Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 609
Filtrar
1.
Anim Genet ; 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38956930

RESUMO

To date, only 10 of the more than 30 fur colours that had been observed in American mink (Neogale vison) have been linked to specific genes. The Royal pastel fur colour is part of a large family of brownish colours that are quite similar to one another, making breeding and selecting processes more difficult. Here we carried out whole-genome sequencing of five American minks with Royal pastel (b/b) phenotypes originating from two distinct mink populations. We identified an insertion of endogenous retroviral element type 1 (ERV1) into the first intron of the gene encoding the HPS3 protein, which regulates the trafficking of tyrosinase-containing vesicles to maturing melanosomes. With Cas9-targeted nanopore sequencing, we reconstructed the full-length sequence of the 11.7 Kb ERV1 insertion and observed hypermethylation that spread to the HPS3 gene promoter region. These findings highlight the role of HPS3 in the formation of melanosomes and melanin, as well as the genetic process regulating the intensity and spectrum of hair colour. Moreover, in mink breeding projects, these data are also useful for tracking economically important fur qualities.

2.
Allergol Immunopathol (Madr) ; 52(4): 30-37, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38970262

RESUMO

BACKGROUND: Chronic idiopathic thrombocytopenic purpura (ITP) is an autoimmune disease characterized by a breakdown of immune tolerance; in ITP, the body's immune system mistakenly attacks and destroys platelets. This study aims to investigate the role and underlying mechanisms of FOXP3 in chronic ITP. METHODS: Flow cytometry was used to detect the proportion of CD4+CD25+FOXP3+ regulatory T cells (Tregs) in CD4+CD25+ T lymphocytes from 20 patients with chronic ITP (CITP), 20 acute ITP (AITP) controls, and 20 healthy individuals.CD4+CD25+ Treg cells were isolated from peripheral blood of patients with CITP using magnetic beads and then treated with phosphate-buffered saline solution or decitabine (a methylation inhibitor) for 48 h. The levels of interleukin-2 (IL-2), IL-10, and transforming growth factor-beta1 (TGF-ß1) in the plasma and CD4+CD25+ Treg cells were assessed by Enzyme-linked-immunosorbent serologic assay and quantitative real-time polymerase chain reaction (qRT-PCR). FOXP3 level was measured by qRT-PCR and Western blot analysis. Methylation-specific PCR (MS-PCR) was adopted to detect the status of FOXP3 methylation. RESULTS: The number of Treg cells and the contents of IL-2, IL-10, and TGF-ß1 decreased in patients with CITP, compared to the AITP control group and normal group. FOXP3 expression was reduced and FOXP3 methylation increased in patients with CITP, compared to the AITP control group and normal group. Hypermethylation of FOXP3 promoter led to decrease in FOXP3 level in Treg cells. Inhibition of FOXP3 promoter hypermethylation promoted the secretion of IL-2, IL-10, and TGF-ß1 in Treg cells. CONCLUSION: The number of Treg cells in CITP patients decreased, and the hypermethylation of FOXP3 promoter led to reduction of its expression in Treg cells, thus affecting the immune functioning of Treg cells.


Assuntos
Metilação de DNA , Fatores de Transcrição Forkhead , Púrpura Trombocitopênica Idiopática , Linfócitos T Reguladores , Humanos , Linfócitos T Reguladores/imunologia , Púrpura Trombocitopênica Idiopática/imunologia , Púrpura Trombocitopênica Idiopática/genética , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/metabolismo , Masculino , Feminino , Adulto , Pessoa de Meia-Idade , Doença Crônica , Interleucina-2 , Fator de Crescimento Transformador beta1/genética , Fator de Crescimento Transformador beta1/metabolismo , Fator de Crescimento Transformador beta1/sangue , Adulto Jovem , Decitabina/farmacologia , Células Cultivadas , Interleucina-10/genética , Interleucina-10/metabolismo , Idoso
3.
Mol Med ; 30(1): 100, 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-38992588

RESUMO

BACKGROUND: Diabetes mellitus (DM)-induced testicular damage is associated with sexual dysfunction and male infertility in DM patients. However, the pathogenesis of DM-induced testicular damage remains largely undefined. METHODS: A streptozotocin (STZ)-induced diabetic model and high glucose (HG)-treated in vitro diabetic model were established. The histological changes of testes were assessed by H&E staining. Serum testosterone, iron, MDA and GSH levels were detected using commercial kits. Cell viability and lipid peroxidation was monitored by MTT assay and BODIPY 581/591 C11 staining, respectively. qRT-PCR, immunohistochemistry (IHC) or Western blotting were employed to detect the levels of BRD7, Clusterin, EZH2 and AMPK signaling molecules. The associations among BRD7, EZH2 and DNMT3a were detected by co-IP, and the transcriptional regulation of Clusterin was monitored by methylation-specific PCR (MSP) and ChIP assay. RESULTS: Ferroptosis was associated with DM-induced testicular damage in STZ mice and HG-treated GC-1spg cells, and this was accompanied with the upregulation of BRD7. Knockdown of BRD7 suppressed HG-induced ferroptosis, as well as HG-induced Clusterin promoter methylation and HG-inactivated AMPK signaling in GC-1spg cells. Mechanistical studies revealed that BRD7 directly bound to EZH2 and regulated Clusterin promoter methylation via recruiting DNMT3a. Knockdown of Clusterin or inactivation of AMPK signaling reverses BRD7 silencing-suppressed ferroptosis in GC-1spg cells. In vivo findings showed that lack of BRD7 protected against diabetes-induced testicular damage and ferroptosis via increasing Clusterin expression and activating AMPK signaling. CONCLUSION: BRD7 suppressed Clusterin expression via modulating Clusterin promoter hypermethylation in an EZH2 dependent manner, thereby suppressing AMPK signaling to facilitate ferroptosis and induce diabetes-associated testicular damage.


Assuntos
Proteínas Quinases Ativadas por AMP , Clusterina , Metilação de DNA , Diabetes Mellitus Experimental , Ferroptose , Regiões Promotoras Genéticas , Transdução de Sinais , Testículo , Animais , Masculino , Camundongos , Proteínas Quinases Ativadas por AMP/metabolismo , Linhagem Celular , Clusterina/genética , Clusterina/metabolismo , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/complicações , DNA Metiltransferase 3A/metabolismo , Proteína Potenciadora do Homólogo 2 de Zeste/genética , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Ferroptose/genética , Camundongos Endogâmicos C57BL , Testículo/metabolismo , Testículo/patologia
4.
Mol Biol Rep ; 51(1): 778, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38904842

RESUMO

BACKGROUND: SETDB1 (SET domain bifurcated-1) is a histone H3-lysine 9 (H3K9)-specific methyltransferase that mediates heterochromatin formation and repression of target genes. Despite the assumed functional link between DNA methylation and SETDB1-mediated H3K9 trimethylations, several studies have shown that SETDB1 operates autonomously of DNA methylation in a region- and cell-specific manner. This study analyzes SETDB1-null HAP1 cells through a linked methylome and transcriptome analysis, intending to explore genes controlled by SETDB1-involved DNA methylation. METHODS AND RESULTS: We investigated SETDB1-mediated regulation of DNA methylation and gene transcription in human HAP1 cells using reduced-representation bisulfite sequencing (RRBS) and RNA sequencing. While two-thirds of differentially methylated CpGs (DMCs) in genic regions were hypomethylated in SETDB1-null cells, we detected a plethora of C2H2-type zinc-finger protein genes (C2H2-ZFP, 223 of 749) among the DMC-associated genes. Most C2H2-ZFPs with DMCs in their promoters were found hypomethylated in SETDB1-KO cells, while other non-ZFP genes with promoter DMCs were not. These C2H2-ZFPs with DMCs in their promoters were significantly upregulated in SETDB1-KO cells. Similarly, C2H2-ZFP genes were upregulated in SETDB1-null 293T cells, suggesting that SETDB1's function in ZFP gene repression is widespread. There are several C2H2-ZFP gene clusters on chromosome 19, which were selectively hypomethylated in SETDB1-KO cells. CONCLUSIONS: SETDB1 collectively and specifically represses a substantial fraction of the C2H2-ZFP gene family. Through the en-bloc silencing of a set of ZFP genes, SETDB1 may help establish a panel of ZFP proteins that are expressed cell-type specifically and thereby can serve as signature proteins for cellular identity.


Assuntos
Metilação de DNA , Histona-Lisina N-Metiltransferase , Dedos de Zinco , Histona-Lisina N-Metiltransferase/genética , Histona-Lisina N-Metiltransferase/metabolismo , Humanos , Dedos de Zinco/genética , Metilação de DNA/genética , Regiões Promotoras Genéticas/genética , Regulação para Cima/genética , Desmetilação do DNA , Linhagem Celular , Ilhas de CpG/genética , Deleção de Genes , Histonas/metabolismo , Histonas/genética
5.
Hum Pathol ; 150: 74-77, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38945374

RESUMO

MLH1 promoter hypermethylation (MPH) analysis is an essential step in the universal tumor testing algorithm for Lynch syndrome, the most common inherited predisposition to colorectal cancer (CRC). MPH usually indicates sporadic CRC. EPM2AIP1 gene shares the same promoter as MLH1, therefore MPH should also silence EPM2AIP1 transcription leading to loss of protein expression on immunohistochemistry (IHC). It has been previously reported that EPM2AIP1 IHC can be used as a surrogate for MPH in endometrial cancer. Our goal was to evaluate the feasibility of EPM2AIP1 IHC as a surrogate for MPH in CRC. 101 microsatellite instable CRC cases were selected, including 19 cases from whole tumor sections and 82 cases from tissue microarrays. 74 cases were with MPH and 27 without MPH. All 74 cases with MPH showed absent MLH1 by IHC, but only 47 (64%) exhibited loss of expression of EPM2AIP1. Of the 27 cases without MPH, 9 (33%) cases had unexpected loss of EPM2AIP1 expression. Of note, 10 cases were MLH1-mutated Lynch syndrome without MPH, and 2 of these cases showed unexpected loss of EPM2AIP1 staining. Of the 6 cases with double somatic mutations of MLH1 gene (without MPH), only 4 cases demonstrated intact expression of EPM2AIP1 as expected. Taken together, EPM2AIP1 loss was 64% sensitive and 67% specific for MPH, with an accuracy of 64%. We conclude that, unless stain quality improves with different clones or platforms, EPM2AIP1 IHC will likely not be useful as a surrogate test for MPH in CRC.

6.
Pract Lab Med ; 40: e00406, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38883562

RESUMO

Aim: The current study aimed to assess the frequency of CDH1 promoter gene hypermethylation in gastric cancer and chronic gastritis and its correlation with clinicopathological aspects. Methods: Methylation-specific PCR was used to detect CDH1 promoter gene hypermethylation in 53 chronic gastritis patients and 40 gastric cancer patients along with normal adjacent tissues. Results: The chronic gastritis group comprised 29 males and 24 females with a mean age of 51.8 ± 12.96 years, and 49.1 % of them were positive for H. pylori infection. The frequency of CDH1 hypermethylation in gastritis lesions was 18.8 %. CDH1 hypermethylation showed a significant correlation with H. pylori infection (p = 0.039), but no significant association was observed with other clinical features. The gastric cancer group consisted of individuals with a mean age of 65.4 ± 10.6, among them, 77.5 % were male and 22.5 % were female, 62.5 % had PT3 tumors, 40 % had PN1 lymph node involvement, and the majority (47.5 %) of samples were obtained from body segment. CDH1 hypermethylation was significantly associated with depth of invasion (p = 0.017) and nodal invasion (p = 0.041) in this group. In both groups, normal adjacent specimens lacked CDH1 hypermethylation, and there was no statistically significant correlation between CDH1 hypermethylation and age at which the tumor was diagnosed, gender, activity level, or tumor location. Conclusion: This study demonstrates that E-cadherin methylation is associated with some characteristics of chronic gastritis and gastric cancer. These findings support previous research indicating that CDH1 hypermethylation may play a significant role in the development of gastric cancer.

7.
Artigo em Inglês | MEDLINE | ID: mdl-38830238

RESUMO

We aimed to investigate the promoter methylation status of RASSF1A and RASSF2A tumor suppressor genes in endometrial endometrioid carcinomas with p53 wild type and mismatch repair proficient. Genomic DNAs were isolated from 50 specimens (15 formalin-fixed paraffin embedded tumor tissues, 15 paired blood samples and 20 normal endometrial tissues). Bisulfide modification and methylation-specific polymerase chain reaction were performed. As a result of the study, while no significance was found for RASSF1A gene (p = 0.08), a statistically significance was found for RASSF2A gene (p < 0.001), RASSF2A gene methylation status was also found higher in high grade tumors, advanced age (≥50) and nonsmokers groups. Our results indicate that RASSF2A gene may play a role in the carcinogenesis of endometrioid and it could be potential biomarker for early detection for endometrioid carcinoma. Further and larger investigations are needed to confirm our results.

8.
Anticancer Res ; 44(6): 2459-2470, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38821592

RESUMO

BACKGROUND/AIM: Gastric cancer, with its high global incidence and mortality rates, poses a significant challenge due to the rapid decline in patient survival upon metastasis. Understanding and combating metastasis are crucial in improving outcomes. The metastasis suppressor gene CD82 has demonstrated efficacy in inhibiting metastasis across various carcinomas but is frequently down-regulated. However, its role and regulatory mechanisms in gastric cancer remain elusive. MATERIALS AND METHODS: Utilizing public data, we assessed patient survival in relation to CD82 expression. CD82 expression in gastric cancer cell lines was evaluated via western blotting, and its impact on cell mobility was assessed through wound healing and Transwell assays. The demethylation of CD82 was induced using 5-aza-deoxycytidine, while methylation levels were detected via methylation-specific PCR. RESULTS: Low CD82 expression correlated with poor prognosis in patients, and down-regulation and over-expression of CD82 significantly affected cell mobility. Treatment with 5-aza-deoxycytidine restored CD82 expression in low-expressing cell lines, highlighting its methylation-dependent regulation. CONCLUSION: CD82 serves as a pivotal regulator of cell mobility in gastric cancer by suppressing metastasis. Its expression is attenuated in gastric cancer cells through promoter hypermethylation.


Assuntos
Movimento Celular , Metilação de DNA , Regulação Neoplásica da Expressão Gênica , Proteína Kangai-1 , Neoplasias Gástricas , Humanos , Neoplasias Gástricas/genética , Neoplasias Gástricas/patologia , Neoplasias Gástricas/metabolismo , Proteína Kangai-1/genética , Proteína Kangai-1/metabolismo , Linhagem Celular Tumoral , Movimento Celular/genética , Regiões Promotoras Genéticas , Prognóstico , Decitabina/farmacologia , Metástase Neoplásica , Regulação para Baixo , Genes Supressores de Tumor
9.
Artigo em Inglês | MEDLINE | ID: mdl-38821673

RESUMO

Diabetes mellitus is a complex metabolic disorder resulting from the interplay of environmental, genetic, and epigenetic factors that increase the risk of cancer development. However, it is unclear whether the increased cancer risk is due to poor glycemic control or the use of some antidiabetic medications. Therefore, we investigated the genetic and epigenetic changes in somatic cells in a mouse model of diabetes and studied whether multiple exposures to the antidiabetic medication dapagliflozin influence these changes. We also elucidated the mechanism(s) of these ameliorations. The micronucleus test and modified comet assay were used to investigate bone marrow DNA damage and methylation changes. These assays revealed that dapagliflozin is non-genotoxic in the tested regimen, and oxidative DNA damage and hypermethylation were significantly higher in diabetic mice. Spectrophotometry also evaluated oxidative DNA damage and global DNA methylation, revealing similar significant alterations induced by diabetes. Conversely, the dapagliflozin-treated diabetic animals significantly reduced these changes. The expression of some genes involved in DNA repair and DNA methylation was disrupted considerably in the somatic cells of diabetic animals. In contrast, dapagliflozin treatment significantly restored these disruptions and enhanced DNA repair. The simultaneous effects of decreased oxidative DNA damage and hypermethylation levels suggest that dapagliflozin can be used as a safe antidiabetic drug to reduce DNA damage and hypermethylation in diabetes, demonstrating its usefulness in patients with diabetes to control hyperglycemia and decrease the development of its subsequent complications.


Assuntos
Compostos Benzidrílicos , Dano ao DNA , Metilação de DNA , Diabetes Mellitus Experimental , Glucosídeos , Estresse Oxidativo , Animais , Compostos Benzidrílicos/farmacologia , Glucosídeos/farmacologia , Metilação de DNA/efeitos dos fármacos , Dano ao DNA/efeitos dos fármacos , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/genética , Camundongos , Estresse Oxidativo/efeitos dos fármacos , Masculino , Hipoglicemiantes/farmacologia , Testes para Micronúcleos , Reparo do DNA/efeitos dos fármacos , Ensaio Cometa
10.
Cell Mol Life Sci ; 81(1): 222, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38767725

RESUMO

BACKGROUND: Epigenetic variation is mediated by epigenetic marks such as DNA methylation occurring in all cytosine contexts in plants. CG methylation plays a critical role in silencing transposable elements and regulating gene expression. The establishment of CG methylation occurs via the RNA-directed DNA methylation pathway and CG methylation maintenance relies on METHYLTRANSFERASE1, the homologue of the mammalian DNMT1. PURPOSE: Here, we examined the capacity to stably alter the tomato genome methylome by a bacterial CG-specific M.SssI methyltransferase expressed through the LhG4/pOP transactivation system. RESULTS: Methylome analysis of M.SssI expressing plants revealed that their euchromatic genome regions are specifically hypermethylated in the CG context, and so are most of their genes. However, changes in gene expression were observed only with a set of genes exhibiting a greater susceptibility to CG hypermethylation near their transcription start site. Unlike gene rich genomic regions, our analysis revealed that heterochromatic regions are slightly hypomethylated at CGs only. Notably, some M.SssI-induced hypermethylation persisted even without the methylase or transgenes, indicating inheritable epigenetic modification. CONCLUSION: Collectively our findings suggest that heterologous expression of M.SssI can create new inherited epigenetic variations and changes in the methylation profiles on a genome wide scale. This open avenues for the conception of epigenetic recombinant inbred line populations with the potential to unveil agriculturally valuable tomato epialleles.


Assuntos
Metilação de DNA , Epigênese Genética , Epigenoma , Genoma de Planta , Solanum lycopersicum , Solanum lycopersicum/genética , Metilação de DNA/genética , Regulação da Expressão Gênica de Plantas , Plantas Geneticamente Modificadas/genética
11.
Biomedicines ; 12(4)2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38672268

RESUMO

BACKGROUND: Aberrant DNA methylation is a common epigenetic modification in cancers, including oropharyngeal squamous cell carcinoma (OPSCC) and oral squamous cell carcinoma (OSCC). Therefore, the analysis of methylation levels appears necessary to improve cancer therapy and prognosis. METHODS: The enzyme-linked immunosorbent assay (ELISA) was used to analyse global DNA methylation levels in OPSCC and OSCC tumours and the margin samples after DNA isolation. HPV detection was conducted by hybridisation using GenoFlow HPV Array Test Kits (DiagCor Bioscience Inc., Hong Kong, China). EBV detection was performed using real-time PCR with an EBV PCR Kit (EBV/ISEX/100, GeneProof, Brno, Czech Republic). RESULTS: OPSCC tumour samples obtained from women showed lower global DNA methylation levels than those from men (1.3% vs. 3.5%, p = 0.049). The margin samples from OPSCC patients with HPV and EBV coinfection showed global DNA methylation lower than those without coinfection (p = 0.042). G3 tumours from OSCC patients had significantly lower levels of global DNA methylation than G2 tumours (0.98% ± 0.74% vs. 3.77% ± 4.97%, p = 0.010). Additionally, tumours from HPV-positive OSCC patients had significantly lower global DNA methylation levels than those from HPV-negative patients (p = 0.013). In the margin samples, we observed a significant negative correlation between global DNA methylation and the N stage of OSCC patients (rS = -0.33, p = 0.039). HPV-positive OPSCC patients had higher global DNA methylation levels than HPV-positive OSCC patients (p = 0.015). CONCLUSION: We confirmed that methylation could be changed in relation to viral factors, such as HPV and EBV, as well as clinical and demographical parameters.

12.
Am J Hum Genet ; 111(5): 896-912, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38653249

RESUMO

Porokeratosis is a clonal keratinization disorder characterized by solitary, linearly arranged, or generally distributed multiple skin lesions. Previous studies showed that genetic alterations in MVK, PMVK, MVD, or FDPS-genes in the mevalonate pathway-cause hereditary porokeratosis, with skin lesions harboring germline and lesion-specific somatic variants on opposite alleles. Here, we identified non-hereditary porokeratosis associated with epigenetic silencing of FDFT1, another gene in the mevalonate pathway. Skin lesions of the generalized form had germline and lesion-specific somatic variants on opposite alleles in FDFT1, representing FDFT1-associated hereditary porokeratosis identified in this study. Conversely, lesions of the solitary or linearly arranged localized form had somatic bi-allelic promoter hypermethylation or mono-allelic promoter hypermethylation with somatic genetic alterations on opposite alleles in FDFT1, indicating non-hereditary porokeratosis. FDFT1 localization was uniformly diminished within the lesions, and lesion-derived keratinocytes showed cholesterol dependence for cell growth and altered expression of genes related to cell-cycle and epidermal development, confirming that lesions form by clonal expansion of FDFT1-deficient keratinocytes. In some individuals with the localized form, gene-specific promoter hypermethylation of FDFT1 was detected in morphologically normal epidermis adjacent to methylation-related lesions but not distal to these lesions, suggesting that asymptomatic somatic epigenetic mosaicism of FDFT1 predisposes certain skin areas to the disease. Finally, consistent with its genetic etiology, topical statin treatment ameliorated lesions in FDFT1-deficient porokeratosis. In conclusion, we identified bi-allelic genetic and/or epigenetic alterations of FDFT1 as a cause of porokeratosis and shed light on the pathogenesis of skin mosaicism involving clonal expansion of epigenetically altered cells.


Assuntos
Metilação de DNA , Epigênese Genética , Queratinócitos , Mosaicismo , Poroceratose , Regiões Promotoras Genéticas , Poroceratose/genética , Poroceratose/patologia , Humanos , Queratinócitos/metabolismo , Queratinócitos/patologia , Regiões Promotoras Genéticas/genética , Masculino , Alelos , Feminino
13.
Discov Oncol ; 15(1): 108, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38587694

RESUMO

BACKGROUND: Fragile histidine triad (FHIT) has been documented to play a vital role in various cancers including acute lymphoblastic leukemia (ALL). Keeping in view the plausible role of FHIT gene, we aimed to examine DNA promoter hypermethylation and mRNA expression in ALL cases in Kashmir (North India). METHODS: A total of 66 cases of ALL were analyzed for FHIT mRNA expression and promoter methylation by qRT-PCR and Methylation Specific-PCR (MS-PCR) respectively. RESULTS: FHIT mRNA expression showed significantly decreased expression in ALL cases with mean fold change of 9.24 ± 5.44 as compared to healthy controls (p = 0.01). The pattern of FHIT deregulation in ALL cases differed significantly between decreased and increased expression (p < 0.0001). A threefold decreased expression was observed in 75% of ALL cases than healthy controls (- 3.58 ± 2.32). ALL patients with FHIT gene promoter hypermethylation presented significantly higher in 80% (53/66) of cases (p = 0.0005). The association of FHIT gene hypermethylation and its subsequent expression showed FHIT mRNA expression as significantly lower in ALL cases with hypermethylation (p = 0.0008). B-ALL cases exhibited a highly significant association between the methylation pattern and its mRNA expression (p = 0.000). In low range WBC group, a significant association was found between increased expression (26%) of the cases and methylated (4%)/unmethylated group 86% (p = 0.0006). CONCLUSION: The present study conclude that FHIT gene hypermethylation and its altered expression may be linked in the pathogenesis of ALL and provide an evidence for the role of FHIT in the development of ALL.

14.
J Appl Toxicol ; 44(7): 1014-1027, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38523572

RESUMO

The present investigation dealt with harmful effects of hexavalent chromium (Cr [VI]) on liver of Swiss albino mice. This variant exhibited cytotoxicity, mutagenicity, and carcinogenicity. Our study focused on elucidating the hepatotoxic effects of chronic low-dose exposure to Cr (VI) (2, 5, and 10 ppm) administered via drinking water for 4 and 8 months. The observed elevation in SGPT, ALP, and SGOT and increased oxidative stress markers unequivocally confirmed the severe disruption of liver homeostasis at these low treatment doses. Noteworthy alterations in histoarchitecture, body weight, and water intake provided further evidences of the harmful effects of Cr (VI). Production of reactive oxygen species (ROS) during metabolism led to DNA damages. Immunohistochemistry and qRT-PCR analyses revealed that chronic low-dose exposure of Cr (VI) induced apoptosis in liver tissue. Our study exhibited alterations in the expression pattern of DNA repair genes (Rad51, Mutyh, Mlh1, and Ogg1), coupled with promoter hypermethylation of Mutyh and Rad51, leading to transcriptional inhibition. Our findings underscored the potential of low-dose Cr (VI) exposure on hepatotoxicity by the intricate interplay between apoptosis induction and epigenetic alterations of DNA repair genes.


Assuntos
Apoptose , Cromo , Metilação de DNA , Reparo do DNA , Fígado , Estresse Oxidativo , Regiões Promotoras Genéticas , Animais , Cromo/toxicidade , Estresse Oxidativo/efeitos dos fármacos , Fígado/efeitos dos fármacos , Fígado/patologia , Fígado/metabolismo , Camundongos , Apoptose/efeitos dos fármacos , Reparo do DNA/efeitos dos fármacos , Metilação de DNA/efeitos dos fármacos , Regiões Promotoras Genéticas/efeitos dos fármacos , Masculino , Espécies Reativas de Oxigênio/metabolismo , DNA Glicosilases/genética , Relação Dose-Resposta a Droga , Dano ao DNA/efeitos dos fármacos , Rad51 Recombinase/genética
15.
Hum Genomics ; 18(1): 24, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38475971

RESUMO

BACKGROUND: Protein Phosphatase Enzymes (PPE) and protein kinases simultaneously control phosphorylation mechanisms that tightly regulate intracellular signalling pathways and stimulate cellular responses. In human malignancies, PPE and protein kinases are frequently mutated resulting in uncontrolled kinase activity and PPE suppression, leading to cell proliferation, migration and resistance to anti-cancer therapies. Cancer associated DNA hypermethylation at PPE promoters gives rise to transcriptional silencing (epimutations) and is a hallmark of cancer. Despite recent advances in sequencing technologies, data availability and computational capabilities, only a fraction of PPE have been reported as transcriptionally inactive as a consequence of epimutations. METHODS: In this study, we examined promoter-associated DNA methylation profiles in Protein Phosphatase Enzymes and their Interacting Proteins (PPEIP) in a cohort of 705 cancer patients in five tissues (Large intestine, Oesophagus, Lung, Pancreas and Stomach) in three cell models (primary tumours, cancer cell lines and 3D embedded cancer cell cultures). As a subset of PPEIP are known tumour suppressor genes, we analysed the impact of PPEIP promoter hypermethylation marks on gene expression, cellular networks and in a clinical setting. RESULTS: Here, we report epimutations in PPEIP are a frequent occurrence in the cancer genome and manifest independent of transcriptional activity. We observed that different tumours have varying susceptibility to epimutations and identify specific cellular signalling networks that are primarily affected by epimutations. Additionally, RNA-seq analysis showed the negative impact of epimutations on most (not all) Protein Tyrosine Phosphatase transcription. Finally, we detected novel clinical biomarkers that inform on patient mortality and anti-cancer treatment sensitivity. CONCLUSIONS: We propose that DNA hypermethylation marks at PPEIP frequently contribute to the pathogenesis of malignancies and within the precision medicine space, hold promise as biomarkers to inform on clinical features such as patient survival and therapeutic response.


Assuntos
Epigênese Genética , Neoplasias , Humanos , Metilação de DNA , Fosfoproteínas Fosfatases , Proteínas Quinases , Biomarcadores , DNA , Regulação Neoplásica da Expressão Gênica
16.
Clin Epigenetics ; 16(1): 48, 2024 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-38528641

RESUMO

BACKGROUND: miR-182 promoter hypermethylation frequently occurs in various tumors, including acute myeloid leukemia, and leads to low expression of miR-182. However, whether adult acute lymphocyte leukemia (ALL) cells have high miR-182 promoter methylation has not been determined. METHODS: To assess the methylation status of the miR-182 promoter, methylation and unmethylation-specific PCR analysis, bisulfite-sequencing analysis, and MethylTarget™ assays were performed to measure the frequency of methylation at the miR-182 promoter. Bone marrow cells were isolated from miR-182 knockout (182KO) and 182 wild type (182WT) mice to construct BCR-ABL (P190) and Notch-induced murine B-ALL and T-ALL models, respectively. Primary ALL samples were performed to investigate synergistic effects of the hypomethylation agents (HMAs) and the BCL2 inhibitor venetoclax (Ven) in vitro. RESULTS: miR-182 (miR-182-5P) expression was substantially lower in ALL blasts than in normal controls (NCs) because of DNA hypermethylation at the miR-182 promoter in ALL blasts but not in normal controls (NCs). Knockout of miR-182 (182KO) markedly accelerated ALL development, facilitated the infiltration, and shortened the OS in a BCR-ABL (P190)-induced murine B-ALL model. Furthermore, the 182KO ALL cell population was enriched with more leukemia-initiating cells (CD43+B220+ cells, LICs) and presented higher leukemogenic activity than the 182WT ALL population. Furthermore, depletion of miR-182 reduced the OS in a Notch-induced murine T-ALL model, suggesting that miR-182 knockout accelerates ALL development. Mechanistically, overexpression of miR-182 inhibited proliferation and induced apoptosis by directly targeting PBX3 and BCL2, two well-known oncogenes, that are key targets of miR-182. Most importantly, DAC in combination with Ven had synergistic effects on ALL cells with miR-182 promoter hypermethylation, but not on ALL cells with miR-182 promoter hypomethylation. CONCLUSIONS: Collectively, we identified miR-182 as a tumor suppressor gene in ALL cells and low expression of miR-182 because of hypermethylation facilitates the malignant phenotype of ALL cells. DAC + Ven cotreatment might has been applied in the clinical try for ALL patients with miR-182 promoter hypermethylation. Furthermore, the methylation frequency at the miR-182 promoter should be a potential biomarker for DAC + Ven treatment in ALL patients.


Assuntos
Antineoplásicos , MicroRNAs , Leucemia-Linfoma Linfoblástico de Células Precursoras , Leucemia-Linfoma Linfoblástico de Células T Precursoras , Adulto , Animais , Humanos , Camundongos , Antineoplásicos/farmacologia , Compostos Bicíclicos Heterocíclicos com Pontes/uso terapêutico , Metilação de DNA/genética , Linfócitos/metabolismo , Camundongos Knockout , MicroRNAs/genética , MicroRNAs/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células T Precursoras/genética , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Sulfonamidas/uso terapêutico , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo
17.
Genes (Basel) ; 15(2)2024 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-38397165

RESUMO

For several decades, cancers have demonstrably been one of the most frequent causes of death worldwide. In addition to genetic causes, cancer can also be caused by epigenetic gene modifications. Frequently, tumor suppressor genes are epigenetically inactivated due to hypermethylation of their CpG islands, actively contributing to tumorigenesis. Since CpG islands are usually localized near promoters, hypermethylation of the promoter can have a major impact on gene expression. In this study, the potential tumor suppressor gene Receptor Interacting Serine/Threonine Protein Kinase 3 (RIPK3) was examined for an epigenetic regulation and its gene inactivation in melanomas. A hypermethylation of the RIPK3 CpG island was detected by bisulfite pyrosequencing and was accompanied by a correlated loss of its expression. In addition, an increasing RIPK3 methylation rate was observed with increasing tumor stage of melanomas. For further epigenetic characterization of RIPK3, epigenetic modulation was performed using a modified CRISPR/dCas9 (CRISPRa activation) system targeting its DNA hypermethylation. We observed a reduced fitness of melanoma cells by (re-)expression and demethylation of the RIPK3 gene using the epigenetic editing-based method. The tumor suppressive function of RIPK3 was evident by phenotypic determination using fluorescence microscopy, flow cytometry and wound healing assay. Our data highlight the function of RIPK3 as an epigenetically regulated tumor suppressor in melanoma, allowing it to be classified as a biomarker.


Assuntos
Biomarcadores Tumorais , Melanoma , Proteína Serina-Treonina Quinases de Interação com Receptores , Humanos , Metilação de DNA/genética , Epigênese Genética , Genes Supressores de Tumor , Melanoma/genética , Proteína Serina-Treonina Quinases de Interação com Receptores/genética , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Biomarcadores Tumorais/genética
18.
bioRxiv ; 2024 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-38260521

RESUMO

Maintenance of the mitochondrial inner membrane potential (ΔΨM) is critical for many aspects of mitochondrial function, including mitochondrial protein import and ion homeostasis. While ΔΨM loss and its consequences are well studied, little is known about the effects of increased ΔΨM. In this study, we used cells deleted of ATPIF1, a natural inhibitor of the hydrolytic activity of the ATP synthase, as a genetic model of mitochondrial hyperpolarization. Our data show that chronic ΔΨM increase leads to nuclear DNA hypermethylation, regulating transcription of mitochondria, carbohydrate and lipid metabolism genes. Surprisingly, remodeling of phospholipids, but not metabolites or redox changes, mechanistically links the ΔΨM to the epigenome. These changes were also observed upon chemical exposures and reversed by decreasing the ΔΨM, highlighting them as hallmark adaptations to chronic mitochondrial hyperpolarization. Our results reveal the ΔΨM as the upstream signal conveying the mitochondrial status to the epigenome to regulate cellular biology, providing a new framework for how mitochondria can influence health outcomes in the absence of canonical dysfunction.

19.
Funct Integr Genomics ; 24(1): 12, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38228798

RESUMO

Promoter methylation is one of the most studied epigenetic modifications and it is highly relevant to the onset and progression of thyroid carcinoma (THCA). This study investigates the promoter methylation and expression pattern of intercellular adhesion molecule 5 (ICAM5) in THCA. CpG islands with aberrant methylation pattern in THCA, and the expression profiles of the corresponding genes in THCA, were analyzed using bioinformatics. ICAM5 was suggested to have a hypermethylation status, and it was highly expressed in THCA tissues and cells. Its overexpression promoted proliferation, mobility, and tumorigenic activity of THCA cells. As for the downstream signaling, ICAM5 was found to activate the MAPK/ERK and MAPK/JNK signaling pathways. Either inhibition of ERK or JNK blocked the oncogenic effects of ICAM5. DNA methyltransferases 1 (DNMT1) and DNMT3a were found to induce promoter hypermethylation of ICAM5 in THCA cells. Knockdown of DNMT1 or DNMT3a decreased the ICAM5 expression and suppressed malignant properties of THCA cells in vitro and in vivo, which were, however, restored by further artificial ICAM5 overexpression. Collectively, this study reveals that DNMT1 and DNMT3a mediates promoter hypermethylation and transcription activation of ICAM5 in THCA, which promotes malignant progression of THCA through the MAPK signaling pathway.


Assuntos
DNA (Citosina-5-)-Metiltransferases , Neoplasias da Glândula Tireoide , Humanos , DNA (Citosina-5-)-Metiltransferases/genética , DNA (Citosina-5-)-Metiltransferases/metabolismo , DNA (Citosina-5-)-Metiltransferase 1/genética , DNA (Citosina-5-)-Metiltransferase 1/metabolismo , Ativação Transcricional , Metilação de DNA , Neoplasias da Glândula Tireoide/genética , Proteínas do Tecido Nervoso/genética , Moléculas de Adesão Celular/genética , Moléculas de Adesão Celular/metabolismo
20.
Cell Commun Signal ; 22(1): 67, 2024 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-38273312

RESUMO

Lymphatic system distributes in almost all vertebrate tissues and organs, and plays important roles in the regulation of body fluid balance, lipid absorption and immune monitoring. Although CuNPs or AgNPs accumulation has been reported to be closely associated with delayed hatching and motor dysfunction in zebrafish embryos, their biological effects on lymphangiogenesis remain unknown. In this study, thoracic duct was observed to be partially absent in both CuNPs and AgNPs stressed zebrafish larvae. Specifically, CuNPs stress induced hypermethylation of E2F7/8 binding sites on CCBE1 promoters via their producing ROS, thereby leading to the reduction of binding enrichment of E2F7/8 on CCBE1 promoter and its subsequently reduced expression, then resulting in defective lymphatic vessel formation. Differently, AgNPs stress induced down-regulated CCBE1 expression via down-regulating mRNA and protein levels of E2F7/8 transcription factors, thereby resulting in defective lymphatic vessel formation. This study may be the first to demonstrate that CuNPs and AgNPs damaged lymphangiogenesis during zebrafish embryogenesis, mechanistically, CuNPs epigenetically regulated the expression of lymphangiogenesis regulator CCBE1 via hypermethylating its promoter binding sites of E2F7/8, while AgNPs via regulating E2F7/8 expression. Meanwhile, overexpression of ccbe1 mRNA effectively rescued the lymphangiogenesis defects in both AgNPs and CuNPs stressed larvae, while overexpression of e2f7/8 mRNA effectively rescued the lymphangiogenesis defects in AgNPs rather than CuNPs stressed larvae. The results in this study will shed some light on the safety assessment of nanomaterials applied in medicine and on the ecological security assessments of nanomaterials. Video Abstract.


Assuntos
Nanopartículas Metálicas , Peixe-Zebra , Animais , Peixe-Zebra/metabolismo , Linfangiogênese/genética , Cobre/química , Prata/farmacologia , Prata/química , Prata/metabolismo , RNA Mensageiro/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...