Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Viruses ; 16(6)2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38932230

RESUMO

Type I interferons (IFN-Is) are pivotal in innate immunity against human immunodeficiency virus I (HIV-1) by eliciting the expression of IFN-stimulated genes (ISGs), which encompass potent host restriction factors. While ISGs restrict the viral replication within the host cell by targeting various stages of the viral life cycle, the lesser-known IFN-repressed genes (IRepGs), including RNA-binding proteins (RBPs), affect the viral replication by altering the expression of the host dependency factors that are essential for efficient HIV-1 gene expression. Both the host restriction and dependency factors determine the viral replication efficiency; however, the understanding of the IRepGs implicated in HIV-1 infection remains greatly limited at present. This review provides a comprehensive overview of the current understanding regarding the impact of the RNA-binding protein families, specifically the two families of splicing-associated proteins SRSF and hnRNP, on HIV-1 gene expression and viral replication. Since the recent findings show specifically that SRSF1 and hnRNP A0 are regulated by IFN-I in various cell lines and primary cells, including intestinal lamina propria mononuclear cells (LPMCs) and peripheral blood mononuclear cells (PBMCs), we particularly discuss their role in the context of the innate immunity affecting HIV-1 replication.


Assuntos
Infecções por HIV , HIV-1 , Imunidade Inata , Replicação Viral , HIV-1/genética , HIV-1/fisiologia , Humanos , Infecções por HIV/virologia , Infecções por HIV/genética , Infecções por HIV/imunologia , Regulação Viral da Expressão Gênica , Fatores de Processamento de RNA/metabolismo , Fatores de Processamento de RNA/genética , Interferon Tipo I/metabolismo , Interferon Tipo I/genética , Interações Hospedeiro-Patógeno/imunologia , Interações Hospedeiro-Patógeno/genética , Interferons/metabolismo , Interferons/genética , Interferons/imunologia , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo
2.
J Med Virol ; 96(6): e29730, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38860570

RESUMO

Hantaan virus (HTNV) infection can cause hemorrhagic fever with renal syndrome (HFRS) in humans, and currently, there are no long-standing protective vaccines or specific antivirals available. Guanylate-binding protein 1 (GBP1) is an interferon-stimulated gene that defends against various pathogen infections. However, the function of GBP1 in HTNV infection remains unknown. Here, we describe how GBP1 prevents HTNV infection by obstructing virus entry. We found that HTNV infection induced GBP1 expression and that overexpression of GBP1 inhibited HTNV infection, while knockout of GBP1 had the opposite effect. Interestingly, GBP1 did not affect interferon (IFN) signaling during HTNV infection. Instead, GBP1 prevented HTNV from entering cells through clathrin-mediated endocytosis (CME). We also discovered that GBP1 specifically interacted with actin but not dynamin 2 (DNM2) and made it difficult for DNM2 to be recruited by actin, which may account for the suppression of CME during HTNV infection. These findings establish an antiviral role for GBP1 in inhibiting HTNV infection and help us better understand how GBP1 regulates HTNV entry and could potentially aid in developing treatments for this virus.


Assuntos
Endocitose , Proteínas de Ligação ao GTP , Vírus Hantaan , Internalização do Vírus , Humanos , Actinas/metabolismo , Linhagem Celular , Dinamina II/metabolismo , Dinamina II/genética , Proteínas de Ligação ao GTP/genética , Proteínas de Ligação ao GTP/metabolismo , Vírus Hantaan/fisiologia , Células HEK293 , Febre Hemorrágica com Síndrome Renal/virologia , Interações Hospedeiro-Patógeno
3.
J Virol ; 98(5): e0009324, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38591899

RESUMO

Feline parvovirus (FPV) infection is highly fatal in felines. NS1, which is a key nonstructural protein of FPV, can inhibit host innate immunity and promote viral replication, which is the main reason for the severe pathogenicity of FPV. However, the mechanism by which the NS1 protein disrupts host immunity and regulates viral replication is still unclear. Here, we identified an FPV M1 strain that is regulated by the NS1 protein and has more pronounced suppression of innate immunity, resulting in robust replication. We found that the neutralization titer of the FPV M1 strain was significantly lower than that of the other strains. Moreover, FPV M1 had powerful replication ability, and the FPV M1-NS1 protein had heightened efficacy in repressing interferon-stimulated genes (ISGs) expression. Subsequently, we constructed an FPV reverse genetic system, which confirmed that the N588 residue of FPV M1-NS1 protein is a key amino acid that bolsters viral proliferation. Recombinant virus containing N588 also had stronger ability to inhibit ISGs, and lower ISGs levels promoted viral replication and reduced the neutralization titer of the positive control serum. Finally, we confirmed that the difference in viral replication was abolished in type I IFN receptor knockout cell lines. In conclusion, our results demonstrate that the N588 residue of the NS1 protein is a critical amino acid that promotes viral proliferation by increasing the inhibition of ISGs expression. These insights provide a reference for studying the relationship between parvovirus-mediated inhibition of host innate immunity and viral replication while facilitating improved FPV vaccine production.IMPORTANCEFPV infection is a viral infectious disease with the highest mortality rate in felines. A universal feature of parvovirus is its ability to inhibit host innate immunity, and its ability to suppress innate immunity is mainly accomplished by the NS1 protein. In the present study, FPV was used as a viral model to explore the mechanism by which the NS1 protein inhibits innate immunity and regulates viral replication. Studies have shown that the FPV-NS1 protein containing the N588 residue strongly inhibits the expression of host ISGs, thereby increasing the viral proliferation titer. In addition, the presence of the N588 residue can increase the proliferation titer of the strain 5- to 10-fold without affecting its virulence and immunogenicity. In conclusion, our findings provide new insights and guidance for studying the mechanisms by which parvoviruses suppress innate immunity and for developing high-yielding FPV vaccines.


Assuntos
Vírus da Panleucopenia Felina , Proteínas não Estruturais Virais , Replicação Viral , Animais , Gatos , Linhagem Celular , Vírus da Panleucopenia Felina/genética , Vírus da Panleucopenia Felina/imunologia , Imunidade Inata , Mutação , Infecções por Parvoviridae/virologia , Infecções por Parvoviridae/imunologia , Proteínas não Estruturais Virais/genética , Proteínas não Estruturais Virais/metabolismo , Proteínas não Estruturais Virais/imunologia
4.
Subcell Biochem ; 106: 365-385, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38159234

RESUMO

RNA is a central molecule in the life cycle of viruses, acting not only as messenger (m)RNA but also as a genome. Given these critical roles, it is not surprising that viral RNA is a hub for host-virus interactions. However, the interactome of viral RNAs remains largely unknown. This chapter discusses the importance of cellular RNA-binding proteins in virus infection and the emergent approaches developed to uncover and characterise them.


Assuntos
Interações entre Hospedeiro e Microrganismos , RNA Viral , RNA Viral/genética , RNA Viral/metabolismo , Interações entre Hospedeiro e Microrganismos/genética , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Interações Hospedeiro-Patógeno/genética , Replicação Viral
5.
Front Immunol ; 14: 1297519, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37828983

RESUMO

[This corrects the article DOI: 10.3389/fimmu.2023.1224516.].

6.
Cancers (Basel) ; 15(17)2023 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-37686559

RESUMO

African-American (AA)/Black hepatocellular carcinoma (HCC) patients have increased incidence and decreased survival rates compared to non-Hispanic (White) patients, the underlying molecular mechanism of which is not clear. Analysis of existing RNA-sequencing (RNA-seq) data in The Cancer Genome Atlas (TCGA) and in-house RNA-sequencing of 14 White and 18 AA/Black HCC patients revealed statistically significant activation of type I interferon (IFN-I) signaling pathway in AA/Black patients. A four-gene signature of IFN-stimulated genes (ISGs) showed increased expression in AA/Black HCC tumors versus White. HCC is a disease of chronic inflammation, and IFN-Is function as pro-inflammatory cytokines. We tested efficacy of ginger extract (GE), a dietary compound known for anti-inflammatory properties, on HCC cell lines derived from White (HepG2), AA/Black (Hep3B and O/20) and Asian (HuH-7) patients. GE exhibited a significantly lower IC50 on Hep3B and O/20 cells than on HepG2 and HuH-7 cells. The GE treatment inhibited the activation of downstream mediators of IFN-I signaling pathways and expression of ISGs in all four HCC cells. Our data suggest that ginger can potentially attenuate IFN-I-mediated signaling pathways in HCC, and cells from AA/Black HCC patients may be more sensitive to ginger. AA/Black HCC patients might benefit from a holistic diet containing ginger.

7.
Genome Med ; 15(1): 54, 2023 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-37475040

RESUMO

BACKGROUND: The excessive inflammatory responses provoked by SARS-CoV-2 infection are critical factors affecting the severity and mortality of COVID-19. Previous work found that two adjacent co-occurring mutations R203K and G204R (KR) on the nucleocapsid (N) protein correlate with increased disease severity in COVID-19 patients. However, links with the host immune response remain unclear. METHODS: Here, we grouped nasopharyngeal swab samples of COVID-19 patients into two cohorts based on the presence and absence of SARS-CoV-2 nucleocapsid KR mutations. We performed nasopharyngeal transcriptome analysis of age, gender, and ethnicity-matched COVID-19 patients infected with either SARS-CoV-2 with KR mutations in the N protein (KR patients n = 39) or with the wild-type N protein (RG patients n = 39) and compared to healthy controls (n = 34). The impact of KR mutation on immune response was further characterized experimentally by transcriptomic and proteomic profiling of virus-like-particle (VLP) incubated cells. RESULTS: We observed markedly elevated expression of proinflammatory cytokines, chemokines, and interferon-stimulated (ISGs) genes in the KR patients compared to RG patients. Using nasopharyngeal transcriptome data, we found significantly higher levels of neutrophils and neutrophil-to-lymphocyte (NLR) ratio in KR patients than in the RG patients. Furthermore, transcriptomic and proteomic profiling of VLP incubated cells confirmed a similar hyper-inflammatory response mediated by the KR variant. CONCLUSIONS: Our data demonstrate an unforeseen connection between nucleocapsid KR mutations and augmented inflammatory immune response in severe COVID-19 patients. These findings provide insights into how mutations in SARS-CoV-2 modulate host immune output and pathogenesis and may contribute to more efficient therapeutics and vaccine development.


Assuntos
COVID-19 , COVID-19/imunologia , Inflamação/imunologia , Humanos , Células HEK293 , SARS-CoV-2/genética , Mutação , Índice de Gravidade de Doença
8.
Protein Expr Purif ; 211: 106339, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37467825

RESUMO

Human interferon alpha 2a (IFNα2a) is a secreted glycoprotein that exerts a wide spectrum of biological effects, such as triggering of antiviral, antitumor and immunosuppressive responses. IFNα2a is used as pharmaceutical polypeptide in chronic hepatitis C virus (HCV) infection, chronic myelogenous leukemia, advanced renal cell carcinoma, and metastatic malignant melanoma. So far, the pharmaceutical polypeptide of this cytokine is produced in prokaryotic expression systems (E. coli). Here we report the expression and purification of recombinant human IFNα2a in the methylotrophic yeast Pichia pastoris. The cDNA encoding for human IFNα2a, modified to bear the P. pastoris codon bias, was cloned into the pPinkα-HC vector in order to be expressed as a secreted protein upon induction. Proper expression and secretion of recombinant human IFNα2a (approximately 19 kDa) was confirmed by PCR-sequencing, SDS-PAGE and Western blot analysis following methanol-induced expression in a number of individual transformed strains. Purification of the recombinant protein was performed by affinity chromatography, achieving a robust yield of purified active form. The purified recombinant protein showed an impressive stability to thermal denaturation as observed by Differential Scanning Fluorimetry. The biological activity of the P. pastoris-produced IFNα2a was confirmed in A549 and HT29 cells by monitoring transcriptional up-regulation of a panel of known interferon-stimulated genes (ISGs). Our results document that the P. pastoris expression system is a suitable system for producing biologically functional IFNα2a in a secreted form.


Assuntos
Hepatite C Crônica , Humanos , Escherichia coli/genética , Escherichia coli/metabolismo , Interferon-alfa/genética , Interferon-alfa/farmacologia , Pichia/genética , Pichia/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/farmacologia
9.
Front Immunol ; 14: 1224516, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37503349

RESUMO

Insulin-like growth factor 2 mRNA-binding proteins (IGF2BP1, IGF2BP2, and IGF2BP3) are a family of RNA-binding proteins that play an essential role in the development and disease by regulating mRNA stability and translation of critical regulators of cell division and metabolism. Genetic and chemical inhibition of these proteins slows down cancer cell proliferation, decreases invasiveness, and prolongs life span in a variety of animal models. The role of RNA-binding proteins in the induction of tissues' immunogenicity is increasingly recognized, but, the impact of the IGF2BPs family of proteins on the induction of innate and adaptive immune responses in cancer is not fully understood. Here we report that downregulation of IGF2BP1, 2, and 3 expression facilitates the expression of interferon beta-stimulated genes. IGF2BP1 has a greater effect on interferon beta and gamma signaling compared to IGF2BP2 and IGF2BP3 paralogs. We demonstrate that knockdown or knockout of IGF2BP1, 2, and 3 significantly potentiates inhibition of cell growth induced by IFNß and IFNγ. Mouse melanoma cells with Igf2bp knockouts demonstrate increased expression of MHC I (H-2) and induce intracellular Ifn-γ expression in syngeneic T-lymphocytes in vitro. Increased immunogenicity, associated with Igf2bp1 inhibition, "inflames" mouse melanoma tumors microenvironment in SM1/C57BL/6 and SW1/C3H mouse models measured by a two-fold increase of NK cells and tumor-associated myeloid cells. Finally, we demonstrate that the efficiency of anti-PD1 immunotherapy in the mouse melanoma model is significantly more efficient in tumors that lack Igf2bp1 expression. Our retrospective data analysis of immunotherapies in human melanoma patients indicates that high levels of IGF2BP1 and IGF2BP3 are associated with resistance to immunotherapies and poor prognosis. In summary, our study provides evidence of the role of IGF2BP proteins in regulating tumor immunogenicity and establishes those RBPs as immunotherapeutic targets in cancer.


Assuntos
Melanoma , Microambiente Tumoral , Animais , Camundongos , Humanos , Estudos Retrospectivos , Camundongos Endogâmicos C3H , Camundongos Endogâmicos C57BL , Proteínas de Ligação a RNA/metabolismo , Imunidade
10.
Int J Mol Sci ; 24(6)2023 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-36982532

RESUMO

Deeply understanding virus-host interactions is a prerequisite for developing effective strategies to control frequently emerging infectious diseases, which have become a serious challenge for global public health. The type I interferon (IFN)-mediated JAK/STAT pathway is well known for playing an essential role in host antiviral immunity, but the exact regulatory mechanisms of various IFN-stimulated genes (ISGs) are not yet fully understood. We herein reported that SerpinA5, as a novel ISG, played a previously unrecognized role in antiviral activity. Mechanistically, SerpinA5 can upregulate the phosphorylation of STAT1 and promote its nuclear translocation, thus effectively activating the transcription of IFN-related signaling pathways to impair viral infections. Our data provide insights into SerpinA5-mediated innate immune signaling during virus-host interactions.


Assuntos
Antivirais , Janus Quinases , Antivirais/farmacologia , Imunidade Inata , Janus Quinases/metabolismo , Fosforilação , Transdução de Sinais , Fatores de Transcrição STAT/metabolismo , Fator de Transcrição STAT1/metabolismo , Interferon Tipo I/metabolismo , Transporte Ativo do Núcleo Celular
11.
Viruses ; 16(1)2023 12 31.
Artigo em Inglês | MEDLINE | ID: mdl-38257774

RESUMO

Porcine epidemic diarrhea virus (PEDV) and porcine deltacoronavirus (PDCoV) are the two most prevalent swine enteric coronaviruses worldwide. They commonly cause natural coinfections, which worsen as the disease progresses and cause increased mortality in piglets. To better understand the transcriptomic changes after PEDV and PDCoV coinfection, we compared LLC porcine kidney (LLC-PK) cells infected with PEDV and/or PDCoV and evaluated the differential expression of genes by transcriptomic analysis and real-time qPCR. The antiviral efficacy of interferon-stimulated gene 20 (ISG20) against PDCoV and PEDV infections was also assessed. Differentially expressed genes (DEGs) were detected in PEDV-, PDCoV-, and PEDV + PDCoV-infected cells at 6, 12, and 24 h post-infection (hpi), and at 24 hpi, the number of DEGs was the highest. Furthermore, changes in the expression of interferons, which are mainly related to apoptosis and activation of the host innate immune pathway, were found in the PEDV and PDCoV infection and coinfection groups. Additionally, 43 ISGs, including GBP2, IRF1, ISG20, and IFIT2, were upregulated during PEDV or PDCoV infection. Furthermore, we found that ISG20 significantly inhibited PEDV and PDCoV infection in LLC-PK cells. The transcriptomic profiles of cells coinfected with PEDV and PDCoV were reported, providing reference data for understanding the host response to PEDV and PDCoV coinfection.


Assuntos
Coinfecção , Vírus da Diarreia Epidêmica Suína , Animais , Suínos , Vírus da Diarreia Epidêmica Suína/genética , Coinfecção/veterinária , Deltacoronavirus/genética , Perfilação da Expressão Gênica , Interferons/genética
12.
Animals (Basel) ; 12(22)2022 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-36428296

RESUMO

The objective of this study was to analyze interferon-stimulated genes (ISGs) and interferon tau (IFNt) gene expression in peripheral blood leukocytes during the peri-implantation period and until 40 days of pregnancy in buffalo cows. Relationships were also examined between the expression of ISGs and IFNt and pregnancy-associated glycoproteins (PAGs) peripheral plasma concentration. Buffalo cows were synchronized and artificially inseminated (d 0). Blood samples were collected on days 0, 18, 28 and 40 after artificial insemination (AI) for peripheral blood mononuclear cells (PBMCs) and polymorphonuclear leukocytes (PMNs) isolation and PAGs radioimmunoassay analysis. The study was carried out on 21 buffalo cows divided ex post into Pregnant (n = 12) and Non-pregnant (n = 9) groups. Steady state levels of OAS1, MX2, ISG15 and IFNt mRNA were measured by RT-qPCR and their estimated marginal means (p < 0.01 for all) were higher in pregnant than non-pregnant buffaloes, both in PBMCs and PMNs. In PBMCs, pairwise comparisons showed that OAS1 and MX2 expressions differed between pregnant and non-pregnant buffaloes on all the days of observation (p < 0.001), while significant differences in ISG15 and IFNt started from day 28 post-AI (p < 0.05). In PMNs, ISG15 expression differed between groups only at days 18 and 28 (p < 0.001), while comparisons were always significant for IFNt (p < 0.05). The expression of all genes, except ISG15 as determined in PMNs, was positively associated with PAGs plasma concentrations (p < 0.05). This work showed a significant increase in ISGs and IFNt expressions in PBMCs and PMNs in buffalo during the peri-implantation period and early pregnancy, and their correlation with PAGs plasma concentration.

13.
Heliyon ; 8(11): e11724, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36415751

RESUMO

There is emerging evidence that age-dependent differences in susceptibility to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) correlate with stronger innate immune response in the upper respiratory tract in children compared to adults. The efficient induction of interferon (IFN) alpha and beta (α and ß) signaling, and interferon-stimulated genes (ISGs) is fundamental to the host antiviral response. In-silico transcriptomic analyses was conducted to determine the expression levels of IFN α/ß pathway genes as well as 524 human ISGs in upper and lower airways of children and adults at baseline and post respiratory infections including coronavirus disease 2019 (COVID-19). To validate our in-silico analysis, we conducted qRT-PCR to measure ISGs levels in children and adult's nasal epithelial samples. At baseline, children had significantly higher levels of IFN α/ß and ISGs genes compared to adults. More distinction was also seen in bronchial compared to nasal basal levels. Children nasal epithelial cells exhibited superior antiviral IFN α/ß and associated ISGs response following ex-vivo poly (I:C) treatment model, and in clinical samples of SARS-CoV-2 infected patients. This was also confirmed in nasal epithelial samples using qRT-PCR validation. No gender-based difference in type I IFN levels across both age groups were observed. Understanding the biological basis for children resistance against severe COVID-19 is a challenge that has substantial clinical importance. More mechanistic studies are needed to carefully quantify how much of early IFN levels is needed to bypass the viral evasion mechanism and prevent its further replication and dissemination to lower airways and the rest of the body.

14.
Virol Sin ; 37(4): 521-530, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35513266

RESUMO

ISG20 is an interferon-inducible exonuclease that inhibits virus replication. Although ISG20 is thought to degrade viral RNA, the antiviral mechanism and specificity of ISG20 remain unclear. In this study, the antiviral role of ovine ISG20 (oISG20) in bluetongue virus â€‹(BTV) infection was investigated. It was found that BTV infection up-regulated the transcription of ovine ISG20 (oISG20) in a time- and BTV multiplicity of infection (MOI)-dependent manner. Overexpression of oISG20 suppressed the production of BTV genome, proteins, and virus titer, whereas the knockdown of oISG20 increased viral replication. oISG20 was found to co-localize with BTV proteins VP4, VP5, VP6, and NS2, but only directly interacted with VP4. Exonuclease defective oISG20 significantly decreased the inhibitory effect on BTV replication. In addition, the interaction of mutant oISG20 and VP4 was weakened, suggesting that binding to VP4 was associated with the inhibition of BTV replication. The present data characterized the anti-BTV effect of oISG20, and provides a novel clue for further exploring the inhibition mechanism of double-stranded RNA virus by ISG20.


Assuntos
Vírus Bluetongue , Bluetongue , Animais , Antivirais/farmacologia , Vírus Bluetongue/genética , Vírus Bluetongue/metabolismo , Exonucleases/genética , Exonucleases/metabolismo , Exonucleases/farmacologia , Ovinos , Replicação Viral
15.
Front Immunol ; 13: 844657, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35401515

RESUMO

Porcine epidemic diarrhea (PED) and transmissible gastroenteritis (TGE) caused by porcine epidemic diarrhea virus (PEDV) and transmissible gastroenteritis virus (TGEV) are two highly contagious intestinal diseases in the swine industry worldwide. Notably, coinfection of TGEV and PEDV is common in piglets with diarrhea-related diseases. In this study, intestinal porcine epithelial cells (IPEC-J2) were single or coinfected with PEDV and/or TGEV, followed by the comparison of differentially expressed genes (DEGs), especially interferon-stimulated genes (ISGs), between different groups via transcriptomics analysis and real-time qPCR. The antiviral activity of swine interferon-induced transmembrane protein 3 (sIFITM3) on PEDV and TGEV infection was also evaluated. The results showed that DEGs can be detected in the cells infected with PEDV, TGEV, and PEDV+TGEV at 12, 24, and 48 hpi, and the number of DEGs was the highest at 24 hpi. The DEGs are mainly annotated to the GO terms of protein binding, immune system process, organelle part, and intracellular organelle part. Furthermore, 90 ISGs were upregulated during PEDV or TGEV infection, 27 of which were associated with antiviral activity, including ISG15, OASL, IFITM1, and IFITM3. Furthermore, sIFITM3 can significantly inhibit PEDV and TGEV infection in porcine IPEC-J2 cells and/or monkey Vero cells. Besides, sIFITM3 can also inhibit vesicular stomatitis virus (VSV) replication in Vero cells. These results indicate that sIFITM3 has broad-spectrum antiviral activity.


Assuntos
Coinfecção , Gastroenterite Suína Transmissível , Vírus da Diarreia Epidêmica Suína , Vírus da Gastroenterite Transmissível , Animais , Antivirais , Chlorocebus aethiops , Diarreia , Gastroenterite Suína Transmissível/metabolismo , Interferons/genética , Vírus da Diarreia Epidêmica Suína/genética , Suínos , Transcriptoma , Vírus da Gastroenterite Transmissível/genética , Células Vero
16.
J Clin Immunol ; 42(3): 582-596, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35028801

RESUMO

NF-κB essential modulator (NEMO, IKK-γ) deficiency is a rare combined immunodeficiency caused by mutations in the IKBKG gene. Conventionally, patients are afflicted with life threatening recurrent microbial infections. Paradoxically, the spectrum of clinical manifestations includes severe inflammatory disorders. The mechanisms leading to autoinflammation in NEMO deficiency are currently unknown. Herein, we sought to investigate the underlying mechanisms of clinical autoinflammatory manifestations in a 12-years old male NEMO deficiency (EDA-ID, OMIM #300,291) patient by comparing the immune profile of the patient before and after hematopoietic stem cell transplantation (HSCT). Response to NF-kB activators were measured by cytokine ELISA. Neutrophil and low-density granulocyte (LDG) populations were analyzed by flow cytometry. Peripheral blood mononuclear cells (PBMC) transcriptome before and after HSCT and transcriptome of sorted normal-density neutrophils and LDGs were determined using the NanoString nCounter gene expression panels. ISG15 expression and protein ISGylation was based on Immunoblotting. Consistent with the immune deficiency, PBMCs of the patient were unresponsive to toll-like and T cell receptor-activators. Paradoxically, LDGs comprised 35% of patient PBMCs and elevated expression of genes such as MMP9, LTF, and LCN2 in the granulocytic lineage, high levels of IP-10 in the patient's plasma, spontaneous ISG15 expression and protein ISGylation indicative of a spontaneous type I interferon (IFN) signature were observed, all of which normalized after HSCT. Collectively, our results suggest that type I IFN signature observed in the patient, dysregulated LDGs and spontaneously activated neutrophils, potentially contribute to tissue damage in NEMO deficiency.


Assuntos
Displasia Ectodérmica , Neutrófilos , Criança , Displasia Ectodérmica/genética , Granulócitos/metabolismo , Humanos , Quinase I-kappa B/genética , Quinase I-kappa B/metabolismo , Leucócitos Mononucleares/metabolismo , Masculino
17.
J Infect Dis ; 225(2): 341-351, 2022 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-34197595

RESUMO

BACKGROUND: Influenza immunization during pregnancy provides protection to the mother and the infant. Studies in adults and children with inactivated influenza vaccine have identified changes in immune gene expression that were correlated with antibody responses. The current study was performed to define baseline blood transcriptional profiles and changes induced by inactivated influenza vaccine in pregnant women and to identify correlates with antibody responses. METHODS: Pregnant women were immunized with inactivated influenza vaccine during the 2013-2014 and 2014-2015 seasons. Blood samples were collected on day 0 (before vaccination) and on days 1 and 7 after vaccination for transcriptional profile analyses, and on days 0 and 30, along with delivery and cord blood samples, to measure antibody titers. RESULTS: Transcriptional analysis demonstrated overexpression of interferon-stimulated genes (ISGs) on day 1 and of plasma cell genes on day 7. Prevaccination ISG expression and ISGs overexpressed on day 1 were significantly correlated with increased H3N2, B Yamagata, and B Victoria antibody titers. Plasma cell gene expression on day 7 was correlated with increased B Yamagata and B Victoria antibody titers. Compared with women who were vaccinated during the previous influenza season, those who were not showed more frequent significant correlations between ISGs and antibody titers. CONCLUSIONS: Influenza vaccination in pregnant women resulted in enhanced expression of ISGs and plasma cell genes correlated with antibody responses. Brief summary: This study identified gene expression profiles of interferon-stimulated genes and plasma cells before vaccination and early after vaccination that were correlated with antibody responses in pregnant women vaccinated for influenza.


Assuntos
Anticorpos Antivirais/sangue , Antígenos de Grupos Sanguíneos , Vacinas contra Influenza/administração & dosagem , Influenza Humana/prevenção & controle , Interferons/genética , Formação de Anticorpos , Antivirais/uso terapêutico , Feminino , Perfilação da Expressão Gênica , Humanos , Vírus da Influenza A Subtipo H3N2/imunologia , Vacinas contra Influenza/imunologia , Influenza Humana/imunologia , Gravidez , Gestantes , Transcriptoma , Vacinas de Produtos Inativados/administração & dosagem , Vacinas de Produtos Inativados/imunologia
18.
Infect Genet Evol ; 96: 105137, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34781038

RESUMO

BACKGROUND: Syphilis is a sexually transmitted disease that threatens human health worldwide. However, the immune regulation cascade caused by treponemia pallidum (TP) infection remains still largely unclear. METHODS: To investigate the expression of ISGs in secondary syphilis (SS), we recruited 64 patients with SS and equal number of healthy participants to obtain their peripheral blood mononuclear cells (PBMCs). qRT-PCR was performed to estimate the expression of interferon-stimulated genes (ISGs) including CXCL10, OAS3, OAS1, MX1, IFIT3, IFIT2, IFI6 and AIM2. Receiver-operating characteristic (ROC) analysis was adapted to diagnostic value of these genes to distinguish healthy controls and patients with SS. RESULTS: ISGs including CXCL10, OAS3, OAS1, MX1, IFIT3, IFIT2, IFI6 and AIM2 were all upregulated in PBMCs of patients with SS. Area under the ROC curve (AUC) of the 8 ISGs were all more than 0.5. IFIT3 exhibited the highest diagnostic value, followed by AIM2, IFIT2 and CXCL10, according to the Yoden Index. CONCLUSION: ISGs including CXCL10, OAS3, OAS1, MX1, IFIT3, IFIT2, IFI6 and AIM2 were upregulated in patients with SS and they have diagnostic value for syphilis.


Assuntos
Interferons/metabolismo , Leucócitos Mononucleares/metabolismo , Sífilis/genética , Regulação para Cima , Adulto , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Sífilis/microbiologia , Adulto Jovem
19.
Viruses ; 13(7)2021 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-34372530

RESUMO

Viral infections lead to expeditious activation of the host's innate immune responses, most importantly the interferon (IFN) response, which manifests a network of interferon-stimulated genes (ISGs) that constrain escalating virus replication by fashioning an ill-disposed environment. Interestingly, most viruses, including rotavirus, have evolved numerous strategies to evade or subvert host immune responses to establish successful infection. Several studies have documented the induction of ISGs during rotavirus infection. In this study, we evaluated the induction and antiviral potential of viperin, an ISG, during rotavirus infection. We observed that rotavirus infection, in a stain independent manner, resulted in progressive upregulation of viperin at increasing time points post-infection. Knockdown of viperin had no significant consequence on the production of total infectious virus particles. Interestingly, substantial escalation in progeny virus release was observed upon viperin knockdown, suggesting the antagonistic role of viperin in rotavirus release. Subsequent studies unveiled that RV-NSP4 triggered relocalization of viperin from the ER, the normal residence of viperin, to mitochondria during infection. Furthermore, mitochondrial translocation of NSP4 was found to be impeded by viperin, leading to abridged cytosolic release of Cyt c and subsequent inhibition of intrinsic apoptosis. Additionally, co-immunoprecipitation studies revealed that viperin associated with NSP4 through regions including both its radical SAM domain and its C-terminal domain. Collectively, the present study demonstrated the role of viperin in restricting rotavirus egress from infected host cells by modulating NSP4 mediated apoptosis, highlighting a novel mechanism behind viperin's antiviral action in addition to the intricacy of viperin-virus interaction.


Assuntos
Apoptose , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/genética , Infecções por Rotavirus/genética , Rotavirus/fisiologia , Toxinas Biológicas/antagonistas & inibidores , Toxinas Biológicas/genética , Proteínas não Estruturais Virais/antagonistas & inibidores , Proteínas não Estruturais Virais/genética , Animais , Linhagem Celular , Chlorocebus aethiops , Células HEK293 , Células HT29 , Humanos , Imunidade Inata , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/imunologia , Rotavirus/química , Infecções por Rotavirus/imunologia , Toxinas Biológicas/imunologia , Células Vero , Proteínas não Estruturais Virais/imunologia , Replicação Viral
20.
Virol Sin ; 36(6): 1315-1326, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34009516

RESUMO

Human endogenous retroviruses (HERVs) are the remains of ancient retroviruses that invaded our ancestors' germline cell and were integrated into the genome. The expression of HERVs has always been a cause for concern because of its association with various cancers and diseases. However, few previous studies have focused on specific activation of HERVs by viral infections. Our previous study has shown that dengue virus type 2 (DENV-2) infection induces the transcription of a large number of abnormal HERVs loci; therefore, the purpose of this study was to explore the relationship between exogenous viral infection and HERV activation further. In this study, we retrieved and reanalyzed published data on 21 transcriptomes of human cells infected with various viruses. We found that infection with different viruses could induce transcriptional activation of HERV loci. Through the comparative analysis of all viral datasets, we identified 43 key HERV loci that were up-regulated by DENV-2, influenza A virus, influenza B virus, Zika virus, measles virus, and West Nile virus infections. Furthermore, the neighboring genes of these HERVs were simultaneously up-regulated, and almost all such neighboring genes were interferon-stimulated genes (ISGs), which are enriched in the host's antiviral immune response pathways. Our data supported the hypothesis that activation of HERVs, probably via an interferon-mediated mechanism, plays an important role in innate immunity against viral infections.


Assuntos
Fatores de Restrição Antivirais/imunologia , Retrovirus Endógenos , Interferons/imunologia , Retrovirus Endógenos/genética , Perfilação da Expressão Gênica , Regulação Viral da Expressão Gênica , Humanos , Sistema Imunitário
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...