Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 271
Filtrar
1.
bioRxiv ; 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38979230

RESUMO

Mouse embryonic fibroblasts (MEFs) derived from genetically modified mice are a valuable resource for studying gene function and regulation. The MEF system can also be combined with rescue studies to characterize the function of mutant genes/proteins, such as disease-causing variants. However, primary MEFs undergo senescence soon after isolation and passaging, making long-term genetic manipulations difficult. Previously described methods for MEF immortalization are often inefficient or alter the physiological properties of the cells. Here, we describe an optimized protocol for immortalizing MEFs via CRISPR-mediated deletion of the Tp53 gene. This method is highly efficient and consistently generates immortalized MEFs, or iMEFs, within 14 days. Importantly, iMEFs closely resemble the parent cell populations, and individual iMEFs can be cloned and expanded for subsequent genetic manipulation and characterization. We envision that this protocol can be adopted to immortalize other mouse primary cell types.

2.
Cell Metab ; 2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-39084217

RESUMO

Although uncoupling protein 1 (UCP1) is established as a major contributor to adipose thermogenesis, recent data have illustrated an important role for alternative pathways, particularly the futile creatine cycle (FCC). How these pathways co-exist in cells and tissues has not been explored. Beige cell adipogenesis occurs in vivo but has been difficult to model in vitro; here, we describe the development of a murine beige cell line that executes a robust respiratory response, including uncoupled respiration and the FCC. The key FCC enzyme, tissue-nonspecific alkaline phosphatase (TNAP), is localized almost exclusively to mitochondria in these cells. Surprisingly, single-cell cloning from this cell line shows that cells with the highest levels of UCP1 express little TNAP, and cells with the highest expression of TNAP express little UCP1. Immunofluorescence analysis of subcutaneous fat from cold-exposed mice confirms that the highest levels of these critical thermogenic components are expressed in distinct fat cell populations.

3.
Cell Biol Int ; 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38961533

RESUMO

The senescence-associated protein p16INK4A acts as a limiter element in cell-cycle progression. The loss of p16INK4A function is causally related to cellular immortalization. The increase in p16INK4A levels with advancing age was demonstrated in melanocytes. However, the characteristic difference between young and senescent melanocytes affecting immortalization of melanocytes remains unclear. In this study, we generated 10 different cell lines in total from newborn (NB) and adult (AD) primary normal human epidermal melanocytes (NHEM) using four different methods, transduction of CDK4R24C and cyclin D1 (K4D), K4D with TERT (K4DT), SV40 T-antigen (SV40T), and HPV16 E6 and E7 (E6/E7) and performed whole transcriptome sequencing analysis (RNA-Seq) to elucidate the differences of genome-wide expression profiles among cell lines. The analysis data revealed distinct differences in expression pattern between cell lines from NB and AD although no distinct biological differences were detected in analyses such as comparison of cell morphology, evaluation of cell proliferation, and cell cycle profiles. This study may provide useful in vitro models to benefit the understanding of skin-related diseases.

4.
Front Immunol ; 15: 1326728, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38915394

RESUMO

Keloids are a common connective tissue disorder with an ill-understood etiopathogenesis and no effective treatment. This is exacerbated because of the absence of an animal model. Patient-derived primary keloid cells are insufficient as they age through passaging and have a limited supply. Therefore, there is an unmet need for development of a cellular model that can consistently and faithfully represent keloid's pathognomic features. In view of this, we developed keloid-derived immortalized fibroblast (KDIF) cell lines from primary keloid fibroblasts (PKF) by transfecting the human telomerase reverse transcriptase (hTERT) gene. The TERT gene encodes the catalytic subunit of the telomerase enzyme, which is responsible for maintaining the cellular replicative potential (cellular immortalization). Primary fibroblasts from keloid-specific lesional (peripheral, middle, and top) as well as extralesional sites were isolated and evaluated for cell line development and comparative cellular characteristics by employing qRT-PCR and immunofluorescence staining. Moreover, the immortalized behavior of KDIF cell lines was evaluated by comparing with cutaneous fibrosarcoma and dermatofibrosarcoma protuberans cell lines. Stable KDIF cell lines with elevated expression of hTERT exhibited the cellular characteristics of site-specific keloid fibroblasts. Histochemical staining for ß-galactosidase revealed a significantly lower number of ß-gal-positive cells in all three KDIF cell lines compared with that in PKFs. The cell growth curve pattern was studied over 10 passages for all three KDIF cell lines and was compared with the control groups. The results showed that all three KDIF cell lines grew significantly faster and obtained a fast growing characteristic as compared to primary keloid and normal fibroblasts. Phenotypic behavior in growth potential is an indication of hTERT-mediated immortalized transformation. Cell migration analysis revealed that the top and middle KDIF cell lines exhibited similar migration trend as site-specific PKFs. Notably, peripheral KDIF cell line showed significantly enhanced cell migration in comparison to the primary peripheral fibroblasts. All KDIF cell lines expressed Collagen I protein as a keloid-associated fibrotic marker. Functional testing with triamcinolone inhibited cell migration in KDIF. ATCC short tandem repeat profiling validated the KDIF as keloid representative cell line. In summary, we provide the first novel KDIF cell lines. These cell lines overcome the limitations related to primary cell passaging and tissue supply due to immortalized features and present an accessible and consistent experimental model for keloid research.


Assuntos
Fibroblastos , Queloide , Telomerase , Humanos , Queloide/patologia , Queloide/metabolismo , Fibroblastos/metabolismo , Telomerase/genética , Telomerase/metabolismo , Linhagem Celular , Linhagem Celular Transformada , Masculino , Feminino , Adulto , Pessoa de Meia-Idade
5.
Cells ; 13(10)2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38786083

RESUMO

As the economic burden associated with vision loss and ocular damage continues to rise, there is a need to explore novel treatment strategies. Extracellular vesicles (EVs) are enriched with various biological cargo, and there is abundant literature supporting the reparative and immunomodulatory properties of stem cell EVs across a broad range of pathologies. However, one area that requires further attention is the reparative effects of stem cell EVs in the context of ocular damage. Additionally, most of the literature focuses on EVs isolated from primary stem cells; the use of EVs isolated from human telomerase reverse transcriptase (hTERT)-immortalized stem cells has not been thoroughly examined. Using our large-scale EV-manufacturing platform, we reproducibly manufactured EVs from hTERT-immortalized mesenchymal stem cells (MSCs) and employed various methods to characterize and profile their associated cargo. We also utilized well-established cell-based assays to compare the effects of these EVs on both healthy and damaged retinal pigment epithelial cells. To the best of our knowledge, this is the first study to establish proof of concept for reproducible, large-scale manufacturing of hTERT-immortalized MSC EVs and to investigate their potential reparative properties against damaged retinal cells. The results from our studies confirm that hTERT-immortalized MSC EVs exert reparative effects in vitro that are similar to those observed in primary MSC EVs. Therefore, hTERT-immortalized MSCs may represent a more consistent and reproducible platform than primary MSCs for generating EVs with therapeutic potential.


Assuntos
Células Epiteliais , Vesículas Extracelulares , Células-Tronco Mesenquimais , Epitélio Pigmentado da Retina , Telomerase , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/citologia , Humanos , Vesículas Extracelulares/metabolismo , Telomerase/metabolismo , Células Epiteliais/metabolismo , Células Epiteliais/citologia , Epitélio Pigmentado da Retina/metabolismo , Epitélio Pigmentado da Retina/citologia
6.
BMC Vet Res ; 20(1): 198, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38745180

RESUMO

BACKGROUND: Primary sheep fetal fibroblasts (SFFCs) have emerged as a valuable resource for investigating the molecular and pathogenic mechanisms of orf viruses (ORFV). However, their utilization is considerably restricted due to the exorbitant expenses associated with their isolation and culture, their abbreviated lifespan, and the laborious procedure. RESULTS: In our investigation, the primary SFFCs were obtained and immortalized by introducing a lentiviral recombinant plasmid containing the large T antigen from simian virus 40 (SV40). The expression of fibronectin and vimentin proteins, activity of SV40 large T antigen, cell proliferation assays, and analysis of programmed cell death revealed that the immortalized large T antigen SFFCs (TSFFCs) maintained the same physiological characteristics and biological functions as the primary SFFCs. Moreover, TSFFCs demonstrated robust resistance to apoptosis, extended lifespan, and enhanced proliferative activity compared to primary SFFCs. Notably, the primary SFFCs did not undergo in vitro transformation or exhibit any indications of malignancy in nude mice. Furthermore, the immortalized TSFFCs displayed live ORFV vaccine susceptibility. CONCLUSIONS: Immortalized TSFFCs present valuable in vitro models for exploring the characteristics of ORFV using various techniques. This indicates their potential for secure utilization in future studies involving virus isolation, vaccine development, and drug screening.


Assuntos
Fibroblastos , Animais , Fibroblastos/virologia , Ovinos , Camundongos , Vírus do Orf/genética , Camundongos Nus , Proliferação de Células , Vírus 40 dos Símios , Linhagem Celular , Apoptose , Antígenos Virais de Tumores/genética
7.
Artigo em Inglês | MEDLINE | ID: mdl-38808715

RESUMO

BACKGROUND: Colorectal adenoma represents the critical step in the development of colorectal cancer. The establishment of an immortalized epithelial cell line of colorectal adenoma of human origin would provide a tool for studying the mechanism of precancerous lesions, screening the efficacy of novel drugs, and constructing in vivo disease models. Currently, there is no commercially available stable supply of epithelial cells from precancerous lesions. AIMS: This study aimed to establish a natural LHPP low-expressing precancerous epithelial cell line by SV40-LT antigen gene transfection. METHODS: Simian vacuolating virus 40(SV40), SV40-LT overexpressed lentivirus vector, was transfected into primary human colorectal adenomatous polyp epithelial cells. The transfected cells were screened, and the screened cells were amplified to obtain the epithelial cell line: IHCRA- CELL. The cells were identified by morphological observation, cell proliferation, Quantitative real-time PCR (qPCR), and Short Tandem Repeats (STR) experiments. Morphologically, the cells showed epithelial-like characteristics, such as polygon shape, desmosomes mitochondria, and strong positive keratin staining. There was no significant difference between the transfected cells and the primary cells. Through the STR identification experiment, no matching cell lines were found in the cell lines retrieval. CONCLUSION: We successfully established a natural LHPP low-expressing precancerous epithelial cell line by SV40-LT antigen gene transfection, which has been patented and is now preserved in the Chinese Typical Culture Preservation Center. It was verified that the transformed cells maintained the phenotype and biological characteristics of epithelial cells. This cell line can be used to study the mechanism of precancerous lesions, screen the efficacy of novel drugs, and construct in vivo disease models.

8.
Cell Transplant ; 33: 9636897241242624, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38600801

RESUMO

Xenografts of human skeletal muscle generated in mice can be used to study muscle pathology and to test drugs designed to treat myopathies and muscular dystrophies for their efficacy and specificity in human tissue. We previously developed methods to generate mature human skeletal muscles in immunocompromised mice starting with human myogenic precursor cells (hMPCs) from healthy individuals and individuals with facioscapulohumeral muscular dystrophy (FSHD). Here, we examine a series of alternative treatments at each stage in order to optimize engraftment. We show that (i) X-irradiation at 25Gy is optimal in preventing regeneration of murine muscle while supporting robust engraftment and the formation of human fibers without significant murine contamination; (ii) hMPC lines differ in their capacity to engraft; (iii) some hMPC lines yield grafts that respond better to intermittent neuromuscular electrical stimulation (iNMES) than others; (iv) some lines engraft better in male than in female mice; (v) coinjection of hMPCs with laminin, gelatin, Matrigel, or Growdex does not improve engraftment; (vi) BaCl2 is an acceptable replacement for cardiotoxin, but other snake venom preparations and toxins, including the major component of cardiotoxin, cytotoxin 5, are not; and (vii) generating grafts in both hindlimbs followed by iNMES of each limb yields more robust grafts than housing mice in cages with running wheels. Our results suggest that replacing cardiotoxin with BaCl2 and engrafting both tibialis anterior muscles generates robust grafts of adult human muscle tissue in mice.


Assuntos
Cardiotoxinas , Distrofia Muscular Facioescapuloumeral , Adulto , Humanos , Masculino , Camundongos , Feminino , Animais , Xenoenxertos , Transplante Heterólogo , Músculo Esquelético/patologia , Distrofia Muscular Facioescapuloumeral/patologia
9.
Arch Toxicol ; 98(7): 2065-2084, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38630284

RESUMO

Arsenic is highly toxic to the human bladder. In the present study, we established a human bladder epithelial cell line that closely mimics normal human bladder epithelial cells by immortalizing primary uroplakin 1B-positive human bladder epithelial cells with human telomerase reverse transcriptase (HBladEC-T). The uroplakin 1B-positive human bladder epithelial cell line was then used to evaluate the toxicity of seven arsenicals (iAsV, iAsIII, MMAV, MMAIII, DMAV, DMAIII, and DMMTAV). The cellular uptake and metabolism of each arsenical was different. Trivalent arsenicals and DMMTAV exhibited higher cellular uptake than pentavalent arsenicals. Except for MMAV, arsenicals were transported into cells by aquaglyceroporin 9 (AQP9). In addition to AQP9, DMAIII and DMMTAV were also taken up by glucose transporter 5. Microarray analysis demonstrated that arsenical treatment commonly activated the NRF2-mediated oxidative stress response pathway. ROS production increased with all arsenicals, except for MMAV. The activating transcription factor 3 (ATF3) was commonly upregulated in response to oxidative stress in HBladEC-T cells: ATF3 is an important regulator of necroptosis, which is crucial in arsenical-induced bladder carcinogenesis. Inorganic arsenics induced apoptosis while MMAV and DMAIII induced necroptosis. MMAIII, DMAV, and DMMTAV induced both cell death pathways. In summary, MMAIII exhibited the strongest cytotoxicity, followed by DMMTAV, iAsIII, DMAIII, iAsV, DMAV, and MMAV. The cytotoxicity of the tested arsenicals on HBladEC-T cells correlated with their cellular uptake and ROS generation. The ROS/NRF2/ATF3/CHOP signaling pathway emerged as a common mechanism mediating the cytotoxicity and carcinogenicity of arsenicals in HBladEC-T cells.


Assuntos
Fator 3 Ativador da Transcrição , Arsenicais , Células Epiteliais , Estresse Oxidativo , Espécies Reativas de Oxigênio , Bexiga Urinária , Humanos , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Bexiga Urinária/efeitos dos fármacos , Bexiga Urinária/metabolismo , Bexiga Urinária/patologia , Espécies Reativas de Oxigênio/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Fator 3 Ativador da Transcrição/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Linhagem Celular , Apoptose/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos
10.
Front Plant Sci ; 15: 1371394, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38590752

RESUMO

Introduction: Plant height (PH) and ear height (EH) are key plant architectural traits in maize, which will affect the photosynthetic efficiency, high plant density tolerance, suitability for mechanical harvesting. Methods: QTL mapping were conducted for PH and EH using a recombinant inbred line (RIL) population and two corresponding immortalized backcross (IB) populations obtained from crosses between the RIL population and the two parental lines. Results: A total of 17 and 15 QTL were detected in the RIL and IB populations, respectively. Two QTL, qPH1-1 (qEH1-1) and qPH1-2 (qEH1-4) in the RIL, were simultaneously identified for PH and EH. Combing reported genome-wide association and cloned PH-related genes, co-expression network analyses were constructed, then five candidate genes with high confidence in major QTL were identified including Zm00001d011117 and Zm00001d011108, whose homologs have been confirmed to play a role in determining PH in maize and soybean. Discussion: QTL mapping used a immortalized backcross population is a new strategy. These identified genes in this study can provide new insights for improving the plant architecture in maize.

11.
Cells ; 13(7)2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38607061

RESUMO

The lacrimal gland is crucial for maintaining ocular health by producing the aqueous component of the tear film, which hydrates and nourishes the ocular surface. Decreased production of this component results in dry eye disease, a condition affecting over 250 million people worldwide. However, the scarcity of primary human material for studying its underlying mechanisms and the absence of a cell model for human lacrimal gland epithelial cells present significant challenges. Here, we describe the generation of immortalized human lacrimal gland cell lines through the introduction of an SV40 antigen. We successfully isolated and characterized three cell clones from a female lacrimal gland donor, confirming their epithelial identity through genomic and protein analyses, including PCR, RNAseq, immunofluorescence and cultivation in a 3D spheroid model. Our findings represent a significant advancement, providing improved accessibility to investigate the molecular pathogenesis mechanisms of dry eye disease and potential therapeutic interventions. We identified the expression of typical epithelial cell marker genes and demonstrated the cells' capability to form 2D cell sheets and 3D spheroids. This establishment of immortalized human lacrimal gland cells with epithelial characteristics holds promise for future comprehensive studies, contributing to a deeper understanding of dry eye disease and its cellular mechanisms.


Assuntos
Síndromes do Olho Seco , Aparelho Lacrimal , Humanos , Feminino , Aparelho Lacrimal/metabolismo , Lágrimas/metabolismo , Síndromes do Olho Seco/metabolismo , Linhagem Celular
12.
Int J Mol Sci ; 25(6)2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38542198

RESUMO

Glioblastoma multiforme therapy remains a significant challenge since there is a lack of effective treatment for this cancer. As most of the examined gliomas express or overexpress cyclooxygenase-2 (COX-2) and peroxisome proliferator-activated receptors γ (PPARγ), we decided to use these proteins as therapeutic targets. Toxicity, antiproliferative, proapoptotic, and antimigratory activity of COX-2 inhibitor (celecoxib-CXB) and/or PPARγ agonist (Fmoc-L-Leucine-FL) was examined in vitro on temozolomide resistant U-118 MG glioma cell line and comparatively on BJ normal fibroblasts and immortalized HaCaT keratinocytes. The in vivo activity of both agents was studied on C. elegans nematode. Both drugs effectively destroyed U-118 MG glioma cells via antiproliferative, pro-apoptotic, and anti-migratory effects in a concentration range 50-100 µM. The mechanism of action of CXB and FL against glioma was COX-2 and PPARγ dependent and resulted in up-regulation of these factors. Unlike reports by other authors, we did not observe the expected synergistic or additive effect of both drugs. Comparative studies on normal BJ fibroblast cells and immortalized HaCaT keratinocytes showed that the tested drugs did not have a selective effect on glioma cells and their mechanism of action differs significantly from that observed in the case of glioma. HaCaTs did not react with concomitant changes in the expression of COX-2 and PPARγ and were resistant to FL. Safety tests of repurposing drugs used in cancer therapy tested on C. elegans nematode indicated that CXB, FL, or their mixture at a concentration of up to 100 µM had no significant effect on the entire nematode organism up to 4th day of incubation. After a 7-day treatment, CXB significantly shortened the lifespan of C. elegans at 25-400 µM concentration and body length at 50-400 µM concentration.


Assuntos
Caenorhabditis elegans , Glioblastoma , Leucina/análogos & derivados , Animais , Humanos , Celecoxib/farmacologia , Celecoxib/uso terapêutico , Temozolomida/farmacologia , Temozolomida/uso terapêutico , Caenorhabditis elegans/metabolismo , Ciclo-Oxigenase 2/metabolismo , PPAR gama/metabolismo , Sulfonamidas/farmacologia , Pirazóis/farmacologia , Apoptose , Inibidores de Ciclo-Oxigenase 2/farmacologia , Inibidores de Ciclo-Oxigenase 2/uso terapêutico , Linhagem Celular , Glioblastoma/tratamento farmacológico , Linhagem Celular Tumoral
13.
Pathophysiology ; 31(1): 117-126, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38535619

RESUMO

Atherosclerosis is caused by cholesterol accumulation within arteries. The intima is where atherosclerotic plaque accumulates and where lipid-laden foam cells reside. Intimal foam cells comprise of both monocyte-derived macrophages and macrophage-like cells (MLC) of vascular smooth muscle cell (VSMC) origin. Foam cells can remove cholesterol via apoAI-mediated cholesterol efflux and this process is regulated by the transporter ABCA1. The microRNA miR-33a-5p is thought to be atherogenic via silencing ABCA1 which promotes cholesterol retention and data has shown inhibiting miR-33a-5p in macrophages may be atheroprotective via enhancing apoAI-mediated cholesterol efflux. However, it is not entirely elucidated whether precisely inhibiting miR-33a-5p in MLC also increases ABCA1-dependent cholesterol efflux. Therefore, the purpose of this work is to test the hypothesis that inhibition of miR-33a-5p in cultured MLC enhances apoAI-mediated cholesterol efflux. In our study, we utilized the VSMC line MOVAS cells in our experiments, and cholesterol-loaded MOVAS cells to convert this cell line into MLC. Inhibition of miR-33a-5p was accomplished by transducing cells with a lentivirus that expresses an antagomiR directed at miR-33a-5p. Expression of miR-33a-5p was analyzed by qRT-PCR, ABCA1 protein expression was assessed via immunoblotting, and apoAI-mediated cholesterol efflux was measured using cholesterol efflux assays. In our results, we demonstrated that lentiviral vector-mediated knockdown of miR-33a-5p resulted in decreasing expression of this microRNA in cultured MLC. Moreover, reduction of miR-33a-5p in cultured MLC resulted in de-repression of ABCA1 expression, which caused ABCA1 protein upregulation in cultured MLC. Additionally, this increase in ABCA1 protein expression resulted in enhancing ABCA1-dependent cholesterol efflux through increasing apoAI-mediated cholesterol efflux in cultured MLC. From these findings, we conclude that inhibiting miR-33a-5p in MLC may protect against atherosclerosis by promoting ABCA1-dependent cholesterol efflux.

14.
Physiol Rep ; 12(3): e15932, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38307723

RESUMO

As the molecular mechanism of nephrotic syndrome remains largely undiscovered, patients continue to be exposed to the pros and cons of uniform glucocorticoid treatment. We explored whether the exposure of in vitro-cultivated podocytes to sera from children with steroid-sensitive or steroid-resistant nephrotic syndrome induces differences in gene expression profiles, which could help to elucidate the pathogenesis of the steroid response. Human immortalized podocytes were cultivated with patient sera for 3 days. After cell lysis, RNA extraction, 3'-mRNA libraries were prepared and sequenced. There were 34 significantly upregulated and 14 downregulated genes (fold difference <0.5 and >2.0, respectively, and false discovery rate-corrected p < 0.05) and 22 significantly upregulated and 6 downregulated pathways (false discovery rate-corrected p < 0.01) in the steroid-sensitive (n = 9) versus steroid-resistant group (n = 4). The observed pathways included upregulated redox reactions, DNA repair, mitosis, protein translation and downregulated cholesterol biosynthesis. Sera from children with nephrotic syndrome induce disease subtype-specific transcriptome changes in human podocytes in vitro. However, further exploration of a larger cohort is needed to verify whether clinically distinct types of nephrotic syndrome or disease activity may be differentiated by specific transcriptomic profiles and whether this information may help to elucidate the pathogenesis of the steroid response.


Assuntos
Síndrome Nefrótica , Podócitos , Criança , Humanos , Síndrome Nefrótica/genética , Podócitos/metabolismo , Transcriptoma , Glucocorticoides/farmacologia , Esteroides/metabolismo
15.
Reprod Biol Endocrinol ; 22(1): 20, 2024 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-38308254

RESUMO

BACKGROUND: Decidualization of endometrial cells is the prerequisite for embryo implantation and subsequent placenta formation and is induced by rising progesterone levels following ovulation. One of the hormone receptors contributing to endometrial homeostasis is Progesterone Receptor Membrane Component 1 (PGRMC1), a non-classical membrane-bound progesterone receptor with yet unclear function. In this study, we aimed to investigate how PGRMC1 contributes to human decidualization. METHODS: We first analyzed PGRMC1 expression profile during a regular menstrual cycle in RNA-sequencing datasets. To further explore the function of PGRMC1 in human decidualization, we implemented an inducible decidualization system, which is achieved by culturing two human endometrial stromal cell lines in decidualization-inducing medium containing medroxyprogesterone acetate and 8-Br-cAMP. In our system, we measured PGRMC1 expression during hormone induction as well as decidualization status upon PGRMC1 knockdown at different time points. We further conferred proximity ligation assay to identify PGRMC1 interaction partners. RESULTS: In a regular menstrual cycle, PGRMC1 mRNA expression is gradually decreased from the proliferative phase to the secretory phase. In in vitro experiments, we observed that PGRMC1 expression follows a rise-to-decline pattern, in which its expression level initially increased during the first 6 days after induction (PGRMC1 increasing phase) and decreased in the following days (PGRMC1 decreasing phase). Knockdown of PGRMC1 expression before the induction led to a failed decidualization, while its knockdown after induction did not inhibit decidualization, suggesting that the progestin-induced 'PGRMC1 increasing phase' is essential for normal decidualization. Furthermore, we found that the interactions of prohibitin 1 and prohibitin 2 with PGRMC1 were induced upon progestin treatment. Knocking down each of the prohibitins slowed down the decidualization process compared to the control, suggesting that PGRMC1 cooperates with prohibitins to regulate decidualization. CONCLUSIONS: According to our findings, PGRMC1 expression followed a progestin-induced rise-to-decline expression pattern during human endometrial decidualization process; and the correct execution of this expression program was crucial for successful decidualization. Thereby, the results of our in vitro model explained how PGRMC1 dysregulation during decidualization may present a new perspective on infertility-related diseases.


Assuntos
Progesterona , Proibitinas , Gravidez , Feminino , Humanos , Progesterona/farmacologia , Progesterona/metabolismo , Decídua/metabolismo , Receptores de Progesterona/genética , Progestinas/metabolismo , Endométrio/metabolismo , Células Estromais/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo
16.
FEBS Open Bio ; 14(4): 598-612, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38373743

RESUMO

The Egyptian Rousettus bat (Rousettus aegyptiacus) is a common fruit bat species that is distributed mainly in Africa and the Middle East. Bats serve as reservoir hosts for numerous pathogens. Human activities, such as hunting bats for food, managing vermin, and causing habitat loss, elevate the likelihood of transmission of bat pathogens to humans and other animals. Consequently, bat cell lines play a crucial role as research materials for investigating viral pathogens. However, the inherent limitation of finite cell division in primary cells necessitates the use of immortalized cells derived from various bat tissues. Herein, we successfully established six fibroblast cell lines derived from an infant bat heart and lungs and an elderly bat heart. Three of the six cell lines, called K4DT cells, were transduced by a combination of cell cycle regulators, mutant cyclin-dependent kinase 4, cyclin D1, and human telomerase reverse transcriptase. The other three cell lines, named SV40 cells, were transfected with simian virus 40 large T antigen. Transgene protein expression was detected in the transduced cells. All three K4DT cell lines and one lung-derived SV40 cell line were virtually immortalized and nearly maintained the normal diploid karyotypes. However, the two other heart-derived SV40 cell lines had aberrant karyotypes and the young bat-derived cell line stopped proliferating at approximately 40 population doublings. These bat cell lines are valuable for studying pathogen genomics and biology.


Assuntos
Quirópteros , Animais , Humanos , Idoso , Egito , Linhagem Celular
17.
Pharmacol Res ; 202: 107111, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38382648

RESUMO

The discovery of brain therapeutics faces a significant challenge due to the low translatability of preclinical results into clinical success. To address this gap, several efforts have been made to obtain more translatable neuronal models for phenotypic screening. These models allow the selection of active compounds without predetermined knowledge of drug targets. In this review, we present an overview of various existing models within the field, examining their strengths and limitations, particularly in the context of neuropathic pain research. We illustrate the usefulness of these models through a comparative review in three crucial areas: i) the development of novel phenotypic screening strategies specifically for neuropathic pain, ii) the validation of the models for both primary and secondary screening assays, and iii) the use of the models in target deconvolution processes.


Assuntos
Neuralgia , Humanos , Neuralgia/tratamento farmacológico , Encéfalo
18.
Cell Biol Int ; 48(3): 369-377, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38225667

RESUMO

Dental pulp cells play a crucial role in maintaining the balance of the pulp tissue. They actively respond to bacterial inflammation by producing proinflammatory cytokines, particularly interleukin-6 (IL-6). While many cell types release adenosine triphosphate (ATP) in response to various stimuli, the mechanisms and significance of ATP release in dental pulp cells under inflammatory conditions are not well understood. This study aimed to investigate ATP release and its relationship with IL-6 during the inflammatory response in immortalized human dental pulp stem cells (hDPSC-K4DT) following lipopolysaccharide (LPS) stimulation. We found that hDPSC-K4DT cells released ATP extracellularly when exposed to LPS concentrations above 10 µg/mL. ATP release was exclusively attenuated by N-ethylmaleimide, whereas other inhibitors, including clodronic acid (a vesicular nucleotide transporter inhibitor), probenecid (a selective pannexin-1 channel inhibitor), meclofenamic acid (a selective connexin 43 inhibitor), suramin (a nonspecific P2 receptor inhibitor), and KN-62 (a specific P2X7 antagonist), did not exhibit any effect. Additionally, LPS increased IL-6 mRNA expression, which was mitigated by the ATPase apyrase enzyme, N-ethylmaleimide, and suramin, but not by KN-62. Moreover, exogenous ATP induced IL-6 mRNA expression, whereas ATPase apyrase, N-ethylmaleimide, and suramin, but not KN-62, diminished ATP-induced IL-6 mRNA expression. Overall, our findings suggest that LPS-induced ATP release stimulates the IL-6 pathway through P2-purinoceptor, indicating that ATP may function as an anti-inflammatory signal, contributing to the maintenance of dental pulp homeostasis.


Assuntos
1-(5-Isoquinolinasulfonil)-2-Metilpiperazina/análogos & derivados , Trifosfato de Adenosina , Interleucina-6 , Humanos , Trifosfato de Adenosina/metabolismo , Lipopolissacarídeos/farmacologia , Etilmaleimida , Suramina/farmacologia , Apirase , Polpa Dentária/metabolismo , RNA Mensageiro/genética , Adenosina Trifosfatases , Receptores Purinérgicos
19.
Endocr J ; 71(2): 199-206, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38171884

RESUMO

Endometriosis, a common gynecological disorder characterized by the growth of endometrial gland and stroma outside the uterus, causes several symptoms such as dysmenorrhea, hypermenorrhea, and chronic abdominal pain. 17ß estradiol (E2) stimulates the growth of endometriotic lesions. Although estetrol (E4), produced by human fetal liver, is also a natural estrogen, it may have the opposite effects on endometriotic cells. We investigated different effects of E4 and E2 on the invasion and migration of immortalized human endometrial stromal cells (HESCs) and evaluated whether E4 affects the expression of Wiskott-Aldrich syndrome protein (WASP) family member 1 (WASF-1). We measured the invasion of HESCs by a Matrigel chamber assay. Cell migration was measured by wound healing assay and cell tracking analysis. The expression of WASF-1 was confirmed by independent real-time PCR analysis. Transfection of cells with siRNAs was carried out to knock down the expression of WASF-1 in HESCs. E4 significantly inhibited E2-induced invasion and migration of HESCs. WASF-1 was found to be a potential mediator based on metastasis PCR array. WASF-1 was upregulated by E2 and downregulated by E4. Knockdown of WASF-1 inhibited migration. Our results suggest that E4 may inhibit E2-induced growth of endometriotic lesions. Downregulation of WASF-1 is involved in the inhibitory effects of E4 on migration. The use of E4 combined with progestins as combined oral contraceptives may cause endometriotic lesions to regress in women with endometriosis.


Assuntos
Endometriose , Estetrol , Humanos , Feminino , Estetrol/metabolismo , Estetrol/farmacologia , Endometriose/metabolismo , Endometriose/patologia , Estrogênios/farmacologia , Estradiol/farmacologia , Estradiol/metabolismo , Movimento Celular , Endométrio/metabolismo , Células Estromais/metabolismo , Células Estromais/patologia
20.
Exp Dermatol ; 33(1): e14985, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38043130

RESUMO

Dermatological research relies on the availability of suitable models that most accurately reflect the in vivo situation. Primary keratinocytes obtained from skin reduction surgeries are not only limited by availability but have a short lifespan and show donor-specific variations, which hamper the understanding of general mechanisms. The spontaneously immortalized keratinocyte cell line HaCaT displays chromosomal aberrations and is known to differentiate in an abnormal manner. To overcome these issues, we validated different engineered immortalized cell lines created from primary human keratinocytes (NHK) as model systems to study epidermal function. Cell lines either immortalized by the expression of SV40 large T antigen and hTERT (NHK-SV/TERT) or by transduction with HPV E6/E7 (NHK-E6/E7) were analysed for their growth and differentiation behaviour using 2D and 3D culture systems and compared to primary keratinocytes. Both cell lines displayed a robust proliferative behaviour but were still sensitive to contact inhibition. NHK-E6/E7 could be driven into differentiation by Ca2+ switch, while NHK-SV/TERT needed withdrawal from any proliferative signal to initiate a delayed onset of differentiation. In 3D epidermal models both cell lines were able to reconstitute a stratified epidermis and functional epidermal barrier. However, only NHK-E6/E7 showed a degree of epidermal maturation and stratification that was comparable to primary keratinocytes.


Assuntos
Queratinócitos , Proteínas Oncogênicas Virais , Humanos , Queratinócitos/metabolismo , Linhagem Celular , Epiderme , Proteínas Oncogênicas Virais/metabolismo , Diferenciação Celular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...