Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 147
Filtrar
1.
ACS Nano ; 2024 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-39383310

RESUMO

Cancer cells have a high demand for sugars and express diverse carbohydrate receptors, offering opportunities to improve delivery with multivalent glycopolymer materials. However, effectively delivering glycopolymers to tumors while inhibiting cancer cell activity, altering cellular metabolism, and reversing tumor-associated macrophage (TAM) polarization to overcome immunosuppression remains a challenging area of research due to the lack of reagents capable of simultaneously achieving these objectives. Here, the glycopolymer-like condensed nanoparticle (∼60 nm) was developed by a one-pot carbonization reaction with a single precursor, promoting multivalent interactions for the galactose-related receptors of the M2 macrophage (TAM) and thereby regulating the STAT3/NF-κB pathways. The subsequently induced M2-to-M1 transition was increased with the condensed level of glycopolymer-like nanoparticles. We found that the activation of the glycopolymer-like condensed galactose (CG) nanoparticles influenced monocarboxylate transporter 4 (MCT-4) function, which caused inhibited lactate efflux (similar to inhibitor effects) from cancer cells. Upon internalization via galactose-related endocytosis, CG NPs induced cellular reactive oxygen species (ROS), leading to dual functionalities of cancer cell death and M2-to-M1 macrophage polarization, thereby reducing the tumor's acidic microenvironment and immunosuppression. Blocking the nanoparticle-MCT-4 interaction with antibodies reduced their toxicity in glioblastoma (GBM) and affected macrophage polarization. In orthotopic GBM and pancreatic cancer models, the nanoparticles remodeled the tumor microenvironment from "cold" to "hot", enhancing the efficacy of anti-PD-L1/anti-PD-1 therapy by promoting macrophage polarization and activating cytotoxic T lymphocytes (CTLs) and dendritic cells (DCs). These findings suggest that glycopolymer-like nanoparticles hold promise as a galactose-elicited adjuvant for precise immunotherapy, particularly in targeting hard-to-treat cancers.

2.
Br J Hosp Med (Lond) ; 85(9): 1-21, 2024 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-39347660

RESUMO

The incidence and lethality of hepatocellular carcinoma (HCC) are increasing annually, and traditional treatments have been proven to be ineffective for patients with advanced stages of the disease. In recent years, immune checkpoint therapy has rapidly evolved, demonstrating promising results across a wide range of cancers and offering new hope for cancer treatment. However, the efficacy of immune checkpoint therapy in HCC varies greatly among individuals, with only a small proportion of HCC patients responding positively. A major cause of immune resistance and poor efficacy in HCC patients is immune evasion, which is often due to insufficient infiltration of immune cells. Understanding the mechanisms underlying immune evasion is crucial for enhancing the efficacy of immune therapies. In this review, we aim to summarize the mechanisms of immune evasion observed during immune checkpoint therapy and discuss future directions for this therapeutic approach. Our goal is to provide insights that could help overcome immune evasion, thereby improving the efficacy of immune therapies and extending patient survival time.


Assuntos
Carcinoma Hepatocelular , Inibidores de Checkpoint Imunológico , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/terapia , Carcinoma Hepatocelular/imunologia , Carcinoma Hepatocelular/tratamento farmacológico , Neoplasias Hepáticas/imunologia , Neoplasias Hepáticas/terapia , Neoplasias Hepáticas/tratamento farmacológico , Inibidores de Checkpoint Imunológico/uso terapêutico , Imunoterapia/métodos , Evasão Tumoral/efeitos dos fármacos
3.
J Investig Med High Impact Case Rep ; 12: 23247096241271977, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39215660

RESUMO

Cutaneous squamous cell carcinoma (cSCC) comprises 20% of cases of nonmelanoma skin cancers in the United States. In total, 3% to 5% of squamous cell carcinoma (SCC) are metastatic at the time of presentation, associated with significant mortality due to a lack of standardized treatment options. In total, 95% of these tumors are amenable to the initial standard of treatment, which is surgical resection. However, a small percentage of them require systemic therapy as they are either locally advanced to regional lymph nodes or have distant metastasis. The common sites of presentation of cSCC are the scalp and the face with predictable spread to the intra-parotid, upper jugular, and perifacial lymph nodes. In our case report, however, our patient had a large lump lesion on the upper back, an unusual site of presentation of cSCC, with locally advanced metastasis to the left axillary lymph nodes. Subsequently, the tumor marker study revealed a positive SMARCA4 variant (the essential ATPase subunit of the Switch (SWI)/Sucrose Nonfermenting (SNF) chromatin-remodeling complex) that is even rarer in the context of cSCC. Furthermore, abnormalities in SWI/SNF chromatin-remodeling complex subunits have shown promising results as a target therapy for immune checkpoint inhibitor (ICI) therapy. We present an atypical presentation site of locally advanced rare variant SMARCA4-positive cSCC in a patient who received treatment with chemoradiation and systemic therapy with ICI after primary surgical resection. To date, only 2 cases of SMARCA4-positive cSCC were found in the literature with no details of the treatment received. Our case is unique in its atypical site of presentation as well as showing partial response to radiotherapy (RT) and systemic therapy with ICI.


Assuntos
Carcinoma de Células Escamosas , DNA Helicases , Proteínas Nucleares , Neoplasias Cutâneas , Fatores de Transcrição , Humanos , Neoplasias Cutâneas/patologia , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/terapia , Carcinoma de Células Escamosas/patologia , Carcinoma de Células Escamosas/terapia , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/diagnóstico , DNA Helicases/genética , Fatores de Transcrição/genética , Proteínas Nucleares/genética , Masculino , Metástase Linfática , Idoso
4.
Mol Cancer ; 23(1): 155, 2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-39095793

RESUMO

BACKGROUND: Immune checkpoint therapy (ICT) provides durable responses in select cancer patients, yet resistance remains a significant challenge, prompting the exploration of underlying molecular mechanisms. Tyrosylprotein sulfotransferase-2 (TPST2), known for its role in protein tyrosine O-sulfation, has been suggested to modulate the extracellular protein-protein interactions, but its specific role in cancer immunity remains largely unexplored. METHODS: To explore tumor cell-intrinsic factors influencing anti-PD1 responsiveness, we conducted a pooled loss-of-function genetic screen in humanized mice engrafted with human immune cells. The responsiveness of cancer cells to interferon-γ (IFNγ) was estimated by evaluating IFNγ-mediated induction of target genes, STAT1 phosphorylation, HLA expression, and cell growth suppression. The sulfotyrosine-modified target gene of TPST2 was identified by co-immunoprecipitation and mass spectrometry. The in vivo effects of TPST2 inhibition were evaluated using mouse syngeneic tumor models and corroborated by bulk and single-cell RNA sequencing analyses. RESULTS: Through in vivo genome-wide CRISPR screening, TPST2 loss-of-function emerged as a potential enhancer of anti-PD1 treatment efficacy. TPST2 suppressed IFNγ signaling by sulfating IFNγ receptor 1 at Y397 residue, while its downregulation boosted IFNγ-mediated signaling and antigen presentation. Depletion of TPST2 in cancer cells augmented anti-PD1 antibody efficacy in syngeneic mouse tumor models by enhancing tumor-infiltrating lymphocytes. RNA sequencing data revealed TPST2's inverse correlation with antigen presentation, and increased TPST2 expression is associated with poor prognosis and altered cancer immunity across cancer types. CONCLUSIONS: We propose TPST2's novel role as a suppressor of cancer immunity and advocate for its consideration as a therapeutic target in ICT-based treatments.


Assuntos
Receptor de Morte Celular Programada 1 , Sulfotransferases , Animais , Humanos , Camundongos , Sulfotransferases/genética , Sulfotransferases/metabolismo , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Receptor de Morte Celular Programada 1/metabolismo , Linhagem Celular Tumoral , Interferon gama/metabolismo , Inibidores de Checkpoint Imunológico/farmacologia , Inibidores de Checkpoint Imunológico/uso terapêutico , Sistemas CRISPR-Cas , Ensaios Antitumorais Modelo de Xenoenxerto , Neoplasias/genética , Neoplasias/tratamento farmacológico , Neoplasias/imunologia , Neoplasias/patologia , Neoplasias/metabolismo , Modelos Animais de Doenças
5.
Int Immunopharmacol ; 138: 112534, 2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-38941667

RESUMO

Immune checkpoint therapy (ICT) has been shown to produce durable responses in various cancer patients. However, its efficacy is notably limited in hepatocellular carcinoma (HCC), with only a small percentage of patients responding positively to treatment. The mechanism underlying resistance to ICT in HCC remains poorly understood. Here, we showed that combination treatment of ICG-001, an inhibitor of the Wnt/ß-catenin signaling pathway, with anti-PD-1 antibody effectively suppresses tumor growth and promotes the infiltration of immune cells such as DCs and CD8+ T cells in the tumor microenvironment (TME). By inhibiting the activity of ß-catenin and blocking its binding to the transcription factor IKAROS family zinc finger 1 (IKZF1), ICG-001 upregulated the expression of CCL5. Moreover, IKZF1 regulated the activity of the CCL5 promoter and its endogenous expression. Through inhibition of the WNT/ß-catenin signaling pathway, upregulation of the expression of CCL5 was achieved, which subsequently recruited more DCs into the TME via C-C motif chemokine receptor 5 (CCR5). This, in turn, resulted in an increase in the infiltration of CD8+ T cells in the TME, thereby enhancing the antitumor immune response. Analysis of a tissue microarray derived from HCC patient samples revealed a positive correlation between survival rate and prognosis and the expression levels of CCL5/CD8. In conclusion, our findings suggest that combined application of ICG-001 and anti-PD-1 antibody exhibits significantly enhanced antitumor efficacy. Hence, combining a WNT/ß-catenin signaling pathway inhibitor with anti-PD-1 therapy may be a promising treatment strategy for patients with HCC.


Assuntos
Carcinoma Hepatocelular , Quimiocina CCL5 , Neoplasias Hepáticas , Via de Sinalização Wnt , beta Catenina , Carcinoma Hepatocelular/imunologia , Carcinoma Hepatocelular/tratamento farmacológico , Neoplasias Hepáticas/imunologia , Neoplasias Hepáticas/tratamento farmacológico , Humanos , Animais , Via de Sinalização Wnt/efeitos dos fármacos , Quimiocina CCL5/metabolismo , beta Catenina/metabolismo , Camundongos , Linhagem Celular Tumoral , Pirimidinonas/farmacologia , Pirimidinonas/uso terapêutico , Fator de Transcrição Ikaros/metabolismo , Fator de Transcrição Ikaros/genética , Microambiente Tumoral/imunologia , Microambiente Tumoral/efeitos dos fármacos , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/efeitos dos fármacos , Inibidores de Checkpoint Imunológico/farmacologia , Inibidores de Checkpoint Imunológico/uso terapêutico , Benzodioxóis/farmacologia , Benzodioxóis/uso terapêutico , Evasão Tumoral/efeitos dos fármacos , Masculino , Camundongos Endogâmicos C57BL , Evasão da Resposta Imune , Compostos Bicíclicos Heterocíclicos com Pontes
6.
Oncoimmunology ; 13(1): 2345859, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38686178

RESUMO

Immune checkpoint therapy (ICT) causes durable tumour responses in a subgroup of patients, but it is not well known how T cell receptor beta (TCRß) repertoire dynamics contribute to the therapeutic response. Using murine models that exclude variation in host genetics, environmental factors and tumour mutation burden, limiting variation between animals to naturally diverse TCRß repertoires, we applied TCRseq, single cell RNAseq and flow cytometry to study TCRß repertoire dynamics in ICT responders and non-responders. Increased oligoclonal expansion of TCRß clonotypes was observed in responding tumours. Machine learning identified TCRß CDR3 signatures unique to each tumour model, and signatures associated with ICT response at various timepoints before or during ICT. Clonally expanded CD8+ T cells in responding tumours post ICT displayed effector T cell gene signatures and phenotype. An early burst of clonal expansion during ICT is associated with response, and we report unique dynamics in TCRß signatures associated with ICT response.


Assuntos
Inibidores de Checkpoint Imunológico , Linfócitos do Interstício Tumoral , Receptores de Antígenos de Linfócitos T alfa-beta , Animais , Inibidores de Checkpoint Imunológico/farmacologia , Inibidores de Checkpoint Imunológico/uso terapêutico , Receptores de Antígenos de Linfócitos T alfa-beta/genética , Receptores de Antígenos de Linfócitos T alfa-beta/metabolismo , Camundongos , Linfócitos do Interstício Tumoral/imunologia , Linfócitos do Interstício Tumoral/efeitos dos fármacos , Linfócitos do Interstício Tumoral/metabolismo , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/efeitos dos fármacos , Linfócitos T CD8-Positivos/metabolismo , Humanos , Camundongos Endogâmicos C57BL , Feminino
7.
Cancers (Basel) ; 16(7)2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38610954

RESUMO

Despite decades of research and the best up-to-date treatments, grade 4 Glioblastoma (GBM) remains uniformly fatal with a patient median overall survival of less than 2 years. Recent advances in immunotherapy have reignited interest in utilizing immunological approaches to fight cancer. However, current immunotherapies have so far not met the anticipated expectations, achieving modest results in their journey from bench to bedside for the treatment of GBM. Understanding the intrinsic features of GBM is of crucial importance for the development of effective antitumoral strategies to improve patient life expectancy and conditions. In this review, we provide a comprehensive overview of the distinctive characteristics of GBM that significantly influence current conventional therapies and immune-based approaches. Moreover, we present an overview of the immunotherapeutic strategies currently undergoing clinical evaluation for GBM treatment, with a specific emphasis on those advancing to phase 3 clinical studies. These encompass immune checkpoint inhibitors, adoptive T cell therapies, vaccination strategies (i.e., RNA-, DNA-, and peptide-based vaccines), and virus-based approaches. Finally, we explore novel innovative strategies and future prospects in the field of immunotherapy for GBM.

8.
Int Immunopharmacol ; 131: 111896, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38518596

RESUMO

CD155 is an immunoglobulin-like protein overexpressed in almost all the tumor cells, which not only promotes proliferation, adhesion, invasion, and migration of tumor cells, but also regulates immune responses by interacting with TIGIT, CD226 or CD96 receptors expressed on several immune cells, thereby modulating the functionality of these cellular subsets. As a novel immune checkpoint, the inhibition of CD155/TIGIT, either as a standalone treatment or in conjunction with other immune checkpoint inhibitors, has demonstrated efficacy in managing advanced solid malignancies. In this review, we summarize the intricate relationship between on tumor surface CD155 and its receptors, with further discussion on how they regulate the occurrence of tumor immune escape. In addition, novel therapeutic strategies and clinical trials targeting CD155 and its receptors are summarized, providing a strong rationale and way forward for the development of next-generation immunotherapies.


Assuntos
Neoplasias , Humanos , Neoplasias/terapia , Imunoterapia , Receptores Imunológicos/metabolismo , Receptores Virais/metabolismo
9.
Cell Oncol (Dordr) ; 47(4): 1375-1389, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38520647

RESUMO

BACKGROUND: Recent research underscores the pivotal role of immune checkpoints as biomarkers in colorectal cancer (CRC) therapy, highlighting the dynamics of resistance and response to immune checkpoint inhibitors. The impact of epigenetic alterations in CRC, particularly in relation to immune therapy resistance, is not fully understood. METHODS: We integrated a comprehensive dataset encompassing TCGA-COAD, TCGA-READ, and multiple GEO series (GSE14333, GSE37892, GSE41258), along with key epigenetic datasets (TCGA-COAD, TCGA-READ, GSE77718). Hierarchical clustering, based on Euclidean distance and Ward's method, was applied to 330 primary tumor samples to identify distinct clusters. The immune microenvironment was assessed using MCPcounter. Machine learning algorithms were employed to predict DNA methylation patterns and their functional enrichment, in addition to transcriptome expression analysis. Genomic mutation profiles and treatment response assessments were also conducted. RESULTS: Our analysis delineated a specific tumor cluster with CpG Island (CGI) methylation, termed the Demethylated Phenotype (DMP). DMP was associated with metabolic pathways such as oxidative phosphorylation, implicating increased ATP production efficiency in mitochondria, which contributes to tumor aggressiveness. Furthermore, DMP showed activation of the Myc target pathway, known for tumor immune suppression, and exhibited downregulation in key immune-related pathways, suggesting a tumor microenvironment characterized by diminished immunity and increased fibroblast infiltration. Six potential therapeutic agents-lapatinib, RDEA119, WH.4.023, MG.132, PD.0325901, and AZ628-were identified as effective for the DMP subtype. CONCLUSION: This study unveils a novel epigenetic phenotype in CRC linked to resistance against immune checkpoint inhibitors, presenting a significant step toward personalized medicine by suggesting epigenetic classifications as a means to identify ideal candidates for immunotherapy in CRC. Our findings also highlight potential therapeutic agents for the DMP subtype, offering new avenues for tailored CRC treatment strategies.


Assuntos
Neoplasias Colorretais , Metilação de DNA , Regulação Neoplásica da Expressão Gênica , Microambiente Tumoral , Humanos , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Neoplasias Colorretais/tratamento farmacológico , Microambiente Tumoral/genética , Metilação de DNA/genética , Ilhas de CpG/genética , Epigênese Genética , Análise por Conglomerados , Mutação/genética , Perfilação da Expressão Gênica , Inibidores de Checkpoint Imunológico/uso terapêutico , Inibidores de Checkpoint Imunológico/farmacologia
10.
Cancer Immunol Immunother ; 73(3): 57, 2024 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-38367056

RESUMO

Pancreatic ductal adenocarcinoma is a devastating disease characterized by an extreme resistance to current therapies, including immune checkpoint therapy. The limited success of immunotherapies can be attributed to a highly immunosuppressive pancreatic cancer microenvironment characterized by an extensive infiltration of immune suppressing myeloid cells. While there are several pathways through which myeloid cells contribute to immunosuppression, one important mechanism is the increased production of reactive oxygen species. Here, we evaluated the contribution of myeloperoxidase, a myeloid-lineage restricted enzyme and primary source of reactive oxygen species, to regulate immune checkpoint therapy response in preclinical pancreatic cancer models. We compared treatment outcome, immune composition and characterized myeloid cells using wild-type, myeloperoxidase-deficient, and myeloperoxidase inhibitor treated wild-type mice using established subcutaneous pancreatic cancer models. Loss of host myeloperoxidase and pharmacological inhibition of myeloperoxidase in combination with immune checkpoint therapy significantly delayed tumor growth. The tumor microenvironment and systemic immune landscape demonstrated significant decreases in myeloid cells, exhausted T cells and T regulatory cell subsets when myeloperoxidase was deficient. Loss of myeloperoxidase in isolated myeloid cell subsets from tumor-bearing mice resulted in decreased reactive oxygen species production and T cell suppression. These data suggest that myeloperoxidase contributes to an immunosuppressive microenvironment and immune checkpoint therapy resistance where myeloperoxidase inhibitors have the potential to enhance immunotherapy response. Repurposing myeloperoxidase specific inhibitors may provide a promising therapeutic strategy to expand therapeutic options for pancreatic cancer patients to include immunotherapies.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Animais , Humanos , Camundongos , Carcinoma Ductal Pancreático/tratamento farmacológico , Carcinoma Ductal Pancreático/metabolismo , Terapia de Imunossupressão , Imunoterapia/métodos , Células Mieloides , Neoplasias Pancreáticas/metabolismo , Peroxidase/uso terapêutico , Espécies Reativas de Oxigênio/uso terapêutico , Microambiente Tumoral
11.
Eur J Nucl Med Mol Imaging ; 51(6): 1582-1592, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38246910

RESUMO

PURPOSE: Programmed cell death protein ligand 1 (PD-L1) is a crucial biomarker for immunotherapy. However, nearly 70% of patients do not respond to PD-L1 immune checkpoint therapy. Accurate monitoring of PD-L1 expression and quantification of target binding during treatment are essential. In this study, a series of small-molecule radiotracers were developed to assess PD-L1 expression and direct immunotherapy. METHODS: Radiotracers of [68Ga]Ga-D-PMED, [68Ga]Ga-D-PEG-PMED, and [68Ga]Ga-D-pep-PMED were designed based on a 2-methyl-3-biphenyl methanol scaffold and successfully synthesized. Cellular experiments and molecular docking assays were performed to determine their specificity for PD-L1. PD-L1 status was investigated via positron emission tomography (PET) imaging in MC38 tumor models. PET imaging of [68Ga]Ga-D-pep-PMED was performed to noninvasively quantify PD-L1 blocking using an anti-mouse PD-L1 antibody (PD-L1 mAb). RESULTS: The radiosyntheses of [68Ga]Ga-D-PMED, [68Ga]Ga-D-PEG-PMED, and [68Ga]Ga-D-pep-PMED were achieved with radiochemical yields of 87 ± 6%, 82 ± 4%, and 79 ± 9%, respectively. In vitro competition assays demonstrated their high affinities (the IC50 values of [68Ga]Ga-D-PMED, [68Ga]Ga-D-PEG-PMED, and [68Ga]Ga-D-pep-PMED were 90.66 ± 1.24, 160.8 ± 1.35, and 51.6 ± 1.32 nM, respectively). At 120 min postinjection (p.i.) of the radiotracers, MC38 tumors displayed optimized tumor-to-muscle ratios for all radioligands. Owing to its hydrophilic modification, [68Ga]Ga-D-pep-PMED had the highest target-to-nontarget (T/NT) ratio of approximately 6.2 ± 1.2. Interestingly, the tumor/liver ratio was hardly affected by different concentrations of the inhibitor BMS202. We then evaluated the impacts of dose and time on accessible PD-L1 levels in the tumor during anti-mouse PD-L1 antibody treatment. The tumor uptake of [68Ga]Ga-D-pep-PMED significantly decreased with increasing PD-L1 mAb dose. Moreover, after 8 days of treatment with a single antibody, the uptake of [68Ga]Ga-D-pep-PMED in the tumor significantly increased but remained lower than that in the saline group. CONCLUSION: PET imaging with [68Ga]Ga-D-pep-PMED, a small-molecule radiotracer, is a promising tool for evaluating PD-L1 expression and quantifying the target blockade of PD-L1 to assist in the development of effective therapeutic regimens.


Assuntos
Acetamidas , Antígeno B7-H1 , Tomografia por Emissão de Pósitrons , Piridinas , Imunoterapia , Antígeno B7-H1/análise , Antígeno B7-H1/antagonistas & inibidores , Humanos , Animais , Camundongos , Linhagem Celular Tumoral , Células A549 , Compostos Organometálicos , Radioisótopos de Gálio , Acetamidas/química , Piridinas/química
12.
Cell Commun Signal ; 22(1): 89, 2024 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-38297380

RESUMO

The accumulation of unfolded or misfolded proteins in the endoplasmic reticulum (ER) causes ER stress and activates the unfolded protein response (UPR). As an adaptive cellular response to hostile microenvironments, such as hypoxia, nutrient deprivation, oxidative stress, and chemotherapeutic drugs, the UPR is activated in diverse cancer types and functions as a dynamic tumour promoter in cancer development; this role of the UPR indicates that regulation of the UPR can be utilized as a target for tumour treatment. T-cell exhaustion mainly refers to effector T cells losing their effector functions and expressing inhibitory receptors, leading to tumour immune evasion and the loss of tumour control. Emerging evidence suggests that the UPR plays a crucial role in T-cell exhaustion, immune evasion, and resistance to immunotherapy. In this review, we summarize the molecular basis of UPR activation, the effect of the UPR on immune evasion, the emerging mechanisms of the UPR in chemotherapy and immunotherapy resistance, and agents that target the UPR for tumour therapeutics. An understanding of the role of the UPR in immune evasion and therapeutic resistance will be helpful to identify new therapeutic modalities for cancer treatment. Video Abstract.


Assuntos
Resistencia a Medicamentos Antineoplásicos , Neoplasias , Humanos , Resposta a Proteínas não Dobradas , Estresse do Retículo Endoplasmático , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Imunoterapia , Microambiente Tumoral
13.
J Clin Biochem Nutr ; 74(1): 57-62, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38292119

RESUMO

Immune checkpoint therapy has been shown to be an effective therapy for many types of tumors. Much attention has been paid to the development of an effector target would be helpful for immune checkpoint therapy. Genistein has been shown to have an anti-tumor effect both in vitro and in vivo. In this study, we examined the effect of genistein on immune checkpoint blockade therapy against B16F1 melanoma tumors. Mice treated with genistein or anti-programmed death (PD)-1 antibody showed a significant decrease in tumor growth. However, treatment with genistein had no effect on or attenuated the efficacy of immune checkpoint therapy. The percentages of T cell receptor (TCR)ß+CD4+ and TCRß+CD8+ cells and the concentrations of interferon-γ and tumor necrosis factor-α in tumor tissue were not different among the experimental groups. A significant difference was also not found in microbe composition. Interestingly, a high expression level of PD-ligand (L)1 closely reflected the outcome of therapy by genistein or anti-PD-1 antibody. The study showed that a combination of genistein treatment does not improve the effect of immune blockade therapy. It also showed that a high PD-L1 expression level in tumors is a good prediction maker for the outcome of tumor therapy.

14.
Oral Dis ; 30(7): 4220-4230, 2024 10.
Artigo em Inglês | MEDLINE | ID: mdl-38178608

RESUMO

OBJECTIVE: Immune checkpoint inhibitors (ICI) are recommended as the first-line therapy for platinum-refractory head and neck squamous cell carcinoma (HNSCC), a disease with a poor prognosis. However, biomarkers in this situation are rare. The objective was to identify radiomic features-associated biomarkers to guide the prognosis and treatment opinions in the era of ICI. METHODS: A total of 31 platinum-refractory HNSCC patients were retrospectively enrolled. Of these, 65.5% (20/31) received ICI-based therapy and 35.5% (11/31) did not. Radiomic features of the primary site at the onset of recurrent metastatic (R/M) status were extracted. Prognostic and predictive radiomic biomarkers were analysed. RESULTS: The median overall survival from R/M status (R/M OS) was 9.6 months. Grey-level co-occurrence matrix-associated texture features were the most important in identifying the patients with or without 9-month R/M death. A radiomic risk-stratification model was established and equally separated the patients into high-, intermittent- and lower-risk groups (1-year R/M death rate, 100.0% vs. 70.8% vs. 27.1%, p = 0.001). Short-run high grey-level emphasis (SRHGE) was more suitable than programmed death ligand 1 (PD-L1) expression in selecting whether patients received ICI-based therapy. CONCLUSIONS: Radiomic features were effective prognostic and predictive biomarkers. Future studies are warranted.


Assuntos
Neoplasias de Cabeça e Pescoço , Inibidores de Checkpoint Imunológico , Carcinoma de Células Escamosas de Cabeça e Pescoço , Humanos , Masculino , Feminino , Pessoa de Meia-Idade , Idoso , Carcinoma de Células Escamosas de Cabeça e Pescoço/diagnóstico por imagem , Carcinoma de Células Escamosas de Cabeça e Pescoço/tratamento farmacológico , Carcinoma de Células Escamosas de Cabeça e Pescoço/terapia , Inibidores de Checkpoint Imunológico/uso terapêutico , Neoplasias de Cabeça e Pescoço/diagnóstico por imagem , Neoplasias de Cabeça e Pescoço/tratamento farmacológico , Neoplasias de Cabeça e Pescoço/terapia , Estudos Retrospectivos , Biomarcadores Tumorais , Prognóstico , Imunoterapia , Resistencia a Medicamentos Antineoplásicos , Adulto , Idoso de 80 Anos ou mais , Antígeno B7-H1/antagonistas & inibidores , Radiômica
15.
Aging (Albany NY) ; 15(23): 13753-13775, 2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-38048211

RESUMO

PURPOSE: Immune checkpoint therapy (ICT) provides a new idea for the treatment of advanced clear cell renal cell carcinoma (ccRCC), which can bring significant benefits to patients. However, the clinical application of ICT is limited because of the lack of predictive biomarkers to select potential responders. This study aims to propose a new biomarker to predict the response to Nivolumab in patients with ccRCC. MATERIALS AND METHODS: The genes that significantly improve the prognosis of ccRCC were retrieved from The Cancer Genome Atlas (TCGA) database. The genomic and clinical data were from patients that had been registered in prospective clinical trials (CheckMate 009, CheckMate 010 and CheckMate 025). TCGA, Gene Expression Omnibus (GEO), and The Human Protein Atlas database were used to analyze the gene and protein expression of WD repeat-containing protein 72 (WDR72) in ccRCC. Gene Ontology (GO) & The Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Set Enrichment Analysis (GSEA) were performed to dig relevant mechanisms of WDR72. Single sample gene set enrichment analysis (ssGSEA) was conducted to evaluate the role of WDR72 in immune infiltration. Cell proliferation assay, FAO and ATP quantification were used to explore and verify the molecular mechanisms. The expression of WDR72, FOXP3, CD8, and CPT1A was examined by IHC in 20 advanced ccRCC tissue samples at the Urology Department of our hospital. The MethSurv was used to identify PBRM1 and WDR72 gene methylation and its effect on prognosis of ccRCC. RESULTS: WDR72 is the most significant gene for improving overall survival (OS) in ccRCC. In all three checkmates, OS and progression free survival (PFS) were found to be significantly higher in WDR72 high expression group than that in WDR72 low expression group (P=0.040 and P=0.012, respectively), and similar conclusions could be drawn from the PBRM1-mutation (MUT) compared with the PBRM1-wildtype (WT) (P=0.007 and P=0.006, respectively). What's more, high expression of WDR72 plus PBRM1-MUT as a combinatorial biomarker showed improved OS (HR=0.388, P=0.0026) and PFS (HR=0.39, P=0.0066) compared to low expression of WDR72 plus PBRM1-WT. Functional enrichment analysis showed that WDR72 was closely positively related to fatty acid degradation and fatty acid beta oxidation pathway in ccRCC. In vitro experiments showed that high expression of WDR72 can promote fatty acids oxidation and inhibit the proliferation of ccRCC cells. Immune analysis revealed that WDR72 high expression was associated with decreased infiltration of Treg cells and low ssGSEA score of check-point. IHC results showed that WDR72 was negatively correlated with FOXP3 expression (r=-0.506, P=0.023) and positively correlated with CPT1A expression (r=0.529, P=0.017). CONCLUSIONS: The present study indicated that high expression of WDR72 may indicate a good prognosis of patients treated with Nivolumab and WDR72 expression combined with PBRM1 mutation could be more persuasive to predict the response for ICT in ccRCC patients.


Assuntos
Carcinoma de Células Renais , Carcinoma , Neoplasias Renais , Humanos , Biomarcadores Tumorais/genética , Prognóstico , Nivolumabe , Carcinoma de Células Renais/tratamento farmacológico , Carcinoma de Células Renais/genética , Estudos Prospectivos , Fatores de Transcrição Forkhead , Ácidos Graxos , Neoplasias Renais/tratamento farmacológico , Neoplasias Renais/genética , Proteínas de Ligação a DNA , Fatores de Transcrição/genética , Proteínas
16.
Oncologist ; 2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-38035767

RESUMO

BACKGROUND: Metastatic RCC with sarcomatoid and/or rhabdoid (S/R) dedifferentiation is an aggressive disease associated with improved response to immune checkpoint therapy (ICT). The outcomes of patients treated with VEGFR-targeted therapies (TT) following ICT progression have not been investigated. PATIENTS AND METHODS: Retrospective review of 57 patients with sarcomatoid (S), rhabdoid (R), or sarcomatoid plus rhabdoid (S + R) dedifferentiation who received any TT after progression on ICT at an academic cancer center. Clinical endpoints of interest included time on TT, overall survival (OS) from initiation of TT, and objective response rate (ORR) by RECIST version 1.1. Multivariable models adjusted for epithelial histology, IMDC risk, prior VEGFR TT, and inclusion of cabozantinib in the post-ICT TT regimen. RESULTS: 29/57 patients had S dedifferentiation and 19 had R dedifferentiation. The most frequently used TT was cabozantinib (43.9%) followed by selective VEGFR TT (22.8%). The median time on TT was 6.4 months for all, 6.1 months for those with S dedifferentiation, 15.6 months for R dedifferentiation, and 6.1 months for S + R dedifferentiation. Median OS from initiation of TT was 24.9 months for the entire cohort, and the ORR was 20.0%. Patients with R dedifferentiation had significantly longer time on TT than those with S dedifferentiation (HR 0.44, 95% CI, 0.21-0.94). IMDC risk was associated with OS. CONCLUSIONS: A subset of patients with S/R dedifferentiation derive clinical benefit from TT after they have progressive disease on ICT. Patients with R dedifferentiation appeared to derive more benefit from TT than those with S dedifferentiation.

17.
Front Oncol ; 13: 1193503, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37901336

RESUMO

This article presents a case of a 62-year-old Vietnamese woman with a history of Lynch syndrome (LS), who developed lung adenocarcinoma with EGFR L858R mutation. LS is an autosomal dominant cancer predisposition syndrome caused by a pathogenic germline variant in DNA mismatch repair genes, often leading to microsatellite instability. While LS is primarily associated with gastrointestinal, endometrial, ovarian, and urologic tract cancers, lung cancer accounts for less than 1% of LS-related cancers, with only six cases of LS-related lung cancer previously reported in the literature. The patient underwent multiple lines of treatment for her lung adenocarcinoma, including tyrosine kinase inhibitors, stereotactic body radiation therapy, pemetrexed and pembrolizumab, amivantamab, and fam-trastuzumab deruxtecan, but all resulted in only a partial response followed by a progressive disease. This case highlights the complex interplay of genetic cancer predisposition syndromes and the development of spontaneous driver mutations in the disease course and the subsequent management of tumors arising in these patients.

19.
20.
Int J Mol Sci ; 24(14)2023 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-37511510

RESUMO

Amino acid metabolism has been implicated in tumorigenesis and tumor progression. Alterations in intracellular and extracellular metabolites associated with metabolic reprogramming in cancer have profound effects on gene expression, cell differentiation, and tumor immune microenvironment. However, the prognostic significance of amino acid metabolism in head and neck cancer remains to be further investigated. In this study, we identified 98 differentially expressed genes related to amino acid metabolism in head and neck cancer in The Cancer Genome Atlas. Using batch univariate Cox regression and Lasso regression, we extracted nine amino acid metabolism-related genes. Based on that, we developed the amino acid metabolism index. The prognostic value of this index was validated in two Gene Expression Omnibus cohorts. The results show that this model can help predict tumor recurrence and prognosis. The infiltration of immune cells in the tumor microenvironment was analyzed, and it was discovered that the high index is associated with an immunosuppressive microenvironment. In addition, this study demonstrated the impact of the amino acid metabolism index on clinical indicators, survival of patients with head and neck cancer, and the prediction of treatment response to immune checkpoint inhibitors. We conducted several cell experiments and demonstrated that epigenetic drugs could affect the index and enhance tumor immunity. In conclusion, our study demonstrates that the index not only has important prognostic value in head and neck cancer patients but also facilitates patient stratification for immunotherapy.


Assuntos
Neoplasias de Cabeça e Pescoço , Recidiva Local de Neoplasia , Humanos , Prognóstico , Neoplasias de Cabeça e Pescoço/genética , Carcinogênese , Imunossupressores , Aminoácidos , Microambiente Tumoral/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...