Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.393
Filtrar
1.
Mol Cell ; 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-39368466

RESUMO

Histone H3.3 is frequently mutated in tumors, with the lysine 36 to methionine mutation (K36M) being a hallmark of chondroblastomas. While it is known that H3.3K36M changes the epigenetic landscape, its effects on gene expression dynamics remain unclear. Here, we use a synthetic reporter to measure the effects of H3.3K36M on silencing and epigenetic memory after recruitment of the ZNF10 Krüppel-associated box (KRAB) domain, part of the largest class of human repressors and associated with H3K9me3 deposition. We find that H3.3K36M, which decreases H3K36 methylation and increases histone acetylation, leads to a decrease in epigenetic memory and promoter methylation weeks after KRAB release. We propose a model for establishment and maintenance of epigenetic memory, where the H3K36 methylation pathway is necessary to maintain histone deacetylation and convert H3K9me3 domains into DNA methylation for stable epigenetic memory. Our quantitative model can inform oncogenic mechanisms and guide development of epigenetic editing tools.

2.
Sci Rep ; 14(1): 23180, 2024 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-39369041

RESUMO

Asexual replication of Plasmodium falciparum in the human blood results in exponential parasite growth and causes all clinical symptoms of malaria. However, at each round of the replicative cycle, some parasites convert into sexual precursors called gametocytes, which develop through different stages until they become infective to mosquito vectors. The genome-wide distribution of heterochromatin, a type of chromatin generally refractory to gene expression, is identical at all asexual blood stages, but is altered in stage II/III and more mature gametocytes. However, it is not known if these changes occur concomitantly with sexual conversion or at a later time during gametocyte development. Using a transgenic line in which massive sexual conversion can be conditionally induced, we show that the genome-wide distribution of heterochromatin at the initial stages of sexual development (i.e., sexual rings and stage I gametocytes) is almost identical to asexual blood stages, and major changes do not occur until stage II/III. However, we found that at loci with heterochromatin alterations, transcriptional changes associated with sexual development typically precede, rather than follow, changes in heterochromatin occupancy.


Assuntos
Heterocromatina , Plasmodium falciparum , Heterocromatina/metabolismo , Heterocromatina/genética , Plasmodium falciparum/crescimento & desenvolvimento , Plasmodium falciparum/genética , Humanos , Desenvolvimento Sexual/genética , Estágios do Ciclo de Vida , Malária Falciparum/parasitologia , Animais
3.
Nucleus ; 15(1): 2400525, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-39377317

RESUMO

Cytogenetic bands reflect genomic organization in large blocks of DNA with similar properties. Because banding patterns are invariant, this organization may often be assumed unimportant for genome regulation. Results here challenge that view. Findings here suggest cytogenetic bands reflect a visible framework upon which regulated genome architecture is built. Given Alu and L1 densities differ in cytogenetic bands, we examined their distribution after X-chromosome inactivation or formation of senescent-associated heterochromatin foci (SAHFs). Alu-rich regions remain outside both SAHFs and the Barr Body (BB), affirming that the BB is not the whole chromosome but a condensed, L1-rich core. Hi-C analysis of senescent cells demonstrates large (~10 Mb) G-bands remodel as a contiguous unit, gaining distal intrachromosomal interactions as syntenic G-bands coalesce into SAHFs. Striking peaks of Alu within R-bands strongly resist condensation. Thus, large-scale segmental genome architectur relates to dark versus light cytogenetic bands and Alu-peaks, implicating both in chromatin regulation.


Assuntos
Elementos Alu , Elementos Alu/genética , Humanos , Heterocromatina/metabolismo , Heterocromatina/genética , Genoma Humano/genética , Núcleo Celular/genética , Núcleo Celular/metabolismo
4.
bioRxiv ; 2024 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-39229016

RESUMO

Genome organization is essential for proper function, including gene expression. In metazoan genome organization, chromatin loops and Topologically Associated Domains (TADs) facilitate local gene clustering, while chromosomes form distinct nuclear territories characterized by compartmentalization of silent heterochromatin at the nuclear periphery and active euchromatin in the nucleus center. A similar hierarchical organization occurs in the fungus Neurospora crassa where its seven chromosomes form a Rabl conformation, where heterochromatic centromeres and telomeres independently cluster at the nuclear membrane, while interspersed heterochromatic loci in Neurospora aggregate across megabases of linear genomic distance for forming TAD-like structures. However, the role of individual heterochromatic loci in normal genome organization and function is unknown. Here, we examined the genome organization of a Neurospora strain harboring a ~47.4 kilobase facultative (temporarily silent) heterochromatic region deletion, as well as the genome organization of a strain deleted of a 110.6 kilobase permanently silent constitutive heterochromatic region. While the facultative heterochromatin deletion had little effect on local chromatin structure, the constitutive heterochromatin deletion altered local TAD-like structures, gene expression, and the predicted 3D genome structure by qualitatively repositioning genes into the nucleus center. Our work elucidates the role of individual heterochromatic regions for genome organization and function.

5.
mBio ; : e0159024, 2024 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-39292005

RESUMO

Isw2 proteins, ubiquitous across eukaryotes, exhibit a propensity for DNA binding and exert dynamic influences on local chromosome condensation in an ATP-dependent fashion, thereby modulating the accessibility of neighboring genes to transcriptional machinery. Here, we report the deletion of a putative MoISW2 gene, yielding substantial ramifications on plant pathogenicity. Subsequent gene complementation and chromatin immunoprecipitation sequencing (ChIP-seq) analyses were conducted to delineate binding sites. RNA sequencing (RNA-seq) assays revealed discernible impacts on global gene regulation along chromosomes in both mutant and wild-type strains, with comparative analyses against 55 external RNA-seq data sets corroborating these findings. Notably, MoIsw2-mediated binding and activities delineate genomic loci characterized by pronounced gene expression variability proximal to MoIsw2 binding sites, juxtaposed with comparatively stable expression in surrounding regions. The contingent genes influenced by MoIsw2 activity predominantly encompass niche-determinant genes, including those encoding secreted proteins, secondary metabolites, and stress-responsive elements, alongside avirulence genes. Furthermore, our investigations unveil a spatial correlation between MoIsw2 binding motifs and known transposable elements (TEs), suggesting a potential interplay wherein TE transposition at these loci could modulate the transcriptional landscape of Magnaporthe oryzae in a strain-specific manner. Collectively, these findings position MoIsw2 as a plausible master regulator orchestrating the delicate equilibrium between genes vital for biomass proliferation, akin to housekeeping genes, and niche-specific determinants crucial for ecological adaptability. Stress-induced TE transposition, in conjunction with MoIsw2 activity, emerges as a putative mechanism fostering enhanced mutagenesis and accelerated evolution of niche-determinant genes relative to housekeeping counterparts.IMPORTANCEIsw2 proteins are conserved in plants, fungi, animals, and other eukaryotes. We show that a fungal Isw2 protein in the rice pathogen Magnaporthe oryzae binds to retrotransposon (RT) DNA motifs and affects the epigenetic gene expression landscape of the fungal genome. Mainly ecological niche determinant genes close to the binding motifs are affected. RT elements occur frequently in DNA between genes in most organisms. They move place and multiply in the genome, especially under physiological stress. We further discuss the Isw2 and RT combined activities as a possible sought-after mechanism that can cause biased mutation rates and faster evolution of genes necessary for reacting to abiotic and biotic challenges. The most important biotic challenges for plant pathogens are the ones from the host plants' innate immunity. The overall result of these combined activities will be an adaptation-directed evolution of niche-determinant genes.

6.
Plant Cell Rep ; 43(10): 232, 2024 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-39283352

RESUMO

KEY MESSAGE: We used marker-free technologies to study chromatin at cellular resolution. Our results show asymmetric chromatin distribution, explore chromatin dynamics during mitosis, and reveal structural differences between trichoblast and atrichoblast cell. The shapes, sizes, and structural organizations of plant nuclei vary considerably among cell types, tissues, and species. This diversity is dependent on various factors, including cellular function, developmental stage, and environmental or physiological conditions. The differences in nuclear structure reflect the state of chromatin, which, in turn, controls gene expression and regulates cell fate. To examine the interrelationship between nuclear structure, cell morphology, and tissue-specific cell proliferation and differentiation processes, we conducted multiple visualizations of H3K4me1, H3K9me2, 4',6-diamidino-2-phenylindole, 5-ethynyl 2'-deoxyuridine, and SCRI Renaissance 2200, followed by subsequent quantitative analysis of individual cells and nuclei. By assigning cylindrical coordinates to the nuclei in the iRoCS toolbox, we were able to construct in situ digital three-dimensional chromatin maps for all the tissue layers of individual roots. A detailed analysis of the nuclei features of H3K4me1 and H3K9me2 in the mitotic and the elongation zones in trichoblast and atrichoblast cells at the root apical meristem revealed cell type-specific chromatin dynamics with asymmetric distribution of euchromatin and heterochromatin marks that may be associated with cell cycle and cell differentiation characteristics of specific cells. Furthermore, the spatial distribution of nuclei stained with 5-ethynyl 2'-deoxyuridine in the epidermis and cortex tissues suggests short-range coordination of cell division and nuclear migration in a linear sequence through an unknown regulatory mechanism.


Assuntos
Arabidopsis , Diferenciação Celular , Divisão Celular , Núcleo Celular , Cromatina , Meristema , Meristema/citologia , Meristema/genética , Cromatina/metabolismo , Arabidopsis/citologia , Arabidopsis/genética , Núcleo Celular/metabolismo , Histonas/metabolismo , Mitose , Raízes de Plantas/citologia , Raízes de Plantas/genética
7.
Chromosoma ; 2024 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-39269484

RESUMO

Polyploidy is a common feature in eukaryotes with one of paramount consequences leading to better environmental adaptation. Heterochromatin is often located at telomeres and centromeres and contains repetitive DNA sequences. Sainfoin (Onobrychis viciifolia) is an important perennial forage legume for sustainable agriculture. However, there are only a few studies on the sainfoin genome and chromosomes. In this study, novel tandem repetitive DNA sequences of the sainfoin genome (OnVi180, OnVi169, OnVi176 and OnVidimer) were characterized using bioinformatics, molecular and cytogenetic approaches. The OnVi180 and OnVi169 elements colocalized within functional centromeres. The OnVi176 and OnVidimer elements were localized in centromeric, subtelomeric and interstitial regions. We constructed a sainfoin karyotype that distinguishes the seven basic chromosome groups. Our study provides the first detailed description of heterochromatin and chromosome structure of sainfoin and proposes an origin of heterozygous ancestral genomes, possibly from the same ancestral diploid species, not necessarily from different species, or for chromosome rearrangements after polyploidy. Overall, we discuss our novel and complementary findings in a polyploid crop with unique and complex chromosomal features.

8.
bioRxiv ; 2024 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-39253516

RESUMO

The compound eye of Drosophila melanogaster has long been a model for studying genetics, development, neurodegeneration, and heterochromatin. Imaging and morphometry of adult Drosophila and other insects is hampered by the low throughput, narrow focal plane, and small image sensors typical of stereomicroscope cameras. When data collection is distributed among many individuals or extended time periods, these limitations are compounded by inter-operator variability in lighting, sample positioning, focus, and post-acquisition processing. To address these limitations we developed a method for multiplexed quantitative analysis of adult Drosophila melanogaster phenotypes. Efficient data collection and analysis of up to 60 adult flies in a single image with standardized conditions eliminates inter-operator variability and enables precise quantitative comparison of morphology. Semi-automated data analysis using ImageJ and R reduces image manipulations, facilitates reproducibility, and supports emerging automated segmentation methods, as well as a wide range of graphical and statistical tools. These methods also serve as a low-cost hands-on introduction to imaging, data visualization, and statistical analysis for students and trainees.

9.
FEMS Microbiol Rev ; 48(5)2024 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-39231808

RESUMO

Infection with the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes widespread changes in epigenetic modifications and chromatin architecture in the host cell. Recent evidence suggests that SARS-CoV-2 nonstructural protein 1 (nsp1) plays an important role in driving these changes. Previously thought to be primarily involved in host translation shutoff and cellular mRNA degradation, nsp1 has now been shown to be a truly multifunctional protein that affects host gene expression at multiple levels. The functions of nsp1 are surprisingly diverse and include not only the downregulation of cellular mRNA translation and stability, but also the inhibition of mRNA export from the nucleus, the suppression of host immune signaling, and, most recently, the epigenetic regulation of host gene expression. In this review, we first summarize the current knowledge on SARS-CoV-2-induced changes in epigenetic modifications and chromatin structure. We then focus on the role of nsp1 in epigenetic reprogramming, with a particular emphasis on the silencing of immune-related genes. Finally, we discuss potential molecular mechanisms underlying the epigenetic functions of nsp1 based on evidence from SARS-CoV-2 interactome studies.


Assuntos
COVID-19 , Epigênese Genética , SARS-CoV-2 , Proteínas não Estruturais Virais , Proteínas não Estruturais Virais/metabolismo , Proteínas não Estruturais Virais/genética , Humanos , SARS-CoV-2/genética , SARS-CoV-2/imunologia , COVID-19/genética , COVID-19/imunologia , COVID-19/virologia , COVID-19/metabolismo , Interações Hospedeiro-Patógeno/genética , Interações Hospedeiro-Patógeno/imunologia , Regulação da Expressão Gênica , Cromatina/metabolismo , Cromatina/genética
10.
Front Mol Neurosci ; 17: 1456052, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39346681

RESUMO

Alzheimer's disease (AD), Parkinson's disease (PD), Frontotemporal Dementia (FTD), and Amyotrophic lateral sclerosis (ALS) are complex and fatal neurodegenerative diseases. While current treatments for these diseases do alleviate some symptoms, there is an imperative need for novel treatments able to stop their progression. For all of these ailments, most cases occur sporadically and have no known genetic cause. Only a small percentage of patients bear known mutations which occur in a multitude of genes. Hence, it is clear that genetic factors alone do not explain disease occurrence. Chromatin, a DNA-histone complex whose basic unit is the nucleosome, is divided into euchromatin, an open form accessible to the transcriptional machinery, and heterochromatin, which is closed and transcriptionally inactive. Protruding out of the nucleosome, histone tails undergo post-translational modifications (PTMs) including methylation, acetylation, and phosphorylation which occur at specific residues and are connected to different chromatin structural states and regulate access to transcriptional machinery. Epigenetic mechanisms, including histone PTMs and changes in chromatin structure, could help explain neurodegenerative disease processes and illuminate novel treatment targets. Recent research has revealed that changes in histone PTMs and heterochromatin loss or gain are connected to neurodegeneration. Here, we review evidence for epigenetic changes occurring in AD, PD, and FTD/ALS. We focus specifically on alterations in the histone PTMs landscape, changes in the expression of histone modifying enzymes and chromatin remodelers as well as the consequences of these changes in heterochromatin structure. We also highlight the potential for epigenetic therapies in neurodegenerative disease treatment. Given their reversibility and pharmacological accessibility, epigenetic mechanisms provide a promising avenue for novel treatments. Altogether, these findings underscore the need for thorough characterization of epigenetic mechanisms and chromatin structure in neurodegeneration.

11.
EMBO J ; 2024 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-39192031

RESUMO

Heterochromatin, a key component of the eukaryotic nucleus, is fundamental to the regulation of genome stability, gene expression and cellular functions. However, the factors and mechanisms involved in heterochromatin formation and maintenance still remain largely unknown. Here, we show that insulin receptor tyrosine kinase substrate (IRTKS), an I-BAR domain protein, is indispensable for constitutive heterochromatin formation via liquid‒liquid phase separation (LLPS). In particular, IRTKS droplets can infiltrate heterochromatin condensates composed of HP1α and diverse DNA-bound nucleosomes. IRTKS can stabilize HP1α by recruiting the E2 ligase Ubc9 to SUMOylate HP1α, which enables it to form larger phase-separated droplets than unmodified HP1α. Furthermore, IRTKS deficiency leads to loss of heterochromatin, resulting in genome-wide changes in chromatin accessibility and aberrant transcription of repetitive DNA elements. This leads to activation of cGAS-STING pathway and type-I interferon (IFN-I) signaling, as well as to the induction of cellular senescence and senescence-associated secretory phenotype (SASP) responses. Collectively, our findings establish a mechanism by which IRTKS condensates consolidate constitutive heterochromatin, revealing an unexpected role of IRTKS as an epigenetic mediator of cellular senescence.

12.
Dev Cell ; 59(16): 2222-2238.e4, 2024 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-39094565

RESUMO

Epigenetic mechanisms enable cells to develop novel adaptive phenotypes without altering their genetic blueprint. Recent studies show histone modifications, such as heterochromatin-defining H3K9 methylation (H3K9me), can be redistributed to establish adaptive phenotypes. We developed a precision-engineered genetic approach to trigger heterochromatin misregulation on-demand in fission yeast. This enabled us to trace genome-scale RNA and H3K9me changes over time in long-term, continuous cultures. Adaptive H3K9me establishes over remarkably slow timescales relative to the initiating stress. We captured dynamic H3K9me redistribution events which depend on an RNA binding complex MTREC, ultimately leading to cells converging on an optimal adaptive solution. Upon stress removal, cells relax to new transcriptional and chromatin states, establishing memory that is tunable and primed for future adaptive epigenetic responses. Collectively, we identify the slow kinetics of epigenetic adaptation that allow cells to discover and heritably encode novel adaptive solutions, with implications for drug resistance and response to infection.


Assuntos
Epigênese Genética , Heterocromatina , Histonas , Schizosaccharomyces , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Heterocromatina/metabolismo , Heterocromatina/genética , Histonas/metabolismo , Histonas/genética , Adaptação Fisiológica/genética , Proteínas de Schizosaccharomyces pombe/metabolismo , Proteínas de Schizosaccharomyces pombe/genética , Regulação Fúngica da Expressão Gênica , Metilação
13.
Artigo em Inglês | MEDLINE | ID: mdl-39153567

RESUMO

OBJECTIVE: This study aims to link aberrant endogenous retroviruses (ERVs) activation and osteoarthritis (OA) progression by comparing the chromatin accessibility and transcriptomic landscapes of diseased or intact joint tissues of OA patients. METHOD: We performed ERVs-centric analysis on published ATAC-seq and RNA-seq data from OA patients' cartilage tissues. Here, we compared the outer region of the lateral tibial plateau, representing intact cartilage, to the inner region of the medial tibial plateau, representing damaged cartilage. In addition, cartilage tissue sections from OA patients and post-traumatic OA mouse models were assayed for global H3K9me3 abundance through immunohistochemistry staining. RESULTS: Chromatin accessibility and transcription of ERVs, particularly from evolutionarily "intermediate age" ERVs families (ERV1 and ERVL), were enriched and elevated in OA cartilage. This integrative analysis suggests that H3K9me3-related heterochromatin loss might be mechanistically connected to ERV activation in OA tissue. We further verified that global H3K9me3 levels were reduced in diseased cartilage relative to intact tissue in OA patients and injury-induced OA mice. CONCLUSION: The findings suggest a compelling hypothesis that the loss of H3K9me3, either due to aging or cellular stressors, may lead to ERVs reactivation that contributes to tissue inflammation and OA progression. This study unveils the intricate relationship between epigenetic alterations, ERVs activation, and OA, paving the way for potential therapeutic interventions targeting these pathogenic mechanisms.

14.
Cell ; 187(18): 5029-5047.e21, 2024 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-39094569

RESUMO

The inheritance of parental histones across the replication fork is thought to mediate epigenetic memory. Here, we reveal that fission yeast Mrc1 (CLASPIN in humans) binds H3-H4 tetramers and operates as a central coordinator of symmetric parental histone inheritance. Mrc1 mutants in a key connector domain disrupted segregation of parental histones to the lagging strand comparable to Mcm2 histone-binding mutants. Both mutants showed clonal and asymmetric loss of H3K9me-mediated gene silencing. AlphaFold predicted co-chaperoning of H3-H4 tetramers by Mrc1 and Mcm2, with the Mrc1 connector domain bridging histone and Mcm2 binding. Biochemical and functional analysis validated this model and revealed a duality in Mrc1 function: disabling histone binding in the connector domain disrupted lagging-strand recycling while another histone-binding mutation impaired leading strand recycling. We propose that Mrc1 toggles histones between the lagging and leading strand recycling pathways, in part by intra-replisome co-chaperoning, to ensure epigenetic transmission to both daughter cells.


Assuntos
Replicação do DNA , Epigênese Genética , Histonas , Proteínas de Schizosaccharomyces pombe , Schizosaccharomyces , Histonas/metabolismo , Schizosaccharomyces/metabolismo , Schizosaccharomyces/genética , Proteínas de Schizosaccharomyces pombe/metabolismo , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/genética , Mutação , Memória Epigenética
15.
Cell ; 187(18): 5010-5028.e24, 2024 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-39094570

RESUMO

Faithful transfer of parental histones to newly replicated daughter DNA strands is critical for inheritance of epigenetic states. Although replication proteins that facilitate parental histone transfer have been identified, how intact histone H3-H4 tetramers travel from the front to the back of the replication fork remains unknown. Here, we use AlphaFold-Multimer structural predictions combined with biochemical and genetic approaches to identify the Mrc1/CLASPIN subunit of the replisome as a histone chaperone. Mrc1 contains a conserved histone-binding domain that forms a brace around the H3-H4 tetramer mimicking nucleosomal DNA and H2A-H2B histones, is required for heterochromatin inheritance, and promotes parental histone recycling during replication. We further identify binding sites for the FACT histone chaperone in Swi1/TIMELESS and DNA polymerase α that are required for heterochromatin inheritance. We propose that Mrc1, in concert with FACT acting as a mobile co-chaperone, coordinates the distribution of parental histones to newly replicated DNA.


Assuntos
Replicação do DNA , Epigênese Genética , Heterocromatina , Histonas , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Histonas/metabolismo , Heterocromatina/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Grupo de Alta Mobilidade/metabolismo , Proteínas de Grupo de Alta Mobilidade/genética , Fatores de Elongação da Transcrição/metabolismo , Fatores de Elongação da Transcrição/genética , Chaperonas de Histonas/metabolismo , Chaperonas Moleculares/metabolismo , DNA Polimerase I/metabolismo , DNA Polimerase I/genética
16.
Mol Biol Evol ; 41(9)2024 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-39189646

RESUMO

Heterochromatin is a gene-poor and repeat-rich genomic compartment universally found in eukaryotes. Despite its low transcriptional activity, heterochromatin plays important roles in maintaining genome stability, organizing chromosomes, and suppressing transposable elements. Given the importance of these functions, it is expected that genes involved in heterochromatin regulation would be highly conserved. Yet, a handful of these genes were found to evolve rapidly. To investigate whether these previous findings are anecdotal or general to genes modulating heterochromatin, we compile an exhaustive list of 106 candidate genes involved in heterochromatin functions and investigate their evolution over short and long evolutionary time scales in Drosophila. Our analyses find that these genes exhibit significantly more frequent evolutionary changes, both in the forms of amino acid substitutions and gene copy number change, when compared to genes involved in Polycomb-based repressive chromatin. While positive selection drives amino acid changes within both structured domains with diverse functions and intrinsically disordered regions, purifying selection may have maintained the proportions of intrinsically disordered regions of these proteins. Together with the observed negative associations between the evolutionary rate of these genes and the genomic abundance of transposable elements, we propose an evolutionary model where the fast evolution of genes involved in heterochromatin functions is an inevitable outcome of the unique functional roles of heterochromatin, while the rapid evolution of transposable elements may be an effect rather than cause. Our study provides an important global view of the evolution of genes involved in this critical cellular domain and provides insights into the factors driving the distinctive evolution of heterochromatin.


Assuntos
Evolução Molecular , Heterocromatina , Heterocromatina/genética , Animais , Elementos de DNA Transponíveis , Drosophila/genética , Seleção Genética , Drosophila melanogaster/genética , Dosagem de Genes
17.
Mol Cell ; 84(17): 3175-3191.e8, 2024 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-39096900

RESUMO

Heterochromatin enforces transcriptional gene silencing and can be epigenetically inherited, but the underlying mechanisms remain unclear. Here, we show that histone deacetylation, a conserved feature of heterochromatin domains, blocks SWI/SNF subfamily remodelers involved in chromatin unraveling, thereby stabilizing modified nucleosomes that preserve gene silencing. Histone hyperacetylation, resulting from either the loss of histone deacetylase (HDAC) activity or the direct targeting of a histone acetyltransferase to heterochromatin, permits remodeler access, leading to silencing defects. The requirement for HDAC in heterochromatin silencing can be bypassed by impeding SWI/SNF activity. Highlighting the crucial role of remodelers, merely targeting SWI/SNF to heterochromatin, even in cells with functional HDAC, increases nucleosome turnover, causing defective gene silencing and compromised epigenetic inheritance. This study elucidates a fundamental mechanism whereby histone hypoacetylation, maintained by high HDAC levels in heterochromatic regions, ensures stable gene silencing and epigenetic inheritance, providing insights into genome regulatory mechanisms relevant to human diseases.


Assuntos
Montagem e Desmontagem da Cromatina , Epigênese Genética , Inativação Gênica , Heterocromatina , Histona Desacetilases , Histonas , Nucleossomos , Heterocromatina/metabolismo , Heterocromatina/genética , Nucleossomos/metabolismo , Nucleossomos/genética , Histonas/metabolismo , Histonas/genética , Acetilação , Histona Desacetilases/metabolismo , Histona Desacetilases/genética , Humanos , Histona Acetiltransferases/metabolismo , Histona Acetiltransferases/genética , Animais
18.
Mol Cell ; 84(17): 3223-3236.e4, 2024 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-39094566

RESUMO

Chromatin-based epigenetic memory relies on the symmetric distribution of parental histones to newly synthesized daughter DNA strands, aided by histone chaperones within the DNA replication machinery. However, the mechanism of parental histone transfer remains elusive. Here, we reveal that in fission yeast, the replisome protein Mrc1 plays a crucial role in promoting the transfer of parental histone H3-H4 to the lagging strand, ensuring proper heterochromatin inheritance. In addition, Mrc1 facilitates the interaction between Mcm2 and DNA polymerase alpha, two histone-binding proteins critical for parental histone transfer. Furthermore, Mrc1's involvement in parental histone transfer and epigenetic inheritance is independent of its known functions in DNA replication checkpoint activation and replisome speed control. Instead, Mrc1 interacts with Mcm2 outside of its histone-binding region, creating a physical barrier to separate parental histone transfer pathways. These findings unveil Mrc1 as a key player within the replisome, coordinating parental histone segregation to regulate epigenetic inheritance.


Assuntos
Replicação do DNA , Epigênese Genética , Histonas , Proteínas de Schizosaccharomyces pombe , Schizosaccharomyces , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/genética , DNA Polimerase I/metabolismo , DNA Polimerase I/genética , Heterocromatina/metabolismo , Heterocromatina/genética , Histonas/metabolismo , Histonas/genética , Ligação Proteica , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Proteínas de Schizosaccharomyces pombe/genética
19.
Genetics ; 228(2)2024 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-39166515

RESUMO

The structural organization of eukaryotic genomes is contingent upon the fractionation of DNA into transcriptionally permissive euchromatin and repressive heterochromatin. However, we have a limited understanding of how these distinct states are first established during animal embryogenesis. Histone 3 lysine 9 trimethylation (H3K9me3) is critical to heterochromatin formation, and bulk establishment of this mark is thought to help drive large-scale remodeling of an initially naive chromatin state during animal embryogenesis. However, a detailed understanding of this process is lacking. Here, we leverage CUT&RUN to define the emerging H3K9me3 landscape of the zebrafish embryo with high sensitivity and temporal resolution. Despite the prevalence of DNA transposons in the zebrafish genome, we found that LTR transposons are preferentially targeted for embryonic H3K9me3 deposition, with different families exhibiting distinct establishment timelines. High signal-to-noise ratios afforded by CUT&RUN revealed new, emerging sites of low-amplitude H3K9me3 that initiated before the major wave of zygotic genome activation (ZGA). Early sites of establishment predominated at specific subsets of transposons and were particularly enriched for transposon sequences with maternal piRNAs and pericentromeric localization. Notably, the number of H3K9me3 enriched sites increased linearly across blastula development, while quantitative comparison revealed a >10-fold genome-wide increase in H3K9me3 signal at established sites over just 30 min at the onset of major ZGA. Continued maturation of the H3K9me3 landscape was observed beyond the initial wave of bulk establishment.


Assuntos
Desenvolvimento Embrionário , Histonas , Peixe-Zebra , Animais , Peixe-Zebra/genética , Peixe-Zebra/embriologia , Peixe-Zebra/metabolismo , Histonas/metabolismo , Histonas/genética , Desenvolvimento Embrionário/genética , Heterocromatina/metabolismo , Heterocromatina/genética , Elementos de DNA Transponíveis , Cromatina/metabolismo , Cromatina/genética , Metilação
20.
bioRxiv ; 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39071352

RESUMO

Early embryos often have relatively unstructured chromatin that lacks active and inactive domains typical of differentiated cells. In many species, these regulatory domains are established during zygotic genome activation (ZGA). In Drosophila, ZGA occurs after 13 fast, reductive, syncytial nuclear divisions during which the nuclear to cytoplasmic (N/C) ratio grows exponentially. These divisions incorporate maternally-loaded, cytoplasmic pools of histones into chromatin. Previous work found that chromatin incorporation of replication-coupled histone H3 decreases while its variant H3.3 increases in the cell cycles leading up to ZGA. In other cell types, H3.3 is associated with sites of active transcription as well as heterochromatin, suggesting a link between H3.3 incorporation and ZGA. Here, we examine the factors that contribute to H3.3 incorporation at ZGA. We identify a more rapid decrease in the nuclear availability of H3 than H3.3 over the final pre-ZGA cycles. We also observe an N/C ratio-dependent increase in H3.3 incorporation in mutant embryos with non-uniform local N/C ratios. We find that chaperone binding, not gene expression, controls incorporation patterns using H3/H3.3 chimeric proteins at the endogenous H3.3A locus. We test the specificity of the H3.3 chaperone pathways for H3.3 incorporation using Hira (H3.3 chaperone) mutant embryos. Overall, we propose a model in which local N/C ratios and specific chaperone binding regulate differential incorporation of H3.3 during ZGA.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...