Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
J Biomol Struct Dyn ; 42(2): 993-1014, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37021485

RESUMO

The human serotonin transporters (hSERTs) are neurotransmitter sodium symporters of the aminergic G protein-coupled receptors, regulating the synaptic serotonin and neuropharmacological processes related to neuropsychiatric disorders, notably, depression. Selective serotonin reuptake inhibitors (SSRIs) such as fluoxetine and (S)-citalopram are competitive inhibitors of hSERTs and are commonly the first-line medications for major depressive disorder (MDD). However, treatment-resistance and unpleasant aftereffects constitute their clinical drawbacks. Interestingly, vilazodone emerged with polypharmacological (competitive and allosteric) inhibitions on hSERTs, amenable to improved efficacy. However, its application usually warrants adjuvant/combination therapy, another subject of critical adverse events. Thus, the discovery of alternatives with polypharmacological potentials (one-drug-multiple-target) and improved safety remains essential. In this study, carbazole analogues from chemical libraries were explored using docking and molecular dynamics (MD) simulation. Selectively, two IBScreen ligands, STOCK3S-30866 and STOCK1N-37454 predictively bound to the active pockets and expanded boundaries (extracellular vestibules) of the hSERTs more potently than vilazodone and (S)-citalopram. For instance, the two ligands showed docking scores of -9.52 and -9.59 kcal/mol and MM-GBSA scores of -92.96 and -65.66 kcal/mol respectively compared to vilazodone's respective scores of -7.828 and -59.27 against the central active site of the hSERT (PDB 7LWD). Similarly, the two ligands also docked to the allosteric pocket (PDB 5I73) with scores of -8.15 and -8.40 kcal/mol and MM-GBSA of -96.14 and -68.46 kcal/mol whereas (S)-citalopram has -6.90 and -69.39 kcal/mol respectively. The ligands also conferred conformational stability on the receptors during 100 ns MD simulations and displayed interesting ADMET profiles, representing promising hSERT modulators for MDD upon experimental validation.Communicated by Ramaswamy H. Sarma.


Assuntos
Transtorno Depressivo Maior , Proteínas da Membrana Plasmática de Transporte de Serotonina , Humanos , Proteínas da Membrana Plasmática de Transporte de Serotonina/química , Proteínas da Membrana Plasmática de Transporte de Serotonina/metabolismo , Cloridrato de Vilazodona , Citalopram/farmacologia , Citalopram/metabolismo , Serotonina/química , Serotonina/metabolismo , Simulação de Dinâmica Molecular , Carbazóis/farmacologia , Simulação de Acoplamento Molecular
2.
Cells ; 11(2)2022 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-35053371

RESUMO

The human serotonin transporter (hSERT) removes the neurotransmitter serotonin from the synaptic cleft by reuptake into the presynaptic nerve terminal. A number of neurologic diseases are associated with dysfunction of the hSERT, and several medications for their treatment are hSERT blockers, including citalopram, fluoxetine, and paroxetine. The substrate transport is energized by the high concentration of external NaCl. We showed through molecular dynamics simulations that the binding of NaCl stabilized the hSERT in the substrate-binding competent conformation, which was characterized by an open access path to the substrate-binding site through the outer vestibule. Importantly, the binding of NaCl reduced the dynamics of the hSERT by decreasing the internal fluctuations of the bundle domain as well as the movement of the bundle domain relative to the scaffold domain. In contrast, the presence of only the bound chloride ion did not reduce the high domain mobility of the apo state.


Assuntos
Proteínas da Membrana Plasmática de Transporte de Serotonina/química , Proteínas da Membrana Plasmática de Transporte de Serotonina/metabolismo , Sódio/metabolismo , Humanos , Íons , Simulação de Dinâmica Molecular , Porosidade , Análise de Componente Principal , Domínios Proteicos , Estabilidade Proteica , Estrutura Secundária de Proteína
3.
Front Cell Neurosci ; 15: 673782, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34040506

RESUMO

The serotonin transporter (SERT) terminates neurotransmission by transporting serotonin from the synapse into the pre-synaptic nerve terminal. Altered SERT function leads to several neurological diseases including depression, anxiety, mood disorders, and attention deficit hyperactivity disorders (ADHD). Accordingly SERT is the target for their pharmacological treatments, but also targeted by multiple drugs of abuse. Transport of serotonin by SERT is energized by the transmembrane electrochemical gradient of sodium. We used extensive molecular dynamics simulations to investigate the process of sodium binding to SERT, which is the first step in the transport cycle that leads to serotonin uptake. Comparing data from 51 independent simulations, we find a remarkably well-defined path for sodium entry and could identify two transient binding sites, while observing binding kinetics that are comparable to experimental data. Importantly, the structure and dynamics of the sodium binding sites indicate that sodium binding is accompanied by an induced-fit mechanism that leads to new conformations and reduces local dynamics.

4.
Elife ; 72018 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-29877799

RESUMO

A simple label-free method uses the electrical properties of cells to detect how ligands bind to membrane proteins.


Assuntos
Fenômenos Biofísicos , Proteínas de Membrana , Ligantes , Glicoproteínas de Membrana , Proteínas de Membrana Transportadoras , Proteínas da Membrana Plasmática de Transporte de Serotonina
5.
Elife ; 72018 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-29697048

RESUMO

Electrophysiological recordings allow for monitoring the operation of proteins with high temporal resolution down to the single molecule level. This technique has been exploited to track either ion flow arising from channel opening or the synchronized movement of charged residues and/or ions within the membrane electric field. Here, we describe a novel type of current by using the serotonin transporter (SERT) as a model. We examined transient currents elicited on rapid application of specific SERT inhibitors. Our analysis shows that these currents originate from ligand binding and not from a long-range conformational change. The Gouy-Chapman model predicts that adsorption of charged ligands to surface proteins must produce displacement currents and related apparent changes in membrane capacitance. Here we verified these predictions with SERT. Our observations demonstrate that ligand binding to a protein can be monitored in real time and in a label-free manner by recording the membrane capacitance.


Assuntos
Técnicas Citológicas/métodos , Proteínas de Membrana/metabolismo , Técnicas de Patch-Clamp/métodos , Células HEK293 , Humanos , Ligantes , Ligação Proteica , Proteínas da Membrana Plasmática de Transporte de Serotonina/metabolismo
6.
Sleep Breath ; 20(1): 271-6, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26527205

RESUMO

PURPOSE: To evaluate correlations between serotonin transporter (SERT) uptake ability in human peripheral platelets and sleep bruxism (SB) frequency. METHODS: Subjects were consecutively recruited from sixth-year students at Okayama University Dental School. Subjects were excluded if they (1) were receiving orthodontic treatment, (2) had a dermatological disease, (3) had taken an antidepressant within 6 months, or (4) had used an oral appliance within 6 months. SB frequency was determined as the summary score of three consecutive night assessments using a self-contained electromyography detector/analyzer in their home. Fasting peripheral venous blood samples were collected in the morning following the final SB assessment. SERT amount and platelet number were quantified via an ELISA assay and flow cytometry, respectively. Functional SERT characterization, 5-hydroxytryptamine (5-HT) uptake, maximum velocity (V max), and an affinity constant (K m ) were assessed with a [(3)H] 5-HT uptake assay. The correlations between these variables and SB level were evaluated. RESULTS: Among 50 eligible subjects (26 males, mean age 25.4 ± 2.41 years), 7 were excluded because of venipuncture failure, smoking, and alcohol intake during the experimental period. A small but significant negative correlation between SB level and [(3)H] 5-HT uptake was observed (Spearman's correlation R (2) = 0.063, p = 0.04). However, there were no significant correlations between SB level and total platelet amount, SERT, V max, and K m values (p = 0.08, 0.12, 0.71, and 0.68, respectively). CONCLUSIONS: Platelet serotonin uptake is significantly associated with SB frequency, yet only explains a small amount of SB variability.


Assuntos
Plaquetas/metabolismo , Proteínas da Membrana Plasmática de Transporte de Serotonina/sangue , Bruxismo do Sono/sangue , Bruxismo do Sono/epidemiologia , Adulto , Eletromiografia , Feminino , Humanos , Masculino , Contagem de Plaquetas , Polissonografia , Serotonina/sangue , Estatística como Assunto , Adulto Jovem
7.
J Prosthodont Res ; 58(4): 217-22, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25127373

RESUMO

PURPOSE: The aim of this study was to evaluate the correlation between sleep bruxism (SB) frequency and serotonin transporter (SERT)-driven serotonin (5-HT)-uptake in platelets. METHODS: Subjects were dental trainee residents and faculty members of Okayama University Hospital who were aware of having severe or no SB. SB frequency was assessed for 3-consecutive nights by a self-contained electromyographic detector/analyzer, which indicated individual SB levels as one of four grades (score 0, 1, 2 and 3). Subjects were classified as normal control (NC) when SB scores indicated only 0 or 1 during the 3 nights, or as severe SB for scores 2 or 3. Those subjects whose scores fluctuated from 0 to 3 during the 3 nights were omitted from further analysis. Fasting peripheral venous blood samples were collected in the morning following the final SB assessment. Amounts of SERTs proteins collected from peripheral platelets were quantified using ELISA, and SERTs transport activity was assessed by uptake assay using [3H]-5-HT. RESULTS: Thirteen severe SB subjects and 7 NC subjects were eligible. Gender distribution, mean age, 5-HT concentration and total amounts of SERT protein in platelets showed no significant differences between NC and severe SB (p=0.85: Chi-squared test; p=0.64, 0.26, 0.46: t-test). However, [3H]-5-HT uptake by platelets was significantly greater in NC compared to severe SB subjects (12.79±1.97, 8.27±1.91 fmol/10(5) platelets/min, p<0.001, t-test). CONCLUSION: The results of this pilot study suggest a possible correlation between peripheral platelet serotonin transporter uptake ability and SB severity.


Assuntos
Neurônios Serotoninérgicos/metabolismo , Proteínas da Membrana Plasmática de Transporte de Serotonina/metabolismo , Bruxismo do Sono/sangue , Bruxismo do Sono/metabolismo , Adulto , Plaquetas/metabolismo , Eletromiografia , Feminino , Humanos , Masculino , Contagem de Plaquetas , Serotonina/sangue , Proteínas da Membrana Plasmática de Transporte de Serotonina/sangue , Índice de Gravidade de Doença , Bruxismo do Sono/diagnóstico , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...