Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.293
Filtrar
1.
J Neurophysiol ; 132(2): 403-417, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39106208

RESUMO

Cholinergic interneurons (ChIs) provide the main source of acetylcholine in the striatum and have emerged as a critical modulator of behavioral flexibility, motivation, and associative learning. In the dorsal striatum (DS), ChIs display heterogeneous firing patterns. Here, we investigated the spontaneous firing patterns of ChIs in the nucleus accumbens (NAc) shell, a region of the ventral striatum. We identified four distinct ChI firing signatures: regular single-spiking, irregular single-spiking, rhythmic bursting, and a mixed-mode pattern composed of bursting activity and regular single spiking. ChIs from females had lower firing rates compared with males and had both a higher proportion of mixed-mode firing patterns and a lower proportion of regular single-spiking neurons compared with males. We further observed that across the estrous cycle, the diestrus phase was characterized by higher proportions of irregular ChI firing patterns compared with other phases. Using pooled data from males and females, we examined how the stress-associated neuropeptide corticotropin releasing factor (CRF) impacts these firing patterns. ChI firing patterns showed differential sensitivity to CRF. This translated into differential ChI sensitivity to CRF across the estrous cycle. Furthermore, CRF shifted the proportion of ChI firing patterns toward more regular spiking activity over bursting patterns. Finally, we found that repeated stressor exposure altered ChI firing patterns and sensitivity to CRF in the NAc core, but not the NAc shell. These findings highlight the heterogeneous nature of ChI firing patterns, which may have implications for accumbal-dependent motivated behaviors.NEW & NOTEWORTHY Cholinergic interneurons (ChIs) within the dorsal and ventral striatum can exert a major influence on network output and motivated behaviors. However, the firing patterns and neuromodulation of ChIs within the ventral striatum, specifically the nucleus accumbens (NAc) shell, are understudied. Here, we report that NAc shell ChIs have heterogeneous ChI firing patterns that are labile and can be modulated by the stress-linked neuropeptide corticotropin releasing factor (CRF) and by the estrous cycle.


Assuntos
Neurônios Colinérgicos , Hormônio Liberador da Corticotropina , Interneurônios , Núcleo Accumbens , Animais , Hormônio Liberador da Corticotropina/metabolismo , Hormônio Liberador da Corticotropina/farmacologia , Feminino , Masculino , Interneurônios/fisiologia , Interneurônios/metabolismo , Núcleo Accumbens/fisiologia , Núcleo Accumbens/metabolismo , Núcleo Accumbens/citologia , Neurônios Colinérgicos/fisiologia , Neurônios Colinérgicos/metabolismo , Ciclo Estral/fisiologia , Potenciais de Ação/fisiologia , Camundongos
2.
Hippocampus ; 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39138952

RESUMO

The processing of rich synaptic information in the dentate gyrus (DG) relies on a diverse population of inhibitory GABAergic interneurons to regulate cellular and circuit activity, in a layer-specific manner. Metabotropic GABAB-receptors (GABABRs) provide powerful inhibition to the DG circuit, on timescales consistent with behavior and learning, but their role in controlling the activity of interneurons is poorly understood with respect to identified cell types. We hypothesize that GABABRs display cell type-specific heterogeneity in signaling strength, which will have direct ramifications for signal processing in DG networks. To test this, we perform in vitro whole-cell patch-clamp recordings from identified DG principal cells and interneurons, followed by GABABR pharmacology, photolysis of caged GABA, and extracellular stimulation of endogenous GABA release to classify the cell type-specific inhibitory potential. Based on our previous classification of DG interneurons, we show that postsynaptic GABABR-mediated currents are present on all interneuron types albeit at different amplitudes, dependent largely on soma location and synaptic targets. GABABRs were coupled to inwardly-rectifying K+ channels that strongly reduced the excitability of those interneurons where large currents were observed. These data provide a systematic characterization of GABABR signaling in the rat DG to provide greater insight into circuit dynamics.

3.
Biol Psychiatry Glob Open Sci ; 4(5): 100340, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39140003

RESUMO

Background: The renin-angiotensin system has been identified as a potential therapeutic target for posttraumatic stress disorder, although its mechanisms are not well understood. Brain angiotensin type 2 receptors (AT2Rs) are a subtype of angiotensin II receptors located in stress and anxiety-related regions, including the medial prefrontal cortex (mPFC), but their function and mechanism in the mPFC remain unexplored. Therefore, we used a combination of imaging, cre/lox, and behavioral methods to investigate mPFC-AT2R-expressing neurons in fear and stess related behavior. Methods: To characterize mPFC-AT2R-expressing neurons in the mPFC, AT2R-Cre/tdTomato male and female mice were used for immunohistochemistry. mPFC brain sections were stained with glutamatergic or interneuron markers, and density of AT2R+ cells and colocalization with each marker were quantified. To assess fear-related behaviors in AT2R-flox mice, we selectively deleted AT2R from mPFC neurons using a Cre-expressing adeno-associated virus. Mice then underwent Pavlovian auditory fear conditioning, elevated plus maze, and open field testing. Results: Immunohistochemistry results revealed that AT2R was densely expressed throughout the mPFC and primarily expressed in somatostatin interneurons in a sex-dependent manner. Following fear conditioning, mPFC-AT2R Cre-lox deletion impaired extinction and increased exploratory behavior in female but not male mice, while locomotion was unaltered by mPFC-AT2R deletion in both sexes. Conclusions: These results identify mPFC-AT2R+ neurons as a novel subgroup of somatostatin interneurons and reveal their role in regulating fear learning in a sex-dependent manner, potentially offering insights into novel therapeutic targets for posttraumatic stress disorder.


Posttraumatic stress disorder (PTSD) is a significant predictor of cardiovascular disease (CVD), although the underlying mechanisms are poorly understood. The brain renin-angiotensin system (RAS) is important for cardiovascular and emotional stress regulation and may better help understand the link between PTSD and CVD risk. Our research reveals that the brain angiotensin II type 2 receptor (AT2R) subtype is located on specific somatostatin (SOM+) interneurons in the medial prefrontal cortex (mPFC) and plays a role in fear memory extinction, particularly in females. These findings reveal a role for the mPFC-AT2R in fear-based learning and memory, offering potential insights into the mechanisms underlying the PTSD-CVD association and therapeutic strategies.

4.
Cell Rep ; 43(9): 114659, 2024 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-39180750

RESUMO

Empathy, crucial for social interaction, is impaired across various neuropsychiatric conditions. However, the genetic and neural underpinnings of empathy variability remain elusive. By combining forward genetic mapping with transcriptome analysis, we discover that aryl hydrocarbon receptor nuclear translocator 2 (ARNT2) is a key driver modulating observational fear, a basic form of affective empathy. Disrupted ARNT2 expression in the anterior cingulate cortex (ACC) reduces affect sharing in mice. Specifically, selective ARNT2 ablation in somatostatin (SST)-expressing interneurons leads to decreased pyramidal cell excitability, increased spontaneous firing, aberrant Ca2+ dynamics, and disrupted theta oscillations in the ACC, resulting in reduced vicarious freezing. We further demonstrate that ARNT2-expressing SST interneurons govern affective state discrimination, uncovering a potential mechanism by which ARNT2 polymorphisms associate with emotion recognition in humans. Our findings advance our understanding of the molecular mechanism controlling empathic capacity and highlight the neural substrates underlying social affective dysfunctions in psychiatric disorders.

5.
J Physiol ; 602(17): 4195-4213, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39141819

RESUMO

The subiculum is a key region of the brain involved in the initiation of pathological activity in temporal lobe epilepsy, and local GABAergic inhibition is essential to prevent subicular-originated epileptiform discharges. Subicular pyramidal cells may be easily distinguished into two classes based on their different firing patterns. Here, we have compared the strength of the GABAa receptor-mediated inhibitory postsynaptic currents received by regular- vs. burst-firing subicular neurons and their dynamic modulation by the activation of µ opioid receptors. We have taken advantage of the sequential re-patching of the same cell to initially classify pyramidal neurons according to their firing patters, and then to measure GABAergic events triggered by the optogenetic stimulation of parvalbumin- and somatostatin-expressing interneurons. Activation of parvalbumin-expressing cells generated larger responses in postsynaptic burst-firing neurons whereas the opposite was observed for currents evoked by the stimulation of somatostatin-expressing interneurons. In all cases, events depended critically on ω-agatoxin IVA- but not on ω-conotoxin GVIA-sensitive calcium channels. Optogenetic GABAergic input originating from both parvalbumin- and somatostatin-expressing cells was reduced in amplitude following the exposure to a µ opioid receptor agonist. The kinetics of this pharmacological sensitivity was different in regular- vs. burst-firing neurons, but only when responses were evoked by the activation of parvalbumin-expressing neurons, whereas no differences were observed when somatostatin-expressing cells were stimulated. In conclusion, our results show that a high degree of complexity regulates the organizing principles of subicular GABAergic inhibition, with the interaction of pre- and postsynaptic diversity at multiple levels. KEY POINTS: Optogenetic stimulation of parvalbumin- and somatostatin-expressing interneurons (PVs and SOMs) triggers inhibitory postsynaptic currents (IPSCs) in both regular- and burst-firing (RFs and BFs) subicular pyramidal cells. The amplitude of optogenetically evoked IPSCs from PVs (PV-opto IPSCs) is larger in BFs whereas IPSCs generated by the light activation of SOMs (SOM-opto IPSCs) are larger in RFs. Both PV- and SOM-opto IPSCs critically depend on ω-agatoxin IVA-sensitive P/Q type voltage-gated calcium channels, whereas no major effects are observed following exposure to ω-conotoxin GVIA, suggesting no significant involvement of N-type channels. The amplitude of both PV- and SOM-opto IPSCs is reduced by the probable pharmacological activation of presynaptic µ opioid receptors, with a faster kinetics of the effect observed in PV-opto IPSCs from RFs vs. BFs, but not in SOM-opto IPSCs. These results help us understand the complex interactions between different layers of diversity regulating GABAergic input onto subicular microcircuits.


Assuntos
Parvalbuminas , Células Piramidais , Somatostatina , Animais , Células Piramidais/fisiologia , Camundongos , Somatostatina/metabolismo , Parvalbuminas/metabolismo , Interneurônios/fisiologia , Potenciais Pós-Sinápticos Inibidores , Masculino , Neurônios GABAérgicos/fisiologia , Neurônios GABAérgicos/metabolismo , Hipocampo/fisiologia , Hipocampo/citologia , Optogenética , Receptores Opioides mu/metabolismo , Receptores Opioides mu/fisiologia , Camundongos Endogâmicos C57BL , Feminino , Receptores de GABA-A/metabolismo , Receptores de GABA-A/fisiologia
6.
bioRxiv ; 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-39149275

RESUMO

Social memory impairments in Mecp2 knockout (KO) mice result from altered neuronal activity in the monosynaptic projection from the ventral hippocampus (vHIP) to the medial prefrontal cortex (mPFC). The hippocampal network is hyperactive in this model for Rett syndrome, and such atypically heightened neuronal activity propagates to the mPFC through this monosynaptic projection, resulting in altered mPFC network activity and social memory deficits. However, the underlying mechanism of cellular dysfunction within this projection between vHIP pyramidal neurons (PYR) and mPFC PYRs and parvalbumin interneurons (PV-IN) resulting in social memory impairments in Mecp2 KO mice has yet to be elucidated. We confirmed social memory (but not sociability) deficits in Mecp2 KO mice using a new 4-chamber social memory arena, designed to minimize the impact of the tethering to optical fibers required for simultaneous in vivo fiber photometry of Ca2+-sensor signals during social interactions. mPFC PYRs of wildtype (WT) mice showed increases in Ca2+ signal amplitude during explorations of a novel toy mouse and interactions with both familiar and novel mice, while PYRs of Mecp2 KO mice showed smaller Ca2+ signals during interactions only with live mice. On the other hand, mPFC PV-INs of Mecp2 KO mice showed larger Ca2+ signals during interactions with a familiar cage-mate compared to those signals in PYRs, a difference absent in the WT mice. These observations suggest atypically heightened inhibition and impaired excitation in the mPFC network of Mecp2 KO mice during social interactions, potentially driving their deficit in social memory.

7.
Front Neural Circuits ; 18: 1436915, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39091993

RESUMO

We provide a brief (and unabashedly biased) overview of the pre-transcriptomic history of somatostatin interneuron taxonomy, followed by a chronological summary of the large-scale, NIH-supported effort over the last ten years to generate a comprehensive, single-cell RNA-seq-based taxonomy of cortical neurons. Focusing on somatostatin interneurons, we present the perspective of experimental neuroscientists trying to incorporate the new classification schemes into their own research while struggling to keep up with the ever-increasing number of proposed cell types, which seems to double every two years. We suggest that for experimental analysis, the most useful taxonomic level is the subdivision of somatostatin interneurons into ten or so "supertypes," which closely agrees with their more traditional classification by morphological, electrophysiological and neurochemical features. We argue that finer subdivisions ("t-types" or "clusters"), based on slight variations in gene expression profiles but lacking clear phenotypic differences, are less useful to researchers and may actually defeat the purpose of classifying neurons to begin with. We end by stressing the need for generating novel tools (mouse lines, viral vectors) for genetically targeting distinct supertypes for expression of fluorescent reporters, calcium sensors and excitatory or inhibitory opsins, allowing neuroscientists to chart the input and output synaptic connections of each proposed subtype, reveal the position they occupy in the cortical network and examine experimentally their roles in sensorimotor behaviors and cognitive brain functions.


Assuntos
Interneurônios , Somatostatina , Animais , Somatostatina/metabolismo , Interneurônios/classificação , Interneurônios/fisiologia , Interneurônios/metabolismo , Interneurônios/citologia , Humanos
8.
Elife ; 132024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39012795

RESUMO

Axo-axonic cells (AACs), also called chandelier cells (ChCs) in the cerebral cortex, are the most distinctive type of GABAergic interneurons described in the neocortex, hippocampus, and basolateral amygdala (BLA). AACs selectively innervate glutamatergic projection neurons (PNs) at their axon initial segment (AIS), thus may exert decisive control over PN spiking and regulate PN functional ensembles. However, the brain-wide distribution, synaptic connectivity, and circuit function of AACs remain poorly understood, largely due to the lack of specific and reliable experimental tools. Here, we have established an intersectional genetic strategy that achieves specific and comprehensive targeting of AACs throughout the mouse brain based on their lineage (Nkx2.1) and molecular (Unc5b, Pthlh) markers. We discovered that AACs are deployed across essentially all the pallium-derived brain structures, including not only the dorsal pallium-derived neocortex and medial pallium-derived hippocampal formation, but also the lateral pallium-derived claustrum-insular complex, and the ventral pallium-derived extended amygdaloid complex and olfactory centers. AACs are also abundant in anterior olfactory nucleus, taenia tecta, and lateral septum. AACs show characteristic variations in density across neocortical areas and layers and across subregions of the hippocampal formation. Neocortical AACs comprise multiple laminar subtypes with distinct dendritic and axonal arborization patterns. Retrograde monosynaptic tracing from AACs across neocortical, hippocampal, and BLA regions reveal shared as well as distinct patterns of synaptic input. Specific and comprehensive targeting of AACs facilitates the study of their developmental genetic program and circuit function across brain structures, providing a ground truth platform for understanding the conservation and variation of a bona fide cell type across brain regions and species.


Whether we are memorising facts or reacting to a loud noise, nerve cells in different brain areas must be able to communicate with one another through precise, meaningful signals. Specialized nerve cells known as interneurons act as "traffic lights" to precisely regulate when and where this information flows in neural circuits. Axo-axonic cells are a rare type of inhibitory interneuron that are thought to be particularly important for controlling the passage of information between different groups of excitatory neurons. This is because they only connect to one key part of their target cell ­ the axon-initial segment ­ where the electrical signals needed for brain communication (known as action potentials) are initiated. Since axo-axonic cells are inhibitory interneurons, this connection effectively allows them to 'veto' the generation of these signals at their source. Although axo-axonic cells have been identified in three brain regions using traditional anatomical methods, there were no 'tags' readily available that can reliably identify them. Therefore, much about these cells remained unknown, including how widespread they are in the mammalian brain. To solve this problem, Raudales et al. investigated which genes are switched on in axo-axonic cells but not in other cells, identifying a unique molecular signature that could be used to mark, record, and manipulate these cells. Microscopy imaging of brain tissue from mice in which axo-axonic cells had been identified revealed that they are present in many more brain areas than previously thought, including nearly all regions of the broadly defined cerebral cortex and even the hypothalamus, which controls many innate behaviors. Axo-axonic cells were also 'wired up' differently, depending on where they were located; for example, those in brain areas associated with memory and emotions had wider-ranging input connections than other areas. The finding of Raudales et al. provide, for the first time, a method to directly track and manipulate axo-axonic cells in the brain. Since dysfunction in axo-axonic cells is also associated with neurological disorders like epilepsy and schizophrenia, gaining an insight into their distribution and connectivity could help to develop better treatments for these conditions.


Assuntos
Neurônios GABAérgicos , Interneurônios , Animais , Interneurônios/fisiologia , Interneurônios/metabolismo , Neurônios GABAérgicos/fisiologia , Neurônios GABAérgicos/metabolismo , Camundongos , Encéfalo/fisiologia , Encéfalo/citologia , Sinapses/fisiologia , Sinapses/metabolismo , Axônios/fisiologia , Axônios/metabolismo , Masculino
9.
eNeuro ; 11(7)2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38969499

RESUMO

The adult turtle spinal cord can generate multiple kinds of limb movements, including swimming, three forms of scratching, and limb withdrawal (flexion reflex), even without brain input and sensory feedback. There are many multifunctional spinal neurons, activated during multiple motor patterns, and some behaviorally specialized neurons, activated during only one. How do multifunctional and behaviorally specialized neurons each contribute to motor output? We analyzed in vivo intracellular recordings of multifunctional and specialized neurons. Neurons tended to spike in the same phase of the hip-flexor (HF) activity cycle during swimming and scratching, though one preferred opposite phases. During both swimming and scratching, a larger fraction of multifunctional neurons than specialized neurons were highly rhythmic. One group of multifunctional neurons was active during the HF-on phase and another during the HF-off phase. Thus, HF-extensor alternation may be generated by a subset of multifunctional spinal neurons during both swimming and scratching. Scratch-specialized neurons and flexion reflex-selective neurons may instead trigger their respective motor patterns, by biasing activity of multifunctional neurons. In phase-averaged membrane potentials of multifunctional neurons, trough phases were more highly correlated between swimming and scratching than peak phases, suggesting that rhythmic inhibition plays a greater role than rhythmic excitation. We also provide the first intracellular recording of a turtle swim-specialized neuron: tonically excited during swimming but inactive during scratching and flexion reflex. It displayed an excitatory postsynaptic potential following each swim-evoking electrical stimulus and thus may be an intermediary between reticulospinal axons and the swimming CPG they activate.


Assuntos
Reflexo , Medula Espinal , Natação , Tartarugas , Animais , Tartarugas/fisiologia , Natação/fisiologia , Medula Espinal/fisiologia , Reflexo/fisiologia , Neurônios/fisiologia , Potenciais de Ação/fisiologia , Neurônios Motores/fisiologia
10.
Cell Rep ; 43(8): 114519, 2024 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-39018243

RESUMO

Diverse neuron classes in hippocampal CA1 have been identified through the heterogeneity of their cellular/molecular composition. How these classes relate to hippocampal function and the network dynamics that support cognition in primates remains unclear. Here, we report inhibitory functional cell groups in CA1 of freely moving macaques whose diverse response profiles to network states and each other suggest distinct and specific roles in the functional microcircuit of CA1. In addition, pyramidal cells that were grouped by their superficial or deep layer position differed in firing rate, burstiness, and sharp-wave ripple-associated firing. They also showed strata-specific spike-timing interactions with inhibitory cell groups, suggestive of segregated neural populations. Furthermore, ensemble recordings revealed that cell assemblies were preferentially organized according to these strata. These results suggest that hippocampal CA1 in freely moving macaques bears a sublayer-specific circuit organization that may shape its role in cognition.


Assuntos
Região CA1 Hipocampal , Células Piramidais , Animais , Células Piramidais/fisiologia , Região CA1 Hipocampal/fisiologia , Região CA1 Hipocampal/citologia , Potenciais de Ação/fisiologia , Masculino , Rede Nervosa/fisiologia
11.
Cell Rep ; 43(8): 114540, 2024 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-39058595

RESUMO

Long-term synaptic plasticity at glutamatergic synapses on striatal spiny projection neurons (SPNs) is central to learning goal-directed behaviors and habits. Our studies reveal that SPNs manifest a heterosynaptic, nitric oxide (NO)-dependent form of long-term postsynaptic depression of glutamatergic SPN synapses (NO-LTD) that is preferentially engaged at quiescent synapses. Plasticity is gated by Ca2+ entry through CaV1.3 Ca2+ channels and phosphodiesterase 1 (PDE1) activation, which blunts intracellular cyclic guanosine monophosphate (cGMP) and NO signaling. Both experimental and simulation studies suggest that this Ca2+-dependent regulation of PDE1 activity allows for local regulation of dendritic cGMP signaling. In a mouse model of Parkinson disease (PD), NO-LTD is absent because of impaired interneuronal NO release; re-balancing intrastriatal neuromodulatory signaling restores NO release and NO-LTD. Taken together, these studies provide important insights into the mechanisms governing NO-LTD in SPNs and its role in psychomotor disorders such as PD.


Assuntos
Nucleotídeo Cíclico Fosfodiesterase do Tipo 1 , Plasticidade Neuronal , Neurônios , Sinapses , Animais , Sinapses/metabolismo , Plasticidade Neuronal/fisiologia , Camundongos , Nucleotídeo Cíclico Fosfodiesterase do Tipo 1/metabolismo , Neurônios/metabolismo , Óxido Nítrico/metabolismo , Corpo Estriado/metabolismo , GMP Cíclico/metabolismo , Ácido Glutâmico/metabolismo , Cálcio/metabolismo , Camundongos Endogâmicos C57BL , Masculino , Depressão Sináptica de Longo Prazo/fisiologia
12.
eNeuro ; 11(8)2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39084907

RESUMO

The integration of spatial information in the mammalian dentate gyrus (DG) is critical to navigation. Indeed, DG granule cells (DGCs) rely upon finely balanced inhibitory neurotransmission in order to respond appropriately to specific spatial inputs. This inhibition arises from a heterogeneous population of local GABAergic interneurons (INs) that activate both fast, ionotropic GABAA receptors (GABAAR) and slow, metabotropic GABAB receptors (GABABR), respectively. GABABRs in turn inhibit pre- and postsynaptic neuronal compartments via temporally long-lasting G-protein-dependent mechanisms. The relative contribution of each IN subtype to network level GABABR signal setting remains unknown. However, within the DG, the somatostatin (SSt) expressing IN subtype is considered crucial in coordinating appropriate feedback inhibition on to DGCs. Therefore, we virally delivered channelrhodopsin 2 to the DG in order to obtain control of this specific SSt IN subpopulation in male and female adult mice. Using a combination of optogenetic activation and pharmacology, we show that SSt INs strongly recruit postsynaptic GABABRs to drive greater inhibition in DGCs than GABAARs at physiological membrane potentials. Furthermore, we show that in the adult mouse DG, postsynaptic GABABR signaling is predominantly regulated by neuronal GABA uptake and less so by astrocytic mechanisms. Finally, we confirm that activation of SSt INs can also recruit presynaptic GABABRs, as has been shown in neocortical circuits. Together, these data reveal that GABABR signaling allows SSt INs to control DG activity and may constitute a key mechanism for gating spatial information flow within hippocampal circuits.


Assuntos
Giro Denteado , Interneurônios , Receptores de GABA-B , Somatostatina , Animais , Somatostatina/metabolismo , Interneurônios/metabolismo , Interneurônios/fisiologia , Giro Denteado/metabolismo , Receptores de GABA-B/metabolismo , Masculino , Feminino , Optogenética , Camundongos Endogâmicos C57BL , Camundongos , Camundongos Transgênicos , Ácido gama-Aminobutírico/metabolismo , Sinapses/metabolismo
13.
bioRxiv ; 2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39005261

RESUMO

The CA3 region is central to hippocampal function during learning and memory and has a unique connectivity. CA3 pyramidal neurons are the targets of huge, excitatory mossy fiber synapses from DG axons and have a high degree of excitatory recurrent connectivity. Thus, inhibition likely plays an outsized importance in constraining excitation and shaping CA3 ensembles during learning and memory. Here, we investigate the function of a never-before studied set of dendrite-targeting, GABAergic neurons defined by expression of the synaptic adhesion molecule, Kirrel3. We discovered that activating Kirrel3-expressing GABAergic neurons specifically impairs memory discrimination and inhibits CA3 pyramidal neurons in novel contexts. Kirrel3 is required for DG-to-GABA synapse formation and variants in Kirrel3 are strong risk factors for neurodevelopmental disorders. Thus, our work suggests that Kirrel3-GABA neurons are a critical source of feed-forward inhibition from DG to CA3 during the encoding and retrieval of contextual memories, a function which may be specifically disrupted in some brain disorders.

14.
Front Cell Neurosci ; 18: 1421617, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38994327

RESUMO

The basolateral amygdala plays pivotal roles in the regulation of fear and anxiety and these processes are profoundly modulated by different neuromodulatory systems that are recruited during emotional arousal. Recent studies suggest activities of BLA interneurons and inhibitory synaptic transmission in BLA principal cells are regulated by neuromodulators to influence the output and oscillatory network states of the BLA, and ultimately the behavioral expression of fear and anxiety. In this review, we first summarize a cellular mechanism of stress-induced anxiogenesis mediated by the interaction of glucocorticoid and endocannabinoid signaling at inhibitory synapses in the BLA. Then we discuss cell type-specific activity patterns induced by neuromodulators converging on the Gq signaling pathway in BLA perisomatic parvalbumin-expressing (PV) and cholecystokinin-expressing (CCK) basket cells and their effects on BLA network oscillations and fear learning.

15.
Neurosci Bull ; 2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-39023844

RESUMO

Human's robust cognitive abilities, including creativity and language, are made possible, at least in large part, by evolutionary changes made to the cerebral cortex. This paper reviews the biology and evolution of mammalian cortical radial glial cells (primary neural stem cells) and introduces the concept that a genetically step wise process, based on a core molecular pathway already in use, is the evolutionary process that has molded cortical neurogenesis. The core mechanism, which has been identified in our recent studies, is the extracellular signal-regulated kinase (ERK)-bone morphogenic protein 7 (BMP7)-GLI3 repressor form (GLI3R)-sonic hedgehog (SHH) positive feedback loop. Additionally, I propose that the molecular basis for cortical evolutionary dwarfism, exemplified by the lissencephalic mouse which originated from a larger gyrencephalic ancestor, is an increase in SHH signaling in radial glia, that antagonizes ERK-BMP7 signaling. Finally, I propose that: (1) SHH signaling is not a key regulator of primate cortical expansion and folding; (2) human cortical radial glial cells do not generate neocortical interneurons; (3) human-specific genes may not be essential for most cortical expansion. I hope this review assists colleagues in the field, guiding research to address gaps in our understanding of cortical development and evolution.

16.
Biol Psychiatry ; 2024 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-38950809

RESUMO

BACKGROUND: Exaggerated responses to sensory stimuli, a hallmark of fragile X syndrome, contribute to anxiety and learning challenges. Sensory hypersensitivity is recapitulated in the Fmr1 knockout (KO) mouse model of fragile X syndrome. Recent studies in Fmr1 KO mice have demonstrated differences in the activity of cortical interneurons and a delayed switch in the polarity of GABA (gamma-aminobutyric acid) signaling during development. Previously, we reported that blocking the chloride transporter NKCC1 with the diuretic bumetanide could rescue synaptic circuit phenotypes in the primary somatosensory cortex (S1) of Fmr1 KO mice. However, it remains unknown whether bumetanide can rescue earlier circuit phenotypes or sensory hypersensitivity in Fmr1 KO mice. METHODS: We used acute and chronic systemic administration of bumetanide in Fmr1 KO mice and performed in vivo 2-photon calcium imaging to record neuronal activity, while tracking mouse behavior with high-resolution videos. RESULTS: We demonstrated that layer 2/3 pyramidal neurons in the S1 of Fmr1 KO mice showed a higher frequency of synchronous events on postnatal day 6 than wild-type controls. This was reversed by acute administration of bumetanide. Furthermore, chronic bumetanide treatment (postnatal days 5-14) restored S1 circuit differences in Fmr1 KO mice, including reduced neuronal adaptation to repetitive whisker stimulation, and ameliorated tactile defensiveness. Bumetanide treatment also rectified the reduced feedforward inhibition of layer 2/3 neurons in the S1 and boosted the circuit participation of parvalbumin interneurons. CONCLUSIONS: This further supports the notion that synaptic, circuit, and sensory behavioral phenotypes in Fmr1 KO can be mitigated by inhibitors of NKCC1, such as the Food and Drug Administration-approved diuretic bumetanide.

17.
Eur J Neurosci ; 60(5): 4937-4953, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39080914

RESUMO

Cholinergic interneurons (ChIs) act as master regulators of striatal output, finely tuning neurotransmission to control motivated behaviours. ChIs are a cellular target of many peptide and hormonal neuromodulators, including corticotropin-releasing factor, opioids, insulin and leptin, which can influence an animal's behaviour by signalling stress, pleasure, pain and nutritional status. However, little is known about how sex hormones via estrogen receptors influence the function of these other neuromodulators. Here, we performed in situ hybridisation on mouse striatal tissue to characterise the effect of sex and sex hormones on choline acetyltransferase (Chat), estrogen receptor alpha (Esr1) and corticotropin-releasing factor type 1 receptor (Crhr1) expression. Although we did not detect sex differences in ChAT protein levels in the dorsal striatum or nucleus accumbens, we found that female mice have more Chat mRNA-expressing neurons than males in both the dorsal striatum and nucleus accumbens. At the population level, we observed a sexually dimorphic distribution of Esr1- and Crhr1-expressing ChIs in the ventral striatum that was negatively correlated in intact females, which was abolished by ovariectomy and not present in males. Only in the NAc did we find a significant population of ChIs that co-express Crhr1 and Esr1 in females and to a lesser extent in males. At the cellular level, Crhr1 and Esr1 transcript levels were negatively correlated only during the estrus phase in females, indicating that changes in sex hormone levels can modulate the interaction between Crhr1 and Esr1 mRNA levels.


Assuntos
Neurônios Colinérgicos , Hormônio Liberador da Corticotropina , Receptor alfa de Estrogênio , Estrogênios , Interneurônios , Núcleo Accumbens , Receptores de Hormônio Liberador da Corticotropina , Animais , Masculino , Núcleo Accumbens/metabolismo , Feminino , Hormônio Liberador da Corticotropina/metabolismo , Receptores de Hormônio Liberador da Corticotropina/metabolismo , Interneurônios/metabolismo , Receptor alfa de Estrogênio/metabolismo , Camundongos , Neurônios Colinérgicos/metabolismo , Estrogênios/metabolismo , Caracteres Sexuais , Camundongos Endogâmicos C57BL , Colina O-Acetiltransferase/metabolismo , Ovariectomia
18.
J Neurosci ; 44(29)2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-38886057

RESUMO

Calcineurin inhibitors, such as cyclosporine and tacrolimus (FK506), are commonly used immunosuppressants for preserving transplanted organs and tissues. However, these drugs can cause severe and persistent pain. GluA2-lacking, calcium-permeable AMPA receptors (CP-AMPARs) are implicated in various neurological disorders, including neuropathic pain. It is unclear whether and how constitutive calcineurin, a Ca2+/calmodulin protein phosphatase, controls synaptic CP-AMPARs. In this study, we found that blocking CP-AMPARs with IEM-1460 markedly reduced the amplitude of AMPAR-EPSCs in excitatory neurons expressing vesicular glutamate transporter-2 (VGluT2), but not in inhibitory neurons expressing vesicular GABA transporter, in the spinal cord of FK506-treated male and female mice. FK506 treatment also caused an inward rectification in the current-voltage relationship of AMPAR-EPSCs specifically in VGluT2 neurons. Intrathecal injection of IEM-1460 rapidly alleviated pain hypersensitivity in FK506-treated mice. Furthermore, FK506 treatment substantially increased physical interaction of α2δ-1 with GluA1 and GluA2 in the spinal cord and reduced GluA1/GluA2 heteromers in endoplasmic reticulum-enriched fractions of spinal cords. Correspondingly, inhibiting α2δ-1 with pregabalin, Cacna2d1 genetic knock-out, or disrupting α2δ-1-AMPAR interactions with an α2δ-1 C terminus peptide reversed inward rectification of AMPAR-EPSCs in spinal VGluT2 neurons caused by FK506 treatment. In addition, CK2 inhibition reversed FK506 treatment-induced pain hypersensitivity, α2δ-1 interactions with GluA1 and GluA2, and inward rectification of AMPAR-EPSCs in spinal VGluT2 neurons. Thus, the increased prevalence of synaptic CP-AMPARs in spinal excitatory neurons plays a major role in calcineurin inhibitor-induced pain hypersensitivity. Calcineurin and CK2 antagonistically regulate postsynaptic CP-AMPARs through α2δ-1-mediated GluA1/GluA2 heteromeric assembly in the spinal dorsal horn.


Assuntos
Calcineurina , Caseína Quinase II , Receptores de AMPA , Medula Espinal , Tacrolimo , Animais , Receptores de AMPA/metabolismo , Camundongos , Calcineurina/metabolismo , Masculino , Feminino , Tacrolimo/farmacologia , Medula Espinal/metabolismo , Medula Espinal/efeitos dos fármacos , Caseína Quinase II/metabolismo , Neurônios/metabolismo , Neurônios/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Potenciais Pós-Sinápticos Excitadores/fisiologia , Sinapses/efeitos dos fármacos , Sinapses/metabolismo , Sinapses/fisiologia , Inibidores de Calcineurina/farmacologia , Fenótipo , Canais de Cálcio
19.
eNeuro ; 11(7)2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38886063

RESUMO

Persistent activity in excitatory pyramidal cells (PYRs) is a putative mechanism for maintaining memory traces during working memory. We have recently demonstrated persistent interruption of firing in fast-spiking parvalbumin-expressing interneurons (PV-INs), a phenomenon that could serve as a substrate for persistent activity in PYRs through disinhibition lasting hundreds of milliseconds. Here, we find that hippocampal CA1 PV-INs exhibit type 2 excitability, like striatal and neocortical PV-INs. Modeling and mathematical analysis showed that the slowly inactivating potassium current KV1 contributes to type 2 excitability, enables the multiple firing regimes observed experimentally in PV-INs, and provides a mechanism for robust persistent interruption of firing. Using a fast/slow separation of times scales approach with the KV1 inactivation variable as a bifurcation parameter shows that the initial inhibitory stimulus stops repetitive firing by moving the membrane potential trajectory onto a coexisting stable fixed point corresponding to a nonspiking quiescent state. As KV1 inactivation decays, the trajectory follows the branch of stable fixed points until it crosses a subcritical Hopf bifurcation (HB) and then spirals out into repetitive firing. In a model describing entorhinal cortical PV-INs without KV1, interruption of firing could be achieved by taking advantage of the bistability inherent in type 2 excitability based on a subcritical HB, but the interruption was not robust to noise. Persistent interruption of firing is therefore broadly applicable to PV-INs in different brain regions but is only made robust to noise in the presence of a slow variable, KV1 inactivation.


Assuntos
Interneurônios , Modelos Neurológicos , Parvalbuminas , Parvalbuminas/metabolismo , Interneurônios/fisiologia , Interneurônios/metabolismo , Animais , Potenciais de Ação/fisiologia , Região CA1 Hipocampal/fisiologia , Região CA1 Hipocampal/metabolismo , Inibição Neural/fisiologia , Células Piramidais/fisiologia , Células Piramidais/metabolismo , Superfamília Shaker de Canais de Potássio/metabolismo , Córtex Entorrinal/fisiologia , Córtex Entorrinal/metabolismo , Masculino
20.
Cerebellum ; 2024 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-38850484

RESUMO

Spinocerebellar ataxia 34 (SCA34) is an autosomal dominant disease that arises from point mutations in the fatty acid elongase, Elongation of Very Long Chain Fatty Acids 4 (ELOVL4), which is essential for the synthesis of Very Long Chain-Saturated Fatty Acids (VLC-SFA) and Very Long Chain-Polyunsaturated Fatty Acids (VLC-PUFA) (28-34 carbons long). SCA34 is considered a neurodegenerative disease. However, a novel rat model of SCA34 (SCA34-KI rat) with knock-in of the W246G ELOVL4 mutation that causes human SCA34 shows early motor impairment and aberrant synaptic transmission and plasticity without overt neurodegeneration. ELOVL4 is expressed in neurogenic regions of the developing brain, is implicated in cell cycle regulation, and ELOVL4 mutations that cause neuroichthyosis lead to developmental brain malformation, suggesting that aberrant neuron generation due to ELOVL4 mutations might contribute to SCA34. To test whether W246G ELOVL4 altered neuronal generation or survival in the cerebellum, we compared the numbers of Purkinje cells, unipolar brush cells, molecular layer interneurons, granule and displaced granule cells in the cerebellum of wildtype, heterozygous, and homozygous SCA34-KI rats at four months of age, when motor impairment is already present. An unbiased, semi-automated method based on Cellpose 2.0 and ImageJ was used to quantify neuronal populations in cerebellar sections immunolabeled for known neuron-specific markers. Neuronal populations and cortical structure were unaffected by the W246G ELOVL4 mutation by four months of age, a time when synaptic and motor dysfunction are already present, suggesting that SCA34 pathology originates from synaptic dysfunction due to VLC-SFA deficiency, rather than aberrant neuronal production or neurodegeneration.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...