Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Adv Sci (Weinh) ; 7(12): 2000443, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32596127

RESUMO

Core-shell structured magnetic mesoporous polymer or carbon-based microspheres not only possess the combined merits of magnetic particles and stable mesoporous shell but also provide various organic functional groups for further modification and immobilization of active sites, thus opening up more possibility for various applications. Herein, a bottom-up soft-templating strategy is developed to controllably synthesize core-shell magnetic mesoporous polydopamine microspheres (MMP) and their derivative magnetic mesoporous carbon (MMC) microspheres via an amphiphilic block copolymer-directed interface assembly and polymerization (denoted as abc-DIAP) approach. The obtained uniform MMP microspheres have a well-defined structure consisting of magnetic core, silica middle layer and mesoporous PDA shell, uniform mesopores of 11.9 nm, high specific surface areas (235.6 m2 g-1) and rich functional groups. They show fast magnetic separation speed and superior performance in selective adsorption of Cyt.C from complex biosample solutions. Moreover, they can be in situ converted into core-shell magnetic mesoporous carbon (MMC) for efficient in-pore immobilization of ultrafine Au nanoparticles for high-efficiency catalytic epoxidation of styrene with high conversion (88.6%) and selectivity (90.1%) toward styrene oxide.

2.
ACS Appl Mater Interfaces ; 7(9): 5312-9, 2015 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-25647306

RESUMO

A confined interface coassembly coating strategy based on three-dimensional (3-D) ordered macroporous silica as the nanoreactor was demonstrated for the designed fabrication of novel 3-D ordered arrays of core-shell microspheres consisting of Fe3O4 cores and ordered mesoporous carbon shells. The obtained 3-D ordered arrays of Fe3O4@mesoporous carbon materials possess two sets of periodic structures at both mesoscale and submicrometer scale, high surface area of 326 m(2)/g, and large mesopore size of 19 nm. Microwave absorption test reveals that the obtained materials have excellent microwave absorption performances with maximum reflection loss of up to -57 dB at 8 GHz, and large absorption bandwidth (7.3-13.7 GHz, < -10 dB), due to the combination of the large magnetic loss from iron oxides, the strong dielectric loss from carbonaceous shell, and the strong reflection and scattering of electromagnetic waves of the ordered structures of the mesopores and 3-D arrays of core-shell microspheres.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...