Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Small ; : e2405740, 2024 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-39240005

RESUMO

Utilizing Diesel Oxidation Catalysts (DOC) to partially oxidize NO to NO2 is a crucial step in controlling NOx emissions from diesel engines. However, enhancing both catalytic activity and hydrothermal stability remains a significant challenge. Benefiting from abundant asymmetric oxygen vacancies and increased Mn4+ content, MnRE0.5Zr0.5 exhibits superior NO oxidation performance (T63 = 337 °C) and hydrothermal aging resistance (T52 = 340 °C) compared to the undoped sample (T53 = 365 °C). XPS, Raman, TPR, and XAS are employed to verify the elevation of oxygen vacancy concentration and Mn valence state modulation due to Zr introduction. Furthermore, compared to MnRE (1.36 eV), the formation energy of oxygen vacancies in MnRE0.5Zr0.5 is significantly reduced (0.17 eV). This work elucidates the dual regulatory role of Zr in the Mn-RE-Zr ternary system, providing theoretical support and guidance for the design of catalysts for atmospheric pollutant purification and industrial catalysis.

2.
ACS Nano ; 2024 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-39235312

RESUMO

Aqueous-phase reforming of methanol represents a promising avenue for hydrogen (H2) production. However, developing highly efficient and low-cost nonprecious catalysts remains challenging. Here, we report the synthesis of Cu-based catalysts with Cu, Cu2O, and CuN3 nanoparticles anchored on the nitrogen-doped carbon, forming Cu0/Cu+/Cu-N3 active sites. This catalyst achieves a H2 production rate of 140.1 µmol/gcat/s at 210 °C, which is several times to 2 orders of magnitude higher than that of Cu-, Ni-, even Pt-based catalysts, demonstrating excellent long-term stability over 350 h at 210 °C. A mechanism investigation reveals that the Cu-N3 site facilitates water dissociation into *OH and improves *CO and *OH conversion, leading to enhanced CO conversion and H2 production kinetics.

3.
Molecules ; 29(16)2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-39202811

RESUMO

Zeolitic imidazolate frameworks (ZIFs) are traditionally synthesized using N, N-dimethylformamide (DMF). However, DMF is toxic and hazardous to human health and the environment, hence other alternative solvents need to be considered. Herein, three different solvents like methanol, water and acetone were used to replace DMF and to explore the syntheses of ZIF-90 using a conventional and a microwave-assisted solvothermal method to obtain hydrothermally stable products, which also exhibit an increased water uptake. Pure ZIF-90 was synthesized under ambient pressure at 60 °C for 90 min using the conventional solvothermal method in an acetone-water solution, while under microwave irradiation it was formed in only 5 min at 80 °C. Altering methanol, water and acetone in the reaction mixture significantly affected the structural and water adsorption properties of ZIF-90s, which were monitored via PXRD, TGA, nitrogen and water sorption, and SEM. The highly efficient, less toxic, low-cost and activation-free microwave synthesis resulted in the formation of ZIF-90 nanoparticles that exhibited the highest maximum water adsorption capacity (0.37 g/g) and the best hydrothermal stability between water adsorption at 30 °C and desorption at 100 °C at 12.5 mbar among all the products obtained.

4.
J Hazard Mater ; 477: 135268, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-39047562

RESUMO

Although small pore Cu-SSZ-13 catalysts have been successful as commercial catalysts for controlling NOx emissions from mobile sources, the challenges of high light-off temperature, SO2 tolerance and hydrothermal stability still need to be addressed. Here, we synthesized a multifunctional core-shell catalyst with Cu-SSZ-13 as the core phase and Ce-MnOx supported Mesoporous-silica (Meso-SiO2) as the shell phase via self-assembly and impregnation. The core-shell catalyst exhibited excellent low-temperature activity, SO2 tolerance and hydrothermal stability compared to the Cu-SSZ-13. The Ce-MnOx species dispersed in the shell are found to enhance both the acidic and oxidative properties of the core-shell catalyst. More critically, these species can rapidly activate NO and oxidize it to NO2, which allows the NH3-SCR reaction on the core-shell catalyst to be initiated in the shell phase. Meanwhile, Ce-MnOx species can react preferentially with SO2 as sacrifice components, effectively avoiding the sulfur inactivation of the copper active sites. Furthermore, the hydrophobic Meso-SiO2 shell provides an important barrier for the core phase, which reduces the loss of active species, acid sites and framework Al of the aged core-shell catalyst and mitigates the collapse of the zeolite framework. This work provides a new strategy for the design of novel and efficient NH3-SCR catalysts.

5.
Front Chem ; 12: 1413489, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39045334

RESUMO

Catalytic oxidation is used to control carbon monoxide (CO) emissions from industrial exhaust. In this work, The prepared Pta-Fe(OH) x catalysts (x represents the mass fraction of Pt loading (%), a = 0.5, 1 and 2) by the one-pot reduction method exhibited excellent CO catalytic activity, with the Pt2-Fe(OH) x catalyst, 70% and ∼100% CO conversion was achieved at 30°C and 60°C, respectively. In addition, the Pt2-Fe(OH) x catalyst also showed excellent H2O resistance and hydrothermal stability in comparison to the Pt2/Fe(OH) x catalyst prepared by impregnation method. Characterization results showed that the excellent catalytic performance of the catalysts was mainly attributed to the abundant surface oxygen species and Pt0 the presence of H2O, which promoted the catalytic reaction of CO, and Density functional theory (DFT) calculation showed that this was mainly attributed to the catalytic activity of the hydroxyl (-OH) species on Pt2-Fe(OH) x surface, which could easily oxidize CO to -COOH, which could be further decomposed into CO2 and H atoms. This study provides valuable insights into the design of high-efficiency non-precious metal catalysts for CO catalytic oxidation catalysts with high efficiency.

6.
J Environ Sci (China) ; 138: 450-457, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38135410

RESUMO

Hydrothermal stability is crucial for the practical application of deNOx catalyst on diesel vehicles, for the selective catalytic reduction of NOx with NH3 (NH3-SCR). SnO2-based materials possess superior hydrothermal stability, which is attractive for the development of NH3-SCR catalyst. In this work, a series of Ce-Nb/SnO2 catalysts, with Ce and Nb loading on SnO2 support, were prepared by impregnation method. It was found that, the NH3-SCR activities and hydrothermal stabilities of the Ce-Nb/SnO2 catalysts significantly varied with the impregnation sequences, and the Ce-Nb(f)/SnO2 catalyst that firstly impregnated Nb and then impregnated Ce exhibited the best performance. The characterization results revealed that Ce-Nb(f)/SnO2 possessed appropriate acidity and redox capability. Furthermore, the strong synergistic effect between Nb and Sn species stabilized the structure and maintained the dispersion of acid sites. This study may provide a new understanding for the effect of impregnation sequence on activity and hydrothermal stability and a new environmental-friendly NH3-SCR catalyst with potential applications for NOx removal from diesel and hydrogen-fueled engines.


Assuntos
Amônia , Nióbio , Amônia/química , Oxirredução , Hidrogênio , Catálise
7.
Environ Sci Technol ; 57(48): 20370-20379, 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-37947383

RESUMO

Methane emissions from vehicles have made a significant contribution to the greenhouse effect, primarily due to its high global warming potential. Supported noble metal catalysts are widely employed in catalytic combustion of methane in vehicles, but they still face challenges such as inadequate low-temperature activity and deactivation due to sintering under harsh operating conditions. In the present work, a series of encapsulated structured catalysts with palladium nanoparticles confined in hydrophobic silicalite-2 were prepared by an in situ synthesis method. Based on various characterization methods, including XRD, HR-TEM, XPS, H2-TPR, O2-TPD, H2O-TPD, CH4-TPR, Raman, and in situ DRIFTS-MS, it was confirmed that PdOx nanoparticles were mainly encapsulated inside the silicalite-2 zeolite, which further maintained the stability of the nanoparticles under harsh conditions. Specifically, the 3Pd@S-2 sample exhibited high catalytic activity for methane oxidation even after harsh hydrothermal aging at 750 °C for 16 h and maintained long-term stability at 400 °C for 130 h during wet methane combustion. In situ Raman spectroscopy has confirmed that PdOx species act as active species for methane oxidation. During this reaction, methane reacts with PdOx to produce CO2 and H2O, while simultaneously reducing PdOx to metallic Pd species, which is further reoxidized by oxygen to replenish the PdOx catalyst.


Assuntos
Nanopartículas Metálicas , Metano , Metano/química , Paládio/química , Oxirredução , Catálise
8.
J Colloid Interface Sci ; 638: 686-694, 2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-36774880

RESUMO

Cu-SAPO-34 is a promising catalyst for abatement of NO via selective catalytic reduction with NH3 (NH3-SCR), but its hydrothermal stability needs to be enhanced. In this work, the Cu-SAPO-34 catalysts with different P/Al ratios of 0.8, 1.0 and 1.2 were prepared, and the temperature window with NO conversion >90% (T90) for all catalysts were similar (160-570 °C). The T90 of Cu-SAPO-34 with P/Al of 0.8 dramatically decreased (220-470 °C) after hydrothermal treatment, and interestingly, the catalysts with high P/Al ratios (1.0 and 1.2) remained high activity. The T90 of the aged catalysts with P/Al of 1.2 was 155-525 °C. The characterizations showed that the increase of P/Al ratio not only enhanced the crystallinity but also enlarged the grain size of catalysts, which were conducive to the zeolite framework stability. Moreover, the Cu-SAPO-34 with large grain size facilitated the conversion of CuO to isolated Cu2+ ions as well as inhibited the aggregation of Cu species. Furthermore, the large grain sized catalysts provided more acid sites, and thus, the catalysts presented excellent hydrothermal stability. In situ DRIFTS analysis confirmed the existence of both Langmuir-Hinshelwood and Eley-Rideal pathway over the catalyst with a P/Al ratio of 1.2. This work provided a facile method to promote the hydrothermal stability of Cu-based zeolite catalysts.

9.
J Environ Sci (China) ; 126: 333-347, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36503761

RESUMO

Pd/Al2O3 catalysts supported on Al2O3 of different particle sizes were synthesized and applied in methane combustion. These catalysts were systematically characterized by Brunauer-Emmett-Teller (BET), X-ray diffraction (XRD), high resolution-transmission electron microscopy (HR-TEM), high-angle annular dark field-scanning transmission electron microscopy (HAADF-STEM), H2-temperature-programmed reduction (H2-TPR), O2-temperature-programmed oxidation (O2-TPO), X-ray photoelectron spectroscopy (XPS), and X-ray absorption fine structure (XAFS). The characterization results indicated that nano-sized Al2O3 enabled the uniform dispersion of palladium nanoparticles, thus contributing to the excellent catalytic performance of these nano-sized Pd/Al2O3 catalysts. Among them, Pd/Al2O3-nano-10 (Pd/Al2O3 supported by alumina with an average particle size of 10 nm) showed superior catalytic activity and stability for methane oxidation under harsh practical conditions. It maintained excellent catalytic performance for methane oxidation for 50 hr and remained stable even after harsh hydrothermal aging in 10 vol.% steam at 800°C for 16 hr. Characterization results revealed that the strong metal-support interactions and physical barriers provided by Al2O3-nano-10 suppressed the coalescence ripening of palladium species, and thus contributed to the superior sintering resistance of the Pd/Al2O3-nano-10 catalyst.


Assuntos
Nanopartículas Metálicas , Paládio , Óxido de Alumínio , Metano , Catálise
10.
Front Chem ; 10: 1033255, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36324517

RESUMO

Nitrogen oxides (NO x ), which are the major gaseous pollutants emitted by mobile sources, especially diesel engines, contribute to many environmental issues and harm human health. Selective catalytic reduction of NO x with NH3 (NH3-SCR) is proved to be one of the most efficient techniques for reducing NO x emission. Recently, Cu-SSZ-13 catalyst has been recognized as a promising candidate for NH3-SCR catalyst for reducing diesel engine NO x emissions due to its wide active temperature window and excellent hydrothermal stability. Despite being commercialized as an advanced selective catalytic reduction catalyst, Cu-SSZ-13 catalyst still confronts the challenges of low-temperature activity and hydrothermal aging to meet the increasing demands on catalytic performance and lifetime. Therefore, numerous studies have been dedicated to the improvement of NH3-SCR performance for Cu-SSZ-13 catalyst. In this review, the recent progress in NH3-SCR performance optimization of Cu-SSZ-13 catalysts is summarized following three aspects: 1) modifying the Cu active sites; 2) introducing the heteroatoms or metal oxides; 3) regulating the morphology. Meanwhile, future perspectives and opportunities of Cu-SSZ-13 catalysts in reducing diesel engine NO x emissions are discussed.

11.
Nanomaterials (Basel) ; 12(13)2022 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-35808001

RESUMO

In order to obtain a steam-stable hydrogen permselectivity membrane, with tetraethylorthosilicate (TEOS) as the silicon source, zirconium nitrate pentahydrate (Zr(NO3)4·5H2O) as the zirconium source, and methyltriethoxysilane (MTES) as the hydrophobic modifier, the methyl-modified ZrO2-SiO2 (ZrO2-MSiO2) membranes were prepared via the sol-gel method. The microstructure and gas permeance of the ZrO2-MSiO2 membranes were studied. The physical-chemical properties of the membranes were characterized by Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscope (SEM), and N2 adsorption-desorption analysis. The hydrogen permselectivity of ZrO2-MSiO2 membranes was evaluated with Zr content, temperature, pressure difference, drying control chemical additive (glycerol) content, and hydrothermal stability as the inferred factors. XRD and pore structure analysis revealed that, as nZr increased, the MSiO2 peak gradually shifted to a higher 2θ value, and the intensity gradually decreased. The study found that the permeation mechanism of H2 and other gases is mainly based on the activation-diffusion mechanism. The separation of H2 is facilitated by an increase in temperature. The ZrO2-MSiO2 membrane with nZr = 0.15 has a better pore structure and a suitable ratio of micropores to mesopores, which improved the gas permselectivities. At 200 °C, the H2 permeance of MSiO2 and ZrO2-MSiO2 membranes was 3.66 × 10-6 and 6.46 × 10-6 mol·m-2·s-1·Pa-1, respectively. Compared with the MSiO2 membrane, the H2/CO2 and H2/N2 permselectivities of the ZrO2-MSiO2 membrane were improved by 79.18% and 26.75%, respectively. The added amount of glycerol as the drying control chemical additive increased from 20% to 30%, the permeance of H2 decreased by 11.55%, and the permselectivities of H2/CO2 and H2/N2 rose by 2.14% and 0.28%, respectively. The final results demonstrate that the ZrO2-MSiO2 membrane possesses excellent hydrothermal stability and regeneration capability.

12.
Nanomaterials (Basel) ; 12(12)2022 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-35745436

RESUMO

Three porous aluminium benzene-1,3,5-tricarboxylates MIL-96(Al), MIL-100(Al) and MIL-110(Al) materials were studied for their hydrothermal stability. The 40-cycles water vapour sorption experiments for the three samples were performed by varying the temperature between 40 and 140 °C at 75% relative humidity to simulate working conditions for materials used in water sorption-based low-T heat storage and reallocation applications. The materials were characterized by powder X-ray diffraction, N2 physisorption, and Nuclear Magnetic Resonance and Infrared spectroscopies before and after the cycling tests. The results showed that the structure of MIL-110(Al) lost its crystallinity and porosity under the tested conditions, while MIL-96(Al) and MIL-100(Al) exhibited excellent hydrothermal stability. The selection of structures, which comprise the same type of metal and ligand, enabled us to attribute the differences in stability primarily to the known variances in secondary building units and the shielding of potential water coordination sites due to the differences in pore accessibility for water molecules. Additionally, our results revealed that water adsorption and desorption at tested conditions (T, RH) is very slow for all three materials, being most pronounced for the MIL-100(Al) structure.

13.
J Hazard Mater ; 437: 129358, 2022 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-35716566

RESUMO

The supported palladium catalysts perform well in the oxidative removal of hazardous aromatic hydrocarbons. However, water vapor can seriously deactivate the catalysts especially in the low-temperature regime. Hence, improving moisture resistance of the Pd-based catalysts is full of challenge in the removal of aromatics. Herein, we report a new type of Pd@NC/BN catalysts featured with nitrogen-doped carbon layers modified Pd supported on hexagonal boron nitride (h-BN), and the relationship between structure and water resistance of the catalysts. The results show that in the presence of 10 vol% H2O in the feedstock, the Pd@NC/BN catalyst could effectively oxidize o-xylene (with an almost 87% removal efficiency), whereas o-xylene conversion declined from 69% to 20% over the conventional Pd/Al2O3 at a reaction temperature of 210 °C and a space velocity of 40,000 mL/(g h). The adsorption of H2O was significantly inhibited on the nitrogen-doped carbon layers due to the hydrophobic nature. Meanwhile, the oxygen species active for o-xylene oxidation were not only from the adsorbed gas-phase oxygen but also from the new active oxygen (*OOH and *OH) species that were generated via the interaction of O2 and H2O in the presence of water in the feedstock. It is concluded that the reactive oxygen species that accelerated the activation and cleavage of C-H bonds significantly facilitated the conversion of key intermediate species (from benzaldehyde to benzoic acid), thus playing a decisive role in o-xylene oxidation. The present work provides a direction for developing the superior water resistance catalysts with hydrophobic nature and good water activation ability in the oxidative removal of volatile organic compounds.

14.
Membranes (Basel) ; 12(5)2022 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-35629853

RESUMO

Methyl-modified niobium-doped silica (Nb/SiO2) materials with various Nb/Si molar ratios (nNb) were fabricated using tetraethoxysilane and methyltriethoxysilane as the silica source and niobium pentachloride as the niobium source by the sol-gel method, and the Nb/SiO2 membranes were prepared thereof by the dip-coating process under an N2 calcining atmosphere. Their microstructures were characterized and gas permeances tested. The results showed that the niobium element existed in the formation of the Nb-O groups in the Nb/SiO2 materials. When the niobium doping content and the calcining temperature were large enough, the Nb2O5 crystals could be formed in the SiO2 frameworks. With the increase of nNb and calcination temperature, the formed particle sizes increased. The doping of Nb could enhance the H2/CO2 and H2/N2 permselectivities of SiO2 membranes. When nNb was equal to 0.08, the Nb/SiO2 membrane achieved a maximal H2 permeance of 4.83 × 10-6 mol·m-2·Pa-1·s-1 and H2/CO2 permselectivity of 15.49 at 200 °C and 0.1 MPa, which also exhibited great hydrothermal stability and thermal reproducibility.

15.
ACS Appl Mater Interfaces ; 14(18): 20875-20887, 2022 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-35475604

RESUMO

The hydrothermal stability of NO oxidation is the key to the practical application of diesel oxidation catalysts in diesel engines, which in the laboratory requires that NO activity does not decrease after aging for 10 h with 10% H2O/air at 800 °C. On the one hand, the construction of a metal/oxide interface can lead to abundant oxygen vacancies (Ov), which compensate for the loss of activity caused by the aggregation of Pt particles after aging. On the other hand, YMn2O5 (YMO) has excellent thermal stability and NO oxidation capacity. Therefore, a Pt/YMn2O5-La-Al2O3 (Pt/YMO-LA) catalyst was prepared by the impregnation method. The support of the catalyst, YMn2O5-La-Al2O3 (YMO-LA), was obtained by mixing high specific surface LA and YMO ball-milling. Under laboratory-simulated diesel exhaust flow, the NO oxidation performance of Pt/YMO-LA did not decrease after hydrothermal aging. Combining high-resolution transmission electron microscopy (HRTEM), X-ray photoelectron spectroscopy (XPS), and oxygen temperature-programmed desorption (O2-TPD), the Pt/YMn2O5 interface was formed after hydrothermal aging, and the increased Ov can provide reactive oxygen to Pt and YMO. The cooperative catalysis of multiple active centers composed of Pt, YMO, and Ov is the crucial factor to maintain the NO oxidation performance. In addition, in situ diffuse reflectance infrared Fourier transform spectra (DRIFTs) show that an increase in Ov is beneficial to the adsorption and desorption of more nitrate and nitrite intermediates, thus achieving the hydrothermal stability of NO oxidation.

16.
Environ Sci Pollut Res Int ; 29(21): 31374-31383, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35001265

RESUMO

Preservation or curing of hides/skins is performed as the primary step of leather processing to conserve them from putrefaction. Normally preservation is carried out using common salt (NaCl), which is discharged in the soak liquor contributing to ~ 70%, of total dissolved solids (TDS) load of entire leather manufacturing. In an attempt to reduce the TDS and chlorides, phyto-based preservation using garlic peel (Allium sativum) and white onion peel (Allium cepa) was carried out. Different concentrations of salt in combination with garlic peel and white onion peel were applied on freshly flayed goat skins based on its green weight and compared to control (40% salt). Sensory evaluation of the preserved skin was done by assessing different parameters like hair slip, putrefaction and odour. Estimation of hydroxyproline (HP) release, moisture content and microbial load were carried out at regular intervals. Skins that remained in good condition for 14 days were further processed into leather and properties were examined which were found comparable to the conventionally cured skins. Hence, this cleaner curing technique helps in reducing the TDS and chlorides in the effluent, thus controlling the pollution caused by tanneries through sustainable leather processing.


Assuntos
Dermatopatias , Curtume , Animais , Cloretos , Cabras , Salinidade , Pele , Cloreto de Sódio , Cloreto de Sódio na Dieta , Verduras
17.
Membranes (Basel) ; 13(1)2022 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-36676837

RESUMO

This work investigated the long-term hydrothermal performance of composite carbon-SiO2-ZrO2 membranes. A carbon-SiO2-ZrO2 composite was formed from the inert pyrolysis of SiO2-ZrO2-polybenzoxazine resin. The carbon-SiO2-ZrO2 composites prepared at 550 and 750 °C had different surface and microstructural properties. A carbon-SiO2-ZrO2 membrane fabricated at 750 °C exhibited H2 selectivity over CO2, N2, and CH4 of 27, 139, and 1026, respectively, that were higher than those of a membrane fabricated at 550 °C (5, 12, and 11, respectively). In addition to maintaining high H2 permeance and selectivity, the carbon-SiO2-ZrO2 membrane fabricated at 750 °C also showed better stability under hydrothermal conditions at steam partial pressures of 90 (30 mol%) and 150 kPa (50 mol%) compared with the membrane fabricated at 500 °C. This was attributed to the complete pyrolytic and ceramic transformation of the microstructure after pyrolysis at 750 °C. This work thus demonstrates the promise of carbon-SiO2-ZrO2 membranes for H2 separation under severe hydrothermal conditions.

18.
J Hazard Mater ; 416: 126194, 2021 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-34492958

RESUMO

The improvement of stability is a crucial and challenging issue for industrial catalyst, which affects not only the service time but also the cost of catalyst. This is especially prominent for that applied in harsh environment atmospheres, such as the exhaust of diesel vehicles. Herein, we reported a new strategy to improve the high-temperature hydrothermal stability of Cu-SSZ-13, which is a promising catalyst for the treatment of exhaust emitted from diesel vehicles through the NH3-SCR NOx route. Different from that reported in literature, we managed to improve the high-temperature hydrothermal stability of Cu-SSZ-13 by coating the surface with a nanolayer of stable SiO2 material using the atomic layer deposition (ALD) method. The coating of SiO2 layers effectively suppressed the leaching of alumina from the SSZ-13 molecular sieve even after the hydrothermal aging at 800 °C for 16 h with 12.5% water in air. Meanwhile, the ultra-thin SiO2 nanolayer does not block the pores of zeolites and affect the catalytic activity of Cu-SSZ-13 contribute to the superiority of the ALD technology.

19.
Materials (Basel) ; 14(15)2021 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-34361380

RESUMO

Methyl-modified, cobalt-doped silica (Co/MSiO2) materials were synthesized by sol-gel technique calcined in N2 atmospheres, and membranes were made thereof by coating method. The effects of Co/Si molar ratio (nCo) on the physical-chemical constructions of Co/MSiO2 materials and microstructures of Co/MSiO2 membranes were systematically investigated. The gas permeance performance and hydrothermal stability of Co/MSiO2 membranes were also tested. The results show that the cobalt element in Co/MSiO2 material calcined at 400 °C exists not only as Si-O-Co bond but also as Co3O4 and CoO crystals. The introduction of metallic cobalt and methyl can enlarge the total pore volume and average pore size of the SiO2 membrane. The activation energy (Ea) values of H2, CO2, and N2 for Co/MSiO2 membranes are less than those for MSiO2 membranes. When operating at a pressure difference of 0.2 MPa and 200 °C compared with MSiO2 membrane, the permeances of H2, CO2, and N2 for Co/MSiO2 membrane with nCo = 0.08 increased by 1.17, 0.70, and 0.83 times, respectively, and the perm-selectivities of H2/CO2 and H2/N2 increased by 27.66% and 18.53%, respectively. After being steamed and thermally regenerated, the change of H2 permeance and H2 perm-selectivities for Co/MSiO2 membrane is much smaller than those for MSiO2 membrane.

20.
J Hazard Mater ; 401: 123444, 2021 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-32763719

RESUMO

Hydrothermal instability restricts performances of silica-based catalysts, which have wide applications in both industry and environment. For the first time, plasma-thermal slag was revealed to be a catalyst with a born hydrothermal stability in selective catalytic reduction of nitric oxide. The slag catalyst removed 98.5 % of NO with a high N2 selectivity (> 95 %) at 200 °C. After a hydrothermal treatment at 900 °C, the activity of the slag only decreased to 84.0 %. According to characterizations of XRD, HTREM, XPS, and EPR, active metals existed in coordination states in the slag at first. Under hydrothermal conditions, these species transformed to short-range single crystals, which were hindered from sintering by surrounded Si-O bands. At the same time, in-situ DRIFT indicated that more Brønsted and Lewis acid sites were formed. Hence, enough active sties were reserved for effective catalytic reduction of nitric oxide. The main result of this work helps us to understand hydrothermal stability of a catalyst. What's more, the high-value-added utilization of plasma-thermal slag is in favor of the development of hazardous-waste treatment.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...