imagem , Neoplasias Hepáticas/patologia , Seleção de Pacientes , República da Coreia
4.
FEBS Lett ; 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-39031937

RESUMO

The PWWP domain of hepatoma-derived growth factor-related protein 2 (HDGFRP2) recognizes methylated histones to initiate the recruitment of homologous recombination repair proteins to damaged silent genes. The combined depletion of HDGFRP2 and its paralog PSIP1 effectively impedes the onset and progression of diffuse intrinsic pontine glioma (DIPG). Here, we discovered varenicline and 4-(4-bromo-1H-pyrazol-3-yl) pyridine (BPP) as inhibitors of the HDGFRP2 PWWP domain through a fragment-based screening method. The complex crystal structures reveal that both Varenicline and BPP engage with the aromatic cage of the HDGFRP2 PWWP domain, albeit via unique binding mechanisms. Notably, BPP represents the first single-digit micromolar inhibitor of the HDGFRP2 PWWP domain with a high ligand efficiency. As a dual inhibitor targeting both HDGFRP2 and PSIP1 PWWP domains, BPP offers an exceptional foundation for further optimization into a chemical tool to dissect the synergetic function of HDGFRP2 and PSIP1 in DIPG pathogenesis.

5.
Int J Biol Macromol ; 277(Pt 1): 133667, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38969038

RESUMO

Targeting macrophages to regulate the tumor microenvironment is a promising strategy for treating cancer. This study developed a stable nano drug (PAP-SeNPs) using Se nanoparticles (SeNPs) and the Pholiota adiposa polysaccharide component (PAP-1a) and reported their physical stability, M2-like macrophages targeting efficacy and anti-hepatoma immunotherapy potential, as well as their molecular mechanisms. Furthermore, the zero-valent and well-dispersed spherical PAP-SeNPs were also successfully synthesized with an average size of 55.84 nm and a negative ζ-potential of -51.45 mV. Moreover, it was observed that the prepared PAP-SeNPs were stable for 28 days at 4 °C. Intravital imaging highlighted that PAP-SeNPs had the dual effect of targeting desirable immune organs and tumors. In vitro analyses showed that the PAP-SeNPs polarized M2-like macrophages towards the M1 phenotype to induce hepatoma cell death, triggered by the time-dependent lysosomal endocytosis in macrophages. Mechanistically, PAP-SeNPs significantly activated the Tlr4/Myd88/NF-κB axis to transform tumor-promoting macrophages into tumor-inhibiting macrophages and successfully initiated antitumor immunotherapy. Furthermore, PAP-SeNPs also enhanced CD3+CD4+ T cells and CD3+CD8+ T cells, thereby further stimulating anti-hepatoma immune responses. These results suggest that the developed PAP-SeNPs is a promising immunostimulant that can assist hepatoma therapy.


Assuntos
Carcinoma Hepatocelular , Imunoterapia , Neoplasias Hepáticas , Nanopartículas , Pholiota , Selênio , Macrófagos Associados a Tumor , Animais , Selênio/química , Selênio/farmacologia , Camundongos , Nanopartículas/química , Macrófagos Associados a Tumor/efeitos dos fármacos , Macrófagos Associados a Tumor/imunologia , Macrófagos Associados a Tumor/metabolismo , Imunoterapia/métodos , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/imunologia , Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/terapia , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/imunologia , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/terapia , Pholiota/química , Humanos , Linhagem Celular Tumoral , Polissacarídeos/química , Polissacarídeos/farmacologia , Células RAW 264.7 , Receptor 4 Toll-Like/metabolismo , Polissacarídeos Fúngicos/química , Polissacarídeos Fúngicos/farmacologia , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Macrófagos/metabolismo
6.
Acta Biomater ; 185: 173-189, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-39025391

RESUMO

Tumor behavior, including its response to treatments, is influenced by interactions between mesenchymal and malignant cells, as well as their spatial arrangement. To study tumor biology and evaluate anticancer drugs, accurate 3D tumor models are essential. Here, we developed an in vitro biomimetic hepatoma microenvironment model by combining an extracellular matrix (3DM-7721). Initially, the internal grid structure, composed of 10/6 % GelMA/gelatin loaded with SMMC-7721 cells, was printed using 3D bioprinting. The external component consisted of fibroblasts and human umbilical vein endothelial cells loaded with 10/3 % GelMA/gelatin. A control model (3DP-7721) lacked external cell loading. GelMA/gelatin hydrogels provided robust structural support and biocompatibility. The SMMC-7721 cells in the 3DM-7721 model exhibit superior tumor-associated gene expression and proliferation characteristics when compared to the 3DP-7721 model. Furthermore, the 3DM-7721 type exhibited increased resistance to anticancer agents. SMMC-7721 cells in the 3DM-7721 model exhibit significant tumorigenicity in nude mice. The 3DM-7721 model group showed pathological characteristics of malignant tumors, with a high degree of deterioration, and a significant positive correlation between malignant tumor-related gene pathways. This high-fidelity 3DM-7721 tumor microenvironment model is invaluable for studying tumor progression, devising effective treatment strategies, and discovering drugs. STATEMENT OF SIGNIFICANCE.


Assuntos
Antineoplásicos , Bioimpressão , Carcinoma Hepatocelular , Neoplasias Hepáticas , Camundongos Nus , Impressão Tridimensional , Microambiente Tumoral , Humanos , Microambiente Tumoral/efeitos dos fármacos , Animais , Bioimpressão/métodos , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/metabolismo , Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/metabolismo , Linhagem Celular Tumoral , Antineoplásicos/farmacologia , Células Endoteliais da Veia Umbilical Humana/metabolismo , Ensaios de Seleção de Medicamentos Antitumorais , Camundongos , Gelatina/química , Camundongos Endogâmicos BALB C , Proliferação de Células/efeitos dos fármacos
7.
Acta Biomater ; 183: 306-317, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38838902

RESUMO

Advanced hepatocellular carcinoma (HCC) is one of the most challenging cancers because of its heterogeneous and aggressive nature, precluding the use of curative treatments. Sorafenib (SOR) is the first approved molecular targeting agent against the mitogen-activated protein kinase (MAPK) pathway for the noncurative therapy of advanced HCC; yet, any clinically meaningful benefits from the treatment remain modest, and are accompanied by significant side effects. Here, we hypothesized that using a nanomedicine platform to co-deliver SOR with another molecular targeting drug, metformin (MET), could tackle these issues. A micelle self-assembled with amphiphilic polypeptide methoxy poly(ethylene glycol)-block-poly(L-phenylalanine-co-l-glutamic acid) (mPEG-b-P(LP-co-LG)) (PM) was therefore designed for combinational delivery of two molecular targeted drugs, SOR and MET, to hepatomas. Compared with free drugs, the proposed, dual drug-loaded micelle (PM/SOR+MET) enhanced the drugs' half-life in the bloodstream and drug accumulation at the tumor site, thereby inhibiting tumor growth effectively in the preclinical subcutaneous, orthotopic and patient-derived xenograft hepatoma models without causing significant systemic and organ toxicity. Collectively, these findings demonstrate an effective dual-targeting nanomedicine strategy for treating advanced HCC, which may have a translational potential for cancer therapeutics. STATEMENT OF SIGNIFICANCE: Treatment of advanced hepatocellular carcinoma (HCC) remains a formidable challenge due to its aggressive nature and the limitations inherent to current therapies. Despite advancements in molecular targeted therapies, such as Sorafenib (SOR), their modest clinical benefits coupled with significant adverse effects underscore the urgent need for more efficacious and less toxic treatment modalities. Our research presents a new nanomedicine platform that synergistically combines SOR with metformin within a specialized diblock polypeptide micelle, aiming to enhance therapeutic efficacy while reducing systemic toxicity. This innovative approach not only exhibits marked antitumor efficacy across multiple HCC models but also significantly reduces the toxicity associated with current treatments. Our dual-molecular targeting approach unveils a promising nanomedicine strategy for the molecular treatment of advanced HCC, potentially offering more effective and safer treatment alternatives with significant translational potential.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Micelas , Nanomedicina , Sorafenibe , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/patologia , Animais , Humanos , Sorafenibe/farmacologia , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/patologia , Metformina/farmacologia , Terapia de Alvo Molecular , Camundongos Nus , Camundongos , Sinergismo Farmacológico , Linhagem Celular Tumoral , Polietilenoglicóis/química , Ensaios Antitumorais Modelo de Xenoenxerto , Antineoplásicos/farmacologia , Antineoplásicos/química , Camundongos Endogâmicos BALB C
8.
Cureus ; 16(5): e60861, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38910758

RESUMO

Background Hepatitis C virus (HCV) infection is still common in patients with chronic renal failure, even those on maintenance dialysis. A bidirectional association exists between HCV infection and chronic renal disease. Objective To assess the efficacy of sofosbuvir and velpatasvir combination in the treatment of chronic HCV in chronic kidney disease (CKD) patients. Methodology This descriptive, cross-sectional study was undertaken at the departments of Gastroenterology and Nephrology Lady Reading Hospital, Peshawar, from April 7, 2021, to October 7, 2021. Patients with chronic HCV and chronic renal disease at stage 4 or 5 were included while patients with decompensated cirrhosis liver, hepatoma, hepatitis B virus/HCV (HBV/HCV) coinfection, and post liver transplant patients were excluded. HCV infection was diagnosed based on detectable HCV ribonucleic acid (HCV RNA) by PCR (polymerase chain reaction). In contrast, CKD was diagnosed based on the Kidney Disease Improving Global Outcomes (KDIGO) criteria for CKD. Sofosbuvir 400 mg orally daily and velpatasvir 100 mg orally with meals were given daily for 12 weeks. Effectiveness was defined as negative HCV RNA by PCR 12 weeks after treatment completion called sustained virological response rate 12 weeks after treatment completion (SVR12). Results A total of 73 patients including 67 (91.78%) males and six (8.22%) females between the ages of 20 years and 70 years were included in this study. The mean age of the participants was 48.77±8.0 years. Twelve weeks after the treatment completion, 69 (94.52%) had negative HCV RNA, whereas four (5.48%) patients had detectable HCV RNA. Conclusion It can be concluded from our study that a fixed-dose combination of sofosbuvir 400 mg and velpatasvir 100 mg is quite effective and recommended for treating chronic hepatitis C infection in patients with chronic renal disease in our local setup.

9.
Open Med (Wars) ; 19(1): 20240954, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38911252

RESUMO

This research delves into the influence of H2Valdien derivatives on the proliferation, migration, and apoptosis induction in hepatoma carcinoma cells (HepG2, Huh-7, and SMMC-7721), with a specific emphasis on inhibiting epithelial-mesenchymal transition (EMT) through modulation of the Hedgehog (Hh) signaling pathway. Utilizing the cell counting kit-8 method, flow cytometry, TUNEL assay, wound healing, and transwell assays, we observed a dose-dependent growth arrest and apoptosis induction in HepG2, Huh-7, and SMMC-7721 cells. Notably, H2Valdien derivatives exhibited a capacity to reduce migration and invasion, impacting the expression of EMT-associated proteins such as N-cadherin, vimentin, and E-cadherin. Mechanistically, these derivatives demonstrated the inhibition of the Hh signaling pathway by inactivating Sonic Hh (Shh) and smoothened proteins. This study underscores the robust antiproliferative and apoptosis-inducing effects of H2Valdien derivatives on hepatoma carcinoma cells and elucidates their regulatory role in EMT through modulation of the Hh signaling pathway, providing valuable insights for potential therapeutic interventions.

10.
Cancer Cell Int ; 24(1): 215, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38902716

RESUMO

Hepatocellular carcinoma (HCC) poses a significant clinical challenge, necessitating the integration of immunotherapeutic approaches. Palbociclib, a selective CDK4/6 inhibitor, has demonstrated promising efficacy in preclinical HCC models and is being evaluated as a novel therapeutic option in clinical trials. Additionally, CDK4/6 inhibition induces cellular senescence, potentially influencing the tumor microenvironment and immunogenicity of cancer cells. In this study, we conducted comprehensive bioinformatic analyses using diverse HCC transcriptome datasets, including bulk and single-cell RNA-sequencing data from public databases. We also utilized human and mouse HCC cells to investigate functional aspects. Primary T cells isolated from mouse blood were employed to assess T cell immunity against HCC cells. Results revealed that CD8+ T-cell infiltration correlates with improved outcomes in HCC patients with suppressed CDK4/6 expression. Moreover, CDK4/6 expression was associated with alterations in the immune landscape and immune checkpoint expression within the liver tumor microenvironment. Furthermore, we found that treatment with Palbociclib and Doxorubicin induces cellular senescence and a senescence-associated secretory phenotype in HCC cells. Notably, pretreatment with Palbociclib augmented T cell-mediated cytotoxicity against HCC cells, despite upregulation of PD-L1, surpassing the effects of Doxorubicin pretreatment. In conclusion, our study elucidates a novel mechanism by which CDK4/6 inhibition enhances T-cell-associated cancer elimination and proposes a potential therapeutic strategy to enhance T-cell immunotherapy on HCC.

11.
J Prim Care Community Health ; 15: 21501319241259413, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38884145

RESUMO

INTRODUCTION/OBJECTIVES: Chronic hepatitis B virus infection (CHBVI) is a major public health problem affecting about 296 million people worldwide. HBV infects the liver, and when it becomes chronic, may cause cirrhosis and hepatocellular carcinoma (HCC). The aim of our study was to identify the risk factors and comorbid medical conditions that were associated with HCC in patients who had CHBVI. METHODS: We performed a retrospective electronic medical record review of adult patients diagnosed with CHBVI, who presented to our primary care office between October 1, 2017 and October 21, 2022. Selected variables in patients with CHBVI with HCC (HCC group) were compared to those without HCC (NoHCC group). RESULTS: Among 125 patients with CHBVI, 24% had HCC and 76% did not have HCC. There were higher frequencies of association of certain comorbidities in the HCC group compared to NoHCC group, such as anemia (63.3% vs 26.3%; P < .001), ascites (53.3% vs 1.1%; P < .001), portal hypertension (43.3% vs 0.0%; P < .001), chronic kidney disease (40.0% vs 13.7%; P = .002), and HCV coinfection (13.3% vs 7.4%; P < .001). The logistic regression model showed increased odds of HCC for each year of increase in age (OR = 1.06, 95% CI = 1.01-1.11; P = .014), and increased odds in men (OR = 5.96, 95% CI = 1.71-20.73; P = .005). Although Asians represented the racial majority in both the groups, there was no significant difference in the race distribution between the two groups. CONCLUSION: In patients with CHBVI, increasing age and male sex are factors associated with increased odds of having HCC. Patients with CHBVI and HCC have higher frequencies of association of tobacco use, recreational drug use, anemia, ascites, portal hypertension, chronic kidney disease, and co-infection with HCV.


Assuntos
Carcinoma Hepatocelular , Comorbidade , Hepatite B Crônica , Neoplasias Hepáticas , Humanos , Masculino , Carcinoma Hepatocelular/epidemiologia , Feminino , Neoplasias Hepáticas/epidemiologia , Pessoa de Meia-Idade , Estudos Retrospectivos , Fatores de Risco , Hepatite B Crônica/epidemiologia , Hepatite B Crônica/complicações , Adulto , Idoso
13.
Acta Pharmacol Sin ; 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38871923

RESUMO

Poly (ADP-ribose) polymerase 1 (PARP1) is a DNA-binding protein that is involved in various biological functions, including DNA damage repair and transcription regulation. It plays a crucial role in cisplatin resistance. Nevertheless, the exact regulatory pathways governing PARP1 have not yet been fully elucidated. In this study, we present evidence suggesting that the hepatitis B X-interacting protein (HBXIP) may exert regulatory control over PARP1. HBXIP functions as a transcriptional coactivator and is positively associated with PARP1 expression in tissues obtained from hepatoma patients in clinical settings, and its high expression promotes cisplatin resistance in hepatoma. We discovered that the oncogene HBXIP increases the level of PARP1 m6A modification by upregulating the RNA methyltransferase WTAP, leading to the accumulation of the PARP1 protein. In this process, on the one hand, HBXIP jointly activates the transcription factor ETV5, promoting the activation of the WTAP promoter and further facilitating the promotion of the m6A modification of PARP1 by WTAP methyltransferase, enhancing the RNA stability of PARP1. On the other hand, HBXIP can also jointly activate the transcription factor CEBPA, enhance the activity of the PARP1 promoter, and promote the upregulation of PARP1 expression, ultimately leading to enhanced DNA damage repair capability and promoting cisplatin resistance in hepatoma. Notably, aspirin inhibits HBXIP, thereby reducing the expression of PARP1. Overall, our research revealed a novel mechanism for increasing PARP1 abundance, and aspirin therapy could overcome cisplatin resistance in hepatoma.

14.
Leg Med (Tokyo) ; 69: 102458, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38781725

RESUMO

Arsenic trioxide (ATO), one of the oldest and most frequently used poisons, is well-known in forensic science for inducing hepatotoxicity. The regulation of peroxisomal antioxidative enzyme catalase (CAT) involves intricate mechanisms at both transcriptional and post-transcriptional levels. However, the molecular mechanisms underlying the regulation of CAT gene expression in hepatic cells remain elusive. Furthermore, the regulation of CAT gene expression evident in animals administered with ATO in vivo is not well-explored, although several studies have revealed ATO-induced reductions in CAT enzymatic activity in rat livers. In this study, we revealed ATO-dependent reductions in CAT gene expression in both rat liver and Huh-7 human hepatoma cells. Our results indicate that the decline in CAT enzymatic activity can be attributed, at least in part, to the downregulation of its gene expression. The ATO-induced reduction in CAT expression was concurrent with the reduction in peroxisome proliferator-activated receptor-gamma (PPARγ) coactivator (PGC)-1α and inactivation of PPARγ, both considered as positive regulators of CAT gene expression. Moreover, antioxidant N-acetylcysteine (NAC) demonstrated the capability to alleviate the downregulation of CAT gene expression both in vivo and in vitro. Additionally, NAC played a role in alleviating ATO-induced hepatotoxicity, potentially by mitigating the transcriptional downregulation of the CAT gene. Altogether, these results indicate that ATO exerts toxicity by inhibiting the antioxidant defense mechanism, which may be useful for forensic diagnosis of arsenic poisoning and clinical treatment of mitigating ATO-induced hepatotoxicity.


Assuntos
Acetilcisteína , Trióxido de Arsênio , Catalase , Fígado , Óxidos , Trióxido de Arsênio/farmacologia , Acetilcisteína/farmacologia , Animais , Catalase/metabolismo , Catalase/genética , Ratos , Fígado/metabolismo , Fígado/efeitos dos fármacos , Masculino , Arsenicais , Humanos , Expressão Gênica/efeitos dos fármacos , Antioxidantes/farmacologia , Antioxidantes/metabolismo
15.
Viruses ; 16(5)2024 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-38793598

RESUMO

Chronic Hepatitis B and D Virus (HBV and HDV) co-infection is responsible for the most severe form of viral Hepatitis, the Hepatitis Delta. Despite an efficient vaccine against HBV, the HBV/HDV infection remains a global health burden. Notably, no efficient curative treatment exists against any of these viruses. While physiologically distinct, HBV and HDV life cycles are closely linked. HDV is a deficient virus that relies on HBV to fulfil is viral cycle. As a result, the cellular response to HDV also influences HBV replication. In vitro studying of HBV and HDV infection and co-infection rely on various cell culture models that differ greatly in terms of biological relevance and amenability to classical virology experiments. Here, we review the various cell culture models available to scientists to decipher HBV and HDV virology and host-pathogen interactions. We discuss their relevance and how they may help address the remaining questions, with one objective in mind: the development of new therapeutic approaches allowing viral clearance in patients.


Assuntos
Vírus da Hepatite B , Hepatite D , Vírus Delta da Hepatite , Replicação Viral , Humanos , Vírus Delta da Hepatite/fisiologia , Vírus Delta da Hepatite/genética , Vírus da Hepatite B/fisiologia , Hepatite D/virologia , Animais , Interações Hospedeiro-Patógeno , Coinfecção/virologia , Técnicas de Cultura de Células , Hepatite B/virologia
16.
Artigo em Inglês | MEDLINE | ID: mdl-38709266

RESUMO

Hepatocellular carcinoma (HCC) is a common and lethal tumor worldwide. Atractylenolide II (AT-II) is a natural sesquiterpenoid monomer, with anti-tumor effect. To address the effect and mechanisms of AT-II on HCC. The role and mechanisms of AT-II were assessed through cell counting kit-8, flow cytometry, enzyme-linked immunosorbent assay, immunofluorescence, and western blot experiments in Hep3B and Huh7 cells. In vivo experiments were conducted in BALB/c nude mice using immunohistochemistry and western blot assays. AT-II decreased the cell viability of Hep3B and Huh7 cells with a IC50 of 96.43 µM and 118.38 µM, respectively. AT-II increased relative Fe2+ level, which was further promoted with the incubation of erastin and declined with the ferrostatin-1 in Hep3B and Huh7 cells. AT-II enhanced the level of ROS and MDA, but reduced the GSH level, and the expression of xCT and GPX4. AT-II elevated the percent of CD8+ T cells and the IFN-γ contents, and declined the IL-10 concentrations and the expression of PD-L1 in Hep3B and Huh7 cells. AT-II downregulated the relative protein level of TRAF6, p-p65/p-65, and p-IkBα/IkBα, which was rescued with overexpression of TRAF6. Upregulation of TRAF6 also reversed the effect of AT-II on proliferation, ferroptosis, and immune escape in Hep3B cells. In vivo, AT-II reduced tumor volume and weight, the level of GPX4, xCT, and PD-L1, and the expression of TRAF6, p-p65/p-65, and p-IkBα/IkBα, with the increased expression of CD8. AT-II modulated the proliferation, ferroptosis, and immune escape of HCC cells by downregulating the TRAF6/NF-κB pathway.

18.
Korean J Radiol ; 25(6): 550-558, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38807336

RESUMO

Hepatocellular carcinoma (HCC) is a biologically heterogeneous tumor characterized by varying degrees of aggressiveness. The current treatment strategy for HCC is predominantly determined by the overall tumor burden, and does not address the diverse prognoses of patients with HCC owing to its heterogeneity. Therefore, the prognostication of HCC using imaging data is crucial for optimizing patient management. Although some radiologic features have been demonstrated to be indicative of the biologic behavior of HCC, traditional radiologic methods for HCC prognostication are based on visually-assessed prognostic findings, and are limited by subjectivity and inter-observer variability. Consequently, artificial intelligence has emerged as a promising method for image-based prognostication of HCC. Unlike traditional radiologic image analysis, artificial intelligence based on radiomics or deep learning utilizes numerous image-derived quantitative features, potentially offering an objective, detailed, and comprehensive analysis of the tumor phenotypes. Artificial intelligence, particularly radiomics has displayed potential in a variety of applications, including the prediction of microvascular invasion, recurrence risk after locoregional treatment, and response to systemic therapy. This review highlights the potential value of artificial intelligence in the prognostication of HCC as well as its limitations and future prospects.


Assuntos
Inteligência Artificial , Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Neoplasias Hepáticas/diagnóstico por imagem , Neoplasias Hepáticas/terapia , Neoplasias Hepáticas/patologia , Carcinoma Hepatocelular/diagnóstico por imagem , Carcinoma Hepatocelular/terapia , Carcinoma Hepatocelular/patologia , Prognóstico , Interpretação de Imagem Assistida por Computador/métodos
19.
Zhongguo Zhong Yao Za Zhi ; 49(4): 1073-1081, 2024 Feb.
Artigo em Chinês | MEDLINE | ID: mdl-38621914

RESUMO

The present study aimed to investigate the effect and mechanism of Bupleuri Radix-Paeoniae Radix Alba medicated plasma on HepG2 hepatoma cells by regulating the microRNA-1297(miR-1297)/phosphatase and tensin homologue deleted on chromosome 10(PTEN) signaling axis. Real-time quantitative PCR(RT-qPCR) was carried out to determine the mRNA levels of miR-1297 and PTEN in different hepatoma cell lines. The dual luciferase reporter assay was employed to verify the targeted interaction between miR-1297 and PTEN. The cell counting kit-8(CCK-8) was used to detect cell proliferation, and the optimal concentration and intervention time of the medicated plasma were determined. The cell invasion and migration were examined by Transwell assay and wound healing assay. Cell cycle distribution was detected by PI staining, and the apoptosis of cells was detected by Annexin V-FITC/PI double staining. The mRNA levels of miR-1297, PTEN, protein kinase B(Akt), and phosphatidylinositol 3-kinase(PI3K) were determined by RT-qPCR. Western blot was employed to determine the protein levels of PTEN, Akt, p-Akt, caspase-3, caspase-9, B-cell lymphoma-2(Bcl-2), and Bcl-2-associated X protein(Bax). The results showed that HepG2 cells were the best cell line for subsequent experiments. The dual luciferase reporter assay confirmed that miR-1297 could bind to the 3'-untranslated region(3'UTR) in the mRNA of PTEN. The medicated plasma inhibited the proliferation of HepG2 cells, and the optimal intervention concentration and time were 20% and 72 h. Compared with the blank plasma, the Bupleuri Radix-Paeoniae Radix Alba medicated plasma, miR-1297 inhibitor, miR-1297 inhibitor + medicated plasma all inhibited the proliferation, invasion, and migration of HepG2 cells, increased the proportion of cells in the G_0/G_1 phase, decreased the proportion of cells in the S phase, and increased the apoptosis rate. The medicated plasma down-regulated the mRNA levels of miR-1297, PI3K, and Akt and up-regulated the mRNA level of PTEN. In addition, it up-regulated the protein levels of PTEN, Bax, caspase-3, and caspsae-9 and down-regulated the protein levels of p-Akt, p-PI3K, and Bcl-2. In conclusion, Bupleuri Radix-Paeoniae Radix Alba medicated plasma can inhibit the expression of miR-1297 in HepG2 hepatoma cells, promote the expression of PTEN, and negatively regulate PI3K/Akt signaling pathway, thereby inhibiting the proliferation and inducing the apoptosis of HepG2 cells.


Assuntos
Carcinoma Hepatocelular , Medicamentos de Ervas Chinesas , Neoplasias Hepáticas , MicroRNAs , Paeonia , Extratos Vegetais , Humanos , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Células Hep G2 , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/genética , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Caspase 3/metabolismo , Proteína X Associada a bcl-2 , MicroRNAs/genética , MicroRNAs/metabolismo , Transdução de Sinais , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/genética , Apoptose , Proliferação de Células , PTEN Fosfo-Hidrolase/genética , PTEN Fosfo-Hidrolase/metabolismo , RNA Mensageiro , Luciferases/metabolismo , Luciferases/farmacologia , Linhagem Celular Tumoral
20.
Molecules ; 29(7)2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38611836

RESUMO

As a traditional Chinese medicine, Salvia miltiorrhiza Bunge was first recorded in the Shennong Materia Medica Classic and is widely used to treat "the accumulation of symptoms and masses". The main active ingredient of Salvia miltiorrhiza Bunge, Tanshinone IIA (TIIA), has shown anti-inflammatory, antitumor, antifibrosis, antibacterial, and antioxidative activities, etc. In this study, the results showed that TIIA could inhibit the proliferation and migration of HepG2 cells and downregulate glutathione (GSH) and Glutathione Peroxidase 4 (GPX4) levels; besides, TIIA induced the production of Reactive Oxygen Species (ROS), and upregulated the total iron content. Based on network pharmacology analysis, the antitumor effect of TIIA was found to be focused on the endoplasmic reticulum (ER)-mediated ferroptosis signaling pathway, with protein kinase R (PKR)-like ER kinase (PERK)-activating transcription factor 4 (ATF4)-heat shock 70 kDa protein 5 (HSPA5) as the main pathway. Herein, TIIA showed typical ferroptosis characteristics, and a ferroptosis inhibitor (ferrostatin-1) was used to verify the effect. The antitumor effects of TIIA, occurring through the inhibition of the PERK-ATF4-HSPA5 pathway, were further observed in vivo as significantly inhibited tumor growth and the improved pathological morphology of tumor tissue in H22-bearing mice. In summary, the antitumor mechanism of TIIA might be related to the downregulation of the activation of PERK-ATF4-HSPA5 pathway-mediated ferroptosis.


Assuntos
Fator 4 Ativador da Transcrição , Ferroptose , Animais , Camundongos , Fator 4 Ativador da Transcrição/genética , Chaperona BiP do Retículo Endoplasmático , Abietanos/farmacologia , Glutationa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...