Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 975
Filtrar
1.
PeerJ ; 12: e17842, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39131609

RESUMO

Background: Ferroptosis is a non-apoptotic iron-dependent form of cell death implicated in various cancer pathologies. However, its precise role in tumor growth and progression of cervical cancer (CC) remains unclear. Transferrin receptor protein 1 (TFRC), a key molecule associated with ferroptosis, has been identified as influencing a broad range of pathological processes in different cancers. However, the prognostic significance of TFRC in CC remains unclear. The present study utilized bioinformatics to explore the significance of the ferroptosis-related gene TFRC in the progression and prognosis of CC. Methods: We obtained RNA sequencing data and corresponding clinical information on patients with CC from The Cancer Genome Atlas (TCGA), Genotype Tissue Expression (GTEx) and Gene Expression Omnibus (GEO) databases. Using least absolute shrinkage and selection operator (LASSO) Cox regression, we then generated a multigene signature of five ferroptosis-related genes (FRGs) for the prognostic prediction of CC. We investigated the relationship between TFRC gene expression and immune cell infiltration by employing single-sample GSEA (ssGSEA) analysis. The potential functional role of the TFRC gene was evaluated through gene set enrichment analysis (GSEA). Immunohistochemistry and qPCR was employed to assess TFRC mRNA and protein expression in 33 cases of cervical cancer. Furthermore, the relationship between TFRC mRNA expression and overall survival (OS) was investigated in patients. Results: CC samples had significantly higher TFRC gene expression levels than normal tissue samples. Higher TFRC gene expression levels were strongly associated with higher cancer T stages and OS events. The findings of multivariate analyses illustrated that the OS in CC patients with high TFRC expression is shorter than in patients with low TFRC expression. Significant increases were observed in the levels of TFRC mRNA and protein expression in patients diagnosed with CC. Conclusion: Increased TFRC expression in CC was associated with disease progression, an unfavorable prognosis, and dysregulated immune cell infiltration. In addition, it highlights ferroptosis as a promising therapeutic target for CC.


Assuntos
Ferroptose , Receptores da Transferrina , Microambiente Tumoral , Neoplasias do Colo do Útero , Humanos , Feminino , Ferroptose/genética , Receptores da Transferrina/genética , Receptores da Transferrina/metabolismo , Neoplasias do Colo do Útero/genética , Neoplasias do Colo do Útero/imunologia , Neoplasias do Colo do Útero/patologia , Neoplasias do Colo do Útero/mortalidade , Microambiente Tumoral/imunologia , Microambiente Tumoral/genética , Prognóstico , Regulação Neoplásica da Expressão Gênica , Antígenos CD/genética , Pessoa de Meia-Idade , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo
2.
Int Immunopharmacol ; 141: 112923, 2024 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-39137629

RESUMO

BACKGROUND: Exogenous inhibition of neutrophil extracellular traps (NETs) was believed to alleviate acute pancreatitis (AP). This study aimed to comprehensively explore the key biological behavior of NETs including timing and pathogenesis in AP by integrating of single cell RNA sequencing(scRNA-seq) and bulk RNA-seq. METHODS: Differentially expressed NETs-related genes and the hub genes of NETs were screened by bulk RNA-seq. ScRNA-seq was used to identify the cell types in pancreas of AP mice and to depict the transcriptomic maps in neutrophils. The mouse AP models were build to verify the timing of initiation of NETs and underlying pathogenesis of damage on pancreas acinar cells. RESULTS: Tlr4 and Ccl3 were screened for hub genes by bulk RNA-seq. The trajectory analysis of neutrophils showed that high expression of Ccl3, Cybb and Padi4 can be observed in the middle stage during AP. Macrophages might be essential in the biological behavior of neutrophils and NETs. Through animal models, we presented that extensive NETs structures were formed at mid-stage of inflammation, accompanied by more serious pancreas and lung damage. NETs might promote necroptosis and macrophage infiltration in AP, and the damage on pancreatic injury could be regulated by Tlr4 pathway. Ccl3 was considered to recruit neutrophils and promote NETs formation. CONCLUSION: The findings explored the underlying timing and pathogenesis of NETs in AP for the first time, which provided gene targets for further studies.

3.
BMC Cancer ; 24(1): 979, 2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-39118022

RESUMO

BACKGROUND: Gastric cancer (GC) is a major contributor to cancer-related mortality. Glycolysis plays a pivotal role in tumor microenvironment (TME) reprogramming. In this research, the functions of glycolysis-associated genes (GRGs) were evaluated to predict the outcome and reveal the characteristics of the immune microenvironment in individuals with stomach cancer. METHODS: The Cancer Genome Atlas (TCGA)-stomach adenocarcinoma (STAD) cohort provided gene expression and clinical data for gastric cancer (GC) patients, which were further authenticated using datasets sourced from the Gene Expression Omnibus (GEO). By referencing the Molecular Signatures Database (MSigDB), a total of 326 GRGs were pinpointed. The various subtypes of GC were outlined through consensus clustering, derived from the expression patterns of these GRGs. Utilizing multivariate Cox regression analysis, a multigene risk score model was formulated. Both the CIBERSORT and ESTIMATE algorithms played a pivotal role in assessing the immune microenvironment. To delve into the biological functions of the key genes, wound healing, transwell invasion, and MTT assays were conducted. RESULTS: Based on the expression patterns of GRGs, patients were categorized into two distinct groups: the metabolic subtype, designated as cluster A, and the immune subtype, labeled as cluster B. Patients belonging to cluster B exhibited a poorer prognosis. A prognostic risk score model, formulated upon the expression levels of six key GRGs - ME1, PLOD2, NUP50, CXCR4, SLC35A3, and SRD35A3 - emerged as a viable tool for predicting patient outcomes. The downregulation of CXCR4 notably diminished the glycolytic capacity of gastric cancer (GC) cells, alongside their migratory, invasive, and proliferative capabilities. Intriguingly, despite the adverse prognostic implications associated with both the immune subtype (cluster B) and the high-risk cohort, these groups exhibited a favorable immune microenvironment coupled with elevated expression of immune checkpoint genes. Our investigations revealed a positive correlation between high CXCR4 expression and low ME1 expression with the infiltration of CD8+ T cells, as well as an enhanced responsiveness to treatment with an anti-PD-1 immune checkpoint inhibitor. CONCLUSIONS: In this study, we discovered that the expression profiles of GRGs hold the potential to forecast the prognosis of gastric cancer (GC) patients, thereby possibly aiding in clinical treatment decision-making.


Assuntos
Glicólise , Neoplasias Gástricas , Microambiente Tumoral , Neoplasias Gástricas/genética , Neoplasias Gástricas/imunologia , Neoplasias Gástricas/patologia , Neoplasias Gástricas/mortalidade , Humanos , Microambiente Tumoral/imunologia , Microambiente Tumoral/genética , Prognóstico , Glicólise/genética , Regulação Neoplásica da Expressão Gênica , Masculino , Biomarcadores Tumorais/genética , Feminino , Perfilação da Expressão Gênica , Pessoa de Meia-Idade , Adenocarcinoma/genética , Adenocarcinoma/imunologia , Adenocarcinoma/patologia , Linhagem Celular Tumoral
4.
Front Immunol ; 15: 1398990, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39086489

RESUMO

Background: More and more evidence supports the association between myocardial infarction (MI) and osteoarthritis (OA). The purpose of this study is to explore the shared biomarkers and pathogenesis of MI complicated with OA by systems biology. Methods: Gene expression profiles of MI and OA were downloaded from the Gene Expression Omnibus (GEO) database. The Weighted Gene Co-Expression Network Analysis (WGCNA) and differentially expressed genes (DEGs) analysis were used to identify the common DEGs. The shared genes related to diseases were screened by three public databases, and the protein-protein interaction (PPI) network was built. GO and KEGG enrichment analyses were performed on the two parts of the genes respectively. The hub genes were intersected and verified by Least absolute shrinkage and selection operator (LASSO) analysis, receiver operating characteristic (ROC) curves, and single-cell RNA sequencing analysis. Finally, the hub genes differentially expressed in primary cardiomyocytes and chondrocytes were verified by RT-qPCR. The immune cell infiltration analysis, subtypes analysis, and transcription factors (TFs) prediction were carried out. Results: In this study, 23 common DEGs were obtained by WGCNA and DEGs analysis. In addition, 199 common genes were acquired from three public databases by PPI. Inflammation and immunity may be the common pathogenic mechanisms, and the MAPK signaling pathway may play a key role in both disorders. DUSP1, FOS, and THBS1 were identified as shared biomarkers, which is entirely consistent with the results of single-cell RNA sequencing analysis, and furher confirmed by RT-qPCR. Immune infiltration analysis illustrated that many types of immune cells were closely associated with MI and OA. Two potential subtypes were identified in both datasets. Furthermore, FOXC1 may be the crucial TF, and the relationship of TFs-hub genes-immune cells was visualized by the Sankey diagram, which could help discover the pathogenesis between MI and OA. Conclusion: In summary, this study first revealed 3 (DUSP1, FOS, and THBS1) novel shared biomarkers and signaling pathways underlying both MI and OA. Additionally, immune cells and key TFs related to 3 hub genes were examined to further clarify the regulation mechanism. Our study provides new insights into shared molecular mechanisms between MI and OA.


Assuntos
Biomarcadores , Perfilação da Expressão Gênica , Redes Reguladoras de Genes , Infarto do Miocárdio , Osteoartrite , Mapas de Interação de Proteínas , Biologia de Sistemas , Infarto do Miocárdio/genética , Infarto do Miocárdio/imunologia , Osteoartrite/genética , Osteoartrite/metabolismo , Humanos , Bases de Dados Genéticas , Transcriptoma , Condrócitos/metabolismo , Condrócitos/imunologia , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Animais , Biologia Computacional/métodos
5.
Diabetes Metab Syndr Obes ; 17: 2983-2996, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39139741

RESUMO

Purpose: This study aimed to investigate the abnormal infiltration of immune cells in type 1 diabetes mellitus (T1D) and elucidate their regulatory mechanisms. Methods: Public T1D-related gene expression data were obtained from the Gene Expression Omnibus database.The GSE123658 dataset analyzed whole blood RNA-seq data from type 1 diabetic patients and healthy volunteers. The GSE110914 dataset analyzed neutrophils purified from peripheral blood of patients with symptomatic and pre-symptomatic type 1 diabetes (T1D), at risk of T1D, and healthy controls. Immune cell infiltration analysis was performed to identify abnormally infiltrating immune cells. Differentially expressed immune genes (DEIGs) in T1D samples were identified, followed by the construction of an immune gene signature (IGS) using a protein-protein interaction (PPI) network and Least absolute shrinkage and selection operator Cox regression analyses (LASSO Cox regression analyses). The regulatory mechanisms underlying IGS were explored using gene set enrichment analysis. Furthermore, expression validation, diagnostic efficacy evaluation, and upstream miRNA prediction of hub signature genes were performed. We verified the miRNA expression of the key gene colony stimulating factor 1 (CSF1) and microRNA-326 (miR-326) by reverse transcription-quantitative PCR (RT‒qPCR). Results: The proportion of infiltrating T and natural killer (NK) cells differed between the T1D and control samples, and 207 immune genes (IGs) related to these immune cells were extracted. After differential expression, PPI, and LASSO Cox regression analyses, four signature DEIGs were identified for IGS construction: notch receptor 1 (NOTCH1), Janus kinase 3 (JAK3), tumor necrosis factor receptor superfamily member 4(TNFRSF4), and CSF1. Key pathways such as the Toll-like receptor signaling pathway were significantly activated in the high-risk group. Moreover, the upregulation of CSF1 in T1D samples was confirmed using a validation dataset, and CSF1 showed high diagnostic efficacy for T1D. Furthermore, CSF1 was targeted by miR-326.We used validated key genes in T1D patients, several of which were confirmed by RT‒qPCR. Conclusion: In conclusion, the identified key IGs may play an important role in T1D. CSF1 can be developed as a novel diagnostic biomarker for T1D.

6.
Artigo em Inglês | MEDLINE | ID: mdl-39141178

RESUMO

IGFLR1 is a novel biomarker, and some evidences suggested that is involved in the immune microenvironment of CRC. Here, we explored the expression of IGFLR1 and its association with the prognosis as well as immune cell infiltration in CRC, with the aim to provide a basis for further studies on IGFLR1. Immunohistochemical staining for IGFLR1, TIM-3, FOXP3, CD4, CD8, and PD-1 was performed in eligible tissues to analyze the expression of IGFLR1 and its association with prognosis and immune cell infiltration. Then, we screened colon cancer samples from TCGA and grouped patients according to IGFLR1-related genes. We also evaluated the co-expression and immune-related pathways of IGFLR1 to identify the potential mechanism of it in CRC. When P < 0.05, the results were considered statistically significant. IGFLR1 and IGFLR1-related genes were associated with the prognosis and immune cell infiltration (P < 0.05). In stage II and III CRC tissue and normal tissue, we found (1) IGFLR1 was expressed in both the cell membrane and cytoplasm and which was differentially expressed between cancer tissue and normal tissue. IGFLR1 expression was associated with the expression of FOXP3, CD8, and gender but was not associated with microsatellite instability. (2) IGFLR1 was an independent prognostic factor and patients with high IGFLR1 had a better prognosis. (3) A model including IGFLR1, FOXP3, PD-1, and CD4 showed good prognostic stratification ability. (4) There was a significant interaction between IGFLR1 and GATA3, and IGFLR1 had a significant co-expression with related factors in the INFR pathway. IGFLR1 has emerged as a new molecule related to disease prognosis and immune cell infiltration in CRC patients and showed a good ability to predict the prognosis of patients.

7.
Cancers (Basel) ; 16(15)2024 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-39123412

RESUMO

Tertiary lymphoid structures (TLSs) are complex lymphocyte clusters that arise in non-lymphoid tissues due to inflammation or cancer. A mature TLS with proliferating germinal centers is associated with a favorable prognosis in various cancers. However, the effect of TLS maturity on advanced colorectal cancer (CRC) remains unexplored. We analyzed the significance of TLS maturity and tumor Ki-67 expression in surgically resected tumors from 78 patients with pathological T4 CRC. Mature TLS was defined as the organized infiltration of T and B cells with Ki-67-positive proliferating germinal centers. We analyzed the relationship between TLS maturity and intratumoral immune cell infiltration. Mature TLS with germinal center Ki-67 expression was associated with microsatellite instability and improved survival; however, high tumor Ki-67 expression was associated with poor survival in the same cohort. Multivariate analysis identified the absence of mature TLS as an independent predictor of poor post-recurrence overall survival. Intratumoral infiltration of T lymphocytes and macrophages was significantly elevated in tumors with mature TLS compared to those lacking it. High Ki-67 levels and absent mature TLS were identified as poor prognostic factors in advanced CRC. Mature TLS could serve as a promising marker for patients at high-risk of CRC.

8.
J Cell Mol Med ; 28(15): e18501, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39088353

RESUMO

Inflammatory bowel disease (IBD) is a chronic systemic inflammatory condition regarded as a major risk factor for colitis-associated cancer. However, the underlying mechanisms of IBD remain unclear. First, five GSE data sets available in GEO were used to perform 'batch correction' and Robust Rank Aggregation (RRA) to identify differentially expressed genes (DEGs). Candidate molecules were identified using CytoHubba, and their diagnostic effectiveness was predicted. The CIBERSORT algorithm evaluated the immune cell infiltration in the intestinal epithelial tissues of patients with IBD and controls. Immune cell infiltration in the IBD and control groups was determined using the least absolute shrinkage selection operator algorithm and Cox regression analysis. Finally, a total of 51 DEGs were screened, and nine hub genes were identified using CytoHubba and Cytoscape. GSE87466 and GSE193677 were used as extra data set to validate the expression of the nine hub genes. CD4-naïve T cells, gamma-delta T cells, M1 macrophages and resting dendritic cells (DCs) are the main immune cell infiltrates in patients with IBD. Signal transducer and activator of transcription 1, CCR5 and integrin subunit beta 2 (ITGB2) were significantly upregulated in the IBD mouse model, and suppression of ITGB2 expression alleviated IBD inflammation in mice. Additionally, the expression of ITGB2 was upregulated in IBD-associated colorectal cancer (CRC). The silence of ITGB2 suppressed cell proliferation and tumour growth in vitro and in vivo. ITGB2 resting DCs may provide a therapeutic strategy for IBD, and ITGB2 may be a potential diagnostic marker for IBD-associated CRC.


Assuntos
Biologia Computacional , Doenças Inflamatórias Intestinais , Humanos , Animais , Doenças Inflamatórias Intestinais/genética , Doenças Inflamatórias Intestinais/imunologia , Doenças Inflamatórias Intestinais/patologia , Biologia Computacional/métodos , Camundongos , Perfilação da Expressão Gênica , Modelos Animais de Doenças , Antígenos CD18/genética , Antígenos CD18/metabolismo , Mapas de Interação de Proteínas , Receptores CCR5/genética , Receptores CCR5/metabolismo
9.
Heliyon ; 10(13): e33648, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39091931

RESUMO

The pathogenesis of rheumatoid arthritis (RA) remains elusive. The initiation of joint degeneration is characterized by the loss of self-tolerance in peripheral joints. Ferroptosis, a form of regulated cell death, holds significant importance in the pathophysiology of inflammatory arthritis, primarily due to iron accumulation and the subsequent lipid peroxidation. The present study investigated the association between synovial lesions and ferroptosis-related genes using previously published data from rheumatoid patients. Transcriptome differential gene analysis was employed to identify ferroptosis-related differentially expressed genes (FRDEGs). To validate FRDEGs and screen hub genes, we used weighted gene co-expression network analysis (WGCNA) and receiver operating characteristic (ROC) curves. Subsequently, immune infiltration analysis and single cell analysis were conducted to investigate the relationship between various synovial tissues cells and FRDEGs. The findings were further confirmed through reverse transcription-quantitative polymerase chain reaction (RT-qPCR), immunohistochemical staining, and immunofluorescence techniques. Upon intersecting DEGs with ferroptosis-related genes, we identified a total of 104 FRDEGs. Through the construction of a protein-protein interaction (PPI) network, we pinpointed the top 20 most highly concentrated genes as hub genes. Subsequent analyses using ROC curve and WGCNA validated eight FRDEGs: TIMP1, JUN, EGFR, SREBF1, ADIPOQ, SCD, AR, and FABP4. Immuno-infiltration analyses revealed significant infiltration of immune cell in RA synovial tissues and their correlations with the FRDEGs. Notably, TIMP1 demonstrated a positive correlation with various immune cell populations. Single-cell sequencing date of RA synovial tissue revealed predominant expression of TIMP1 is in fibroblasts. RT-qPCR, immunohistochemistry, and immunofluorescence analyses confirmed significant upregulation of TIMP1 at both mRNA and protein levels in RA synovial tissues and fibroblast-like synoviocytes (FLS). The findings provide novel insights into pathophysiology of peripheral immune tolerance deficiency in RA. The dysregulation of TIMP1, a gene associated with ferroptosis, was significantly observed in RA patients, suggesting its potential as a promising biomarker and therapeutic target.

10.
Cancer Innov ; 3(4): e122, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38948253

RESUMO

Background: Non-small cell lung cancer (NSCLC), including the lung squamous cell carcinoma (LUSC) and lung adenocarcinoma (LUAD) subtypes, is a malignant tumor type with a poor 5-year survival rate. The identification of new powerful diagnostic biomarkers, prognostic biomarkers, and potential therapeutic targets in NSCLC is urgently required. Methods: The UCSC Xena, UALCAN, and GEO databases were used to screen and analyze differentially expressed genes, regulatory modes, and genetic/epigenetic alterations in NSCLC. The UCSC Xena database, GEO database, tissue microarray, and immunohistochemistry staining analyses were used to evaluate the diagnostic and prognostic values. Gain-of-function assays were performed to examine the roles. The ESTIMATE, TIMER, Linked Omics, STRING, and DAVID algorithms were used to analyze potential molecular mechanisms. Results: NR3C2 was identified as a potentially important molecule in NSCLC. NR3C2 is expressed at low levels in NSCLC, LUAD, and LUSC tissues, which is significantly related to the clinical indexes of these patients. Receiver operating characteristic curve analysis suggests that the altered NR3C2 expression patterns have diagnostic value in NSCLC, LUAD, and especially LUSC patients. Decreased NR3C2 expression levels can help predict poor prognosis in NSCLC and LUAD patients but not in LUSC patients. These results have been confirmed both with database analysis and real-world clinical samples on a tissue microarray. Copy number variation contributes to low NR3C2 expression levels in NSCLC and LUAD, while promoter DNA methylation is involved in its downregulation in LUSC. Two NR3C2 promoter methylation sites have high sensitivity and specificity for LUSC diagnosis with clinical application potential. NR3C2 may be a key participant in NSCLC development and progression and is closely associated with the tumor microenvironment and immune cell infiltration. NR3C2 co-expressed genes are involved in many cancer-related signaling pathways, further supporting a potentially significant role of NR3C2 in NSCLC. Conclusions: NR3C2 is a novel potential diagnostic and prognostic biomarker and therapeutic target in NSCLC.

11.
Health Sci Rep ; 7(7): e2148, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38988627

RESUMO

Background and Aims: The tumor microenvironment (TME) exerts an important role in carcinogenesis and progression. Several investigations have suggested that immune cell infiltration (ICI) is of high prognostic importance for tumor progression and patient survival in many tumors, particularly prostate cancer. The pattern of immune infiltration of PCa, on the other hand, has not been thoroughly understood. Methods: The Cancer Genome Atlas (TCGA) and the Gene Expression Omnibus (GEO) datasets on PCa were obtained, and several datasets were merged into one data set using the "ComBat" algorithm. The ICI profiles of PCa patients were then to be uncovered by two computer techniques. The unsupervised clustering method was utilized to identify three ICI patterns in tumor samples, and Principal Component Analysis (PCA) was conducted to estimate the ICI score. Results: Three different clusters of three ICIs were identified in 1341 PCa samples, which also correlated with different clinical features/characteristics and biological pathways. Patients with PCa are classified into high and low subtypes based on the ICI scores extracted from immune-associated signature genes. High ICI score subtypes are associated with a worse prognosis, which may intrigue the activation of cancer-related and immune-related pathways such as pathways involving Toll-like receptors, T-cell receptors, JAK-STAT, and natural killer cells. The ICI score was linked to tumor mutation load and immune/cancer-relevant signaling pathways, which explain prostate cancer's poor prognosis. Conclusion: The findings of this study not only advanced our knowledge of the mechanism of immune response in the prostate tumor microenvironment but also provided a novel biomarker, that is, the ICI score, for disease prognosis and guiding precision immunotherapy.

12.
Transl Cancer Res ; 13(6): 2913-2937, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38988945

RESUMO

Background: Endometrial carcinoma (EC) is one of the most prevalent gynecologic malignancies and requires further classification for treatment and prognosis. Long non-coding RNAs (lncRNAs) and immunogenic cell death (ICD) play a critical role in tumor progression. Nevertheless, the role of lncRNAs in ICD in EC remains unclear. This study aimed to explore the role of ICD related-lncRNAs in EC via bioinformatics and establish a prognostic risk model based on the ICD-related lncRNAs. We also explored immune infiltration and immune cell function across prognostic groups and made treatment recommendations. Methods: A total of 552 EC samples and clinical data of 548 EC patients were extracted from The Cancer Genome Atlas (TCGA) database and University of California Santa Cruz (UCSC) Xena, respectively. A prognostic-related feature and risk model was developed using the least absolute shrinkage and selection operator (LASSO). Subtypes were classified with consensus cluster analysis and validated with t-Distributed Stochastic Neighbor Embedding (tSNE). Kaplan-Meier analysis was conducted to assess differences in survival. Infiltration by immune cells was estimated by single sample gene set enrichment analysis (ssGSEA), Tumor IMmune Estimation Resource (TIMER) algorithm. Quantitative polymerase chain reaction (qPCR) was used to detect lncRNAs expression in clinical samples and cell lines. A series of studies was conducted in vitro and in vivo to examine the effects of knockdown or overexpression of lncRNAs on ICD. Results: In total, 16 ICD-related lncRNAs with prognostic values were identified. Using SCARNA9, FAM198B-AS1, FKBP14-AS1, FBXO30-DT, LINC01943, and AL161431.1 as risk model, their predictive accuracy and discrimination were assessed. We divided EC patients into high-risk and low-risk groups. The analysis showed that the risk model was an independent prognostic factor. The prognosis of the high- and low-risk groups was different, and the overall survival (OS) of the high-risk group was lower. The low-risk group had higher immune cell infiltration and immune scores. Consensus clustering analysis divided the samples into four subtypes, of which cluster 4 had higher immune cell infiltration and immune scores. Conclusions: A prognostic signature composed of six ICD related-lncRNAs in EC was established, and a risk model based on this signature can be used to predict the prognosis of patients with EC.

14.
J Inflamm Res ; 17: 4229-4245, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38979432

RESUMO

Background: This study aimed to discover diagnostic and prognostic biomarkers for sepsis immunotherapy through analyzing the novel cellular death process, cuproptosis. Methods: We used transcriptome data from sepsis patients to identify key cuproptosis-related genes (CuRGs). We created a predictive model and used the CIBERSORT algorithm to observe the link between these genes and the septic immune microenvironment. We segregated sepsis patients into three subgroups, comparing immune function, immune cell infiltration, and differential analysis. Single-cell sequencing and real-time quantitative PCR were used to view the regulatory effect of CuRGs on the immune microenvironment and compare the mRNA levels of these genes in sepsis patients and healthy controls. We established a sepsis forecast model adapted to heart rate, body temperature, white blood cell count, and cuproptosis key genes. This was followed by a drug sensitivity analysis of cuproptosis key genes. Results: Our results filtered three key genes (LIAS, PDHB, PDHA1) that impact sepsis prognosis. We noticed that the high-risk group had poorer immune cell function and lesser immune cell infiltration. We also discovered a significant connection between CuRGs and immune cell infiltration in sepsis. Through consensus clustering, sepsis patients were classified into three subgroups. The best immune functionality and prognosis was observed in subgroup B. Single-cell sequencing exposed that the key genes manage the immune microenvironment by affecting T cell activation. The qPCR results highlighted substantial mRNA level reduction of the three key genes in the SP compared to the HC. The prediction model, which combines CuRGs and traditional diagnostic indicators, performed better in accuracy than the other markers. The drug sensitivity analysis listed bisphenol A as highly sensitive to all the key genes. Conclusion: Our study suggests these CuRGs may offer substantial potential for sepsis prognosis prediction and personalized immunotherapy.

15.
J Cell Mol Med ; 28(14): e18557, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39031474

RESUMO

The pathogenesis of ankylosing spondylitis (AS) remains unclear, and while recent studies have implicated necroptosis in various autoimmune diseases, an investigation of its relationship with AS has not been reported. In this study, we utilized the Gene Expression Omnibus database to compare gene expressions between AS patients and healthy controls, identifying 18 differentially expressed necroptosis-related genes (DENRGs), with 8 upregulated and 10 downregulated. Through the application of three machine learning algorithms-least absolute shrinkage and selection operation, support vector machine-recursive feature elimination and random forest-two hub genes, FASLG and TARDBP, were pinpointed. These genes demonstrated high specificity and sensitivity for AS diagnosis, as evidenced by receiver operating characteristic curve analysis. These findings were further supported by external datasets and cellular experiments, which confirmed the downregulation of FASLG and upregulation of TARDBP in AS patients. Immune cell infiltration analysis suggested that CD4+ T cells, CD8+ T cells, NK cells and neutrophils may be associated with the development of AS. Notably, in the group with high FASLG expression, there was a significant infiltration of CD8+ T cells, memory-activated CD4+ T cells and resting NK cells, with relatively less infiltration of memory-resting CD4+ T cells and neutrophils. Conversely, in the group with high TARDBP expression, there was enhanced infiltration of naïve CD4+ T cells and M0 macrophages, with a reduced presence of memory-resting CD4+ T cells. In summary, FASLG and TARDBP may contribute to AS pathogenesis by regulating the immune microenvironment and immune-related signalling pathways. These findings offer new insights into the molecular mechanisms of AS and suggest potential new targets for therapeutic strategies.


Assuntos
Biologia Computacional , Necroptose , Espondilite Anquilosante , Espondilite Anquilosante/genética , Espondilite Anquilosante/patologia , Humanos , Biologia Computacional/métodos , Necroptose/genética , Perfilação da Expressão Gênica , Proteína Ligante Fas/genética , Proteína Ligante Fas/metabolismo , Regulação da Expressão Gênica , Linfócitos T CD8-Positivos/metabolismo , Linfócitos T CD8-Positivos/imunologia , Redes Reguladoras de Genes , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Curva ROC , Bases de Dados Genéticas
17.
Clin Transl Oncol ; 2024 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-39031295

RESUMO

BACKGROUND: Hepatocellular carcinoma (HCC) is characterized by a complex pathogenesis that confers aggressive malignancy, leading to a lack of dependable biomarkers for predicting invasion and metastasis, which results in poor prognoses in patients with HCC. Glycogen storage disease (GSD) is an uncommon metabolic disorder marked by hepatomegaly and liver fibrosis. Notably, hepatic adenomas in GSD patients present a heightened risk of malignancy compared to those in individuals without the disorder. In this investigation, PON1 emerged as a potential pivotal gene for HCC through bioinformatics analysis. METHODS: Transcriptomic profiling data of liver cancer were collected and integrated from TCGA and GEO databases. Bioinformatics analysis was conducted to identify mutated mRNAs associated with GSD, and the PON1 gene was selected as a key gene. Patients were grouped based on the expression levels of PON1, and differences in clinical characteristics, biological pathways, immune infiltration, and expression of immune checkpoints were compared. RESULTS: The expression levels of the PON1 gene showed significant differences between the high-expression group and the low-expression group in HCC patients. Further analysis indicated that the PON1 gene at different expression levels might influence the clinical manifestations, biological processes, immune infiltration, and expression of immune checkpoints in HCC. Additionally, immunohistochemistry (IHC) results revealed high expression of PON1 in normal tissues and low expression in HCC tissues. These findings provide important clues and future research directions for the early diagnosis, prognosis, immunotherapy, and potential molecular interactions of HCC. CONCLUSION: Our investigation underscores the noteworthy prognostic significance of PON1 in HCC, suggesting its potential pivotal role in modulating tumor progression and immune cell infiltration. These findings establish PON1 as a novel tumor biomarker with significant implications for the prognosis, targeted therapy, and immunotherapy of patients with HCC.

18.
Front Immunol ; 15: 1414301, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39026663

RESUMO

Purpose: Osteoarthritis (OA) stands as the most prevalent joint disorder. Mitochondrial dysfunction has been linked to the pathogenesis of OA. The main goal of this study is to uncover the pivotal role of mitochondria in the mechanisms driving OA development. Materials and methods: We acquired seven bulk RNA-seq datasets from the Gene Expression Omnibus (GEO) database and examined the expression levels of differentially expressed genes related to mitochondria in OA. We utilized single-sample gene set enrichment analysis (ssGSEA), gene set enrichment analysis (GSEA), and weighted gene co-expression network analysis (WGCNA) analyses to explore the functional mechanisms associated with these genes. Seven machine learning algorithms were utilized to identify hub mitochondria-related genes and develop a predictive model. Further analyses included pathway enrichment, immune infiltration, gene-disease relationships, and mRNA-miRNA network construction based on these hub mitochondria-related genes. genome-wide association studies (GWAS) analysis was performed using the Gene Atlas database. GSEA, gene set variation analysis (GSVA), protein pathway analysis, and WGCNA were employed to investigate relevant pathways in subtypes. The Harmonizome database was employed to analyze the expression of hub mitochondria-related genes across various human tissues. Single-cell data analysis was conducted to examine patterns of gene expression distribution and pseudo-temporal changes. Additionally, The real-time polymerase chain reaction (RT-PCR) was used to validate the expression of these hub mitochondria-related genes. Results: In OA, the mitochondria-related pathway was significantly activated. Nine hub mitochondria-related genes (SIRT4, DNAJC15, NFS1, FKBP8, SLC25A37, CARS2, MTHFD2, ETFDH, and PDK4) were identified. They constructed predictive models with good ability to predict OA. These genes are primarily associated with macrophages. Unsupervised consensus clustering identified two mitochondria-associated isoforms that are primarily associated with metabolism. Single-cell analysis showed that they were all expressed in single cells and varied with cell differentiation. RT-PCR showed that they were all significantly expressed in OA. Conclusion: SIRT4, DNAJC15, NFS1, FKBP8, SLC25A37, CARS2, MTHFD2, ETFDH, and PDK4 are potential mitochondrial target genes for studying OA. The classification of mitochondria-associated isoforms could help to personalize treatment for OA patients.


Assuntos
Redes Reguladoras de Genes , Aprendizado de Máquina , Mitocôndrias , Osteoartrite , Humanos , Osteoartrite/genética , Osteoartrite/patologia , Osteoartrite/metabolismo , Mitocôndrias/genética , Mitocôndrias/metabolismo , Perfilação da Expressão Gênica , Estudo de Associação Genômica Ampla , Biologia Computacional/métodos , Bases de Dados Genéticas , Transcriptoma , Multiômica
19.
Open Med (Wars) ; 19(1): 20240997, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39027882

RESUMO

Backgrounds: The integrator complex (INT) is a multiprotein assembly in gene transcription. Although several subunits of INT complex have been implicated in multiple cancers, the complex's role in gastric cancer (GC) is poorly understood. Methods: The gene expressions, prognostic values, and the associations with microsatellite instability (MSI) of INT subunits were confirmed by GEO and The Cancer Genome Atlas (TCGA) databases. cBioPortal, GeneMANIA, TISIDB, and MCPcounter algorithm were adopted to investigate the mutation frequency, protein-protein interaction network, and the association with immune cells of INT subunits in GC. Additionally, in vitro experiments were performed to confirm the role of INTS11 in pathogenesis of GC. Results: The mRNA expression levels of INTS2/4/5/7/8/9/10/11/12/13/14 were significantly elevated both in GSE183904 and TCGA datasets. Through functional enrichment analysis, the functions of INT subunits were mainly associated with snRNA processing, INT, and DNA-directed 5'-3' RNA polymerase activity. Moreover, these INT subunit expressions were associated with tumor-infiltrating lymphocytes and MSI in GC. In vitro experiments demonstrated that knockdown of the catalytic core INTS11 in GC cells inhibits cell proliferation ability. INTS11 overexpression showed opposite effects. Conclusions: Our data demonstrate that the INT complex might act as an oncogene and can be used as a prognosis biomarker for GC.

20.
Artigo em Inglês | MEDLINE | ID: mdl-39054687

RESUMO

This study aimed to investigate the roles of lysosome-related genes in BC prognosis and immunity. Transcriptome data from TCGA and MSigDB, along with lysosome-related gene sets, underwent NMF cluster analysis, resulting in two subtypes. Using lasso regression and univariate/multivariate Cox regression analysis, an 11-gene signature was successfully identified and verified. High- and low-risk populations were dominated by HR+ sample types. There were differences in pathway enrichment, immune cell infiltration, and immune scores. Sensitive drugs targeting model genes were screened using GDSC and CCLE. This study constructed a reliable prognostic model with lysosome-related genes, providing valuable insights for BC clinical immunotherapy.


Lysosome-related genes can be used to predict survival outcomes in BRCA patients.Significant differences were showed in the immune status of patient with different prognoses.Immunotherapy may show better therapeutic results in low-risk patients.The most promising targeted drugs in the low-risk group are mainly Lapatinib, Palbociclib and Ribociclib.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...