Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
Mais filtros












Intervalo de ano de publicação
1.
Curr Res Insect Sci ; 5: 100082, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38765913

RESUMO

The main insect chemoreceptors are olfactory receptors (ORs), gustatory receptors (GRs) and ionotropic receptors (IRs). The odorant binding sites of many insect ORs appear to be occluded and inaccessible from the surface of the receptor protein, based on the three-dimensional structure of OR5 from the jumping bristletail Machilis hrabei (MhraOR5) and a survey of a sample of vinegar fly (Drosophila melanogaster) OR structures obtained from artificial intellegence (A.I.) modeling. Molecular dynamics simulations revealed that the occluded site can become accessible through tunnels that transiently open and close. The present study extends this analysis to examine seventeen ORs and one GR docking with ligands that have known valence: nine that signal attraction and nine that signal aversion. All but one of the receptors displayed occluded ligand binding sites analogous to MhraOR5, and docking software predicted the known attractant and repellent ligands will bind to the occluded sites. Docking of the repellent DEET was examined, and more than half of the OR ligand sites were predicted to bind DEET, including receptors that signal aversion as well as those that signal attraction. However, DEET may not actually have access to all the attractant binding sites. The larger size and lower flexibility of repellent molecules may restrict their passage through the tunnel bottlenecks, which could act as filters to select access to the ligand binding sites. In contrast to ORs and GRs, the IR ligand binding site is in an extracellular domain known to undergo a large conformational change from an open to a closed state. A.I. models of two D. melanogaster IRs of known valence and two blacklegged tick (Ixodes scapularis) IRs having unknown ligands were computationally tested for attractant and repellent binding. The ligand-binding sites in the closed state appear inaccessible to the protein surface, so attractants and repellents must bind initially at an accessible site in the open state before triggering the conformational change. In some IRs, repellent binding sites were identified at exterior sites adjacent to the ligand-binding site. These may be allosteric sites that, when occupied by repellents, can stabilize the open state of an attractant IR, or stabilize the closed state of an IR in the absence of its activating ligand. The model of D. melanogaster IR64a suggests a possible molecular mechanism for the activation of this IR by H+. The amino acids involved in this proposed mechanism are conserved in IR64a from several Dipteran pest species and disease vectors, potentially offering a route to discovery of new repellents that act via the allosteric site.

2.
3 Biotech ; 14(4): 99, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38456083

RESUMO

The most promising anticonvulsant phytocompounds were explored in this work using docking, molecular dynamic (MD) simulation, and Molecular Mechanics-Poisson-Boltzmann Surface Area (MM-PBSA) approaches. A total of 70 phytochemicals were screened against α-amino-3-hydroxyl-5-methyl-4-isoxazole propionic acid (AMPA), N-methyl-d-aspartate (NMDA), voltage-gated sodium ion channels (VGSC), and carbonic anhydrase enzyme II (CA II) receptors, and the docking results were compared to the reference drug phenytoin. Amentoflavone displayed the highest affinity for AMPA and VGSC receptors, with docking scores of - 10.4 and - 10.1 kcal/mol, respectively. Oliganthin H-NMDA and epigallocatechin-3-gallate-CA II complexes showed docking scores of - 10.9 and - 6.9 kcal/mol, respectively. All four complexes depicted a high dock score compared to the phenytoin complex at the binding site of the corresponding proteins. The MD simulation investigated the stabilities and favorable conformation of apoproteins and ligand/reference-bound complexes. The results revealed that proteins AMPA, VGSC, and CA II were more efficiently stabilized by lead phytochemicals than phenytoin binding. Additionally, principal component analysis and MM-PBSA results suggested that these lead phytocompounds have good compactness and strong binding free energy. Further, physicochemical and pharmacokinetic studies revealed that these final lead phytochemicals would be suitable for oral intake, have sufficient intestinal permeability, and have the ability to cross the blood-brain barrier (BBB). Comprehensively, this study predicted amentoflavone as the best lead phytochemical out of the 70 anticonvulsant phytocompounds that can be used to treat epilepsy. Supplementary Information: The online version contains supplementary material available at 10.1007/s13205-024-03948-1.

3.
BMC Genomics ; 25(1): 275, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38475721

RESUMO

BACKGROUND: The spread of Popillia japonica in non-native areas (USA, Canada, the Azores islands, Italy and Switzerland) poses a significant threat to agriculture and horticulture, as well as to endemic floral biodiversity, entailing that appropriate control measures must be taken to reduce its density and limit its further spread. In this context, the availability of a high quality genomic sequence for the species is liable to foster basic research on the ecology and evolution of the species, as well as on possible biotechnologically-oriented and genetically-informed control measures. RESULTS: The genomic sequence presented and described here is an improvement with respect to the available draft sequence in terms of completeness and contiguity, and includes structural and functional annotations. A comparative analysis of gene families of interest, related to the species ecology and potential for polyphagy and adaptability, revealed a contraction of gustatory receptor genes and a paralogous expansion of some subgroups/subfamilies of odorant receptors, ionotropic receptors and cytochrome P450s. CONCLUSIONS: The new genomic sequence as well as the comparative analyses data may provide a clue to explain the staggering invasive potential of the species and may serve to identify targets for potential biotechnological applications aimed at its control.


Assuntos
Besouros , Espécies Introduzidas , Animais , Besouros/genética , Genômica , Canadá , Itália , Filogenia
4.
Biol Lett ; 20(2): 20230519, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38351746

RESUMO

Learning where to find nutrients while at the same time avoiding toxic food is essential for survival of any animal. Using Drosophila melanogaster larvae as a study case, we investigate the role of gustatory sensory neurons expressing IR76b for associative learning of amino acids, the building blocks of proteins. We found surprising complexity in the neuronal underpinnings of sensing amino acids, and a functional division of sensory neurons. We found that the IR76b receptor is dispensable for amino acid learning, whereas the neurons expressing IR76b are specifically required for the rewarding but not the punishing effect of amino acids. This unexpected dissociation in neuronal processing of amino acids for different behavioural functions provides a study case for functional divisions of labour in gustatory systems.


Assuntos
Proteínas de Drosophila , Drosophila melanogaster , Animais , Aminoácidos/metabolismo , Aminoácidos/farmacologia , Drosophila melanogaster/fisiologia , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/farmacologia , Neurônios/metabolismo , Recompensa , Paladar/fisiologia
5.
Artigo em Inglês | MEDLINE | ID: mdl-38096641

RESUMO

Chemoreception through odorant receptors (ORs), ionotropic receptors (IRs) and gustatory receptors (GRs) represents the functions of key proteins in the chemical ecology of insects. Recent studies have identified chemoreceptors in coleopterans, facilitating the evolutionary analysis of not only ORs but also IRs and GRs. Thus, Cerambycidae, Tenebrionidae and Curculionidae have received increased attention. However, knowledge of the chemoreceptors from Scarabaeidae is still limited, particularly for those that are sympatric. Considering the roles of chemoreceptors, this analysis could shed light on evolutionary processes in the context of sympatry. Therefore, the aim of this study was to identify and compare the repertoires of ORs, GRs and IRs between two sympatric scarab beetles, Hylamorpha elegans and Brachysternus prasinus. Here, construction of the antennal transcriptomes of both scarab beetle species and analyses of their phylogeny, molecular evolution and relative expression were performed. Thus, 119 new candidate chemoreceptors were identified for the first time, including 17 transcripts for B. prasinus (1 GR, 3 IRs and 13 ORs) and 102 for H. elegans (22 GRs, 14 IRs and 66 ORs). Orthologs between the two scarab beetle species were found, revealing specific expansions as well as absence in some clades. Purifying selection appears to have occurred on H. elegans and B. prasinus ORs. Further efforts will be focused on target identification to characterize kairomone and/or pheromone receptors.


Assuntos
Besouros , Receptores Odorantes , Gorgulhos , Animais , Transcriptoma , Simpatria , Perfilação da Expressão Gênica , Besouros/genética , Besouros/metabolismo , Gorgulhos/genética , Filogenia , Receptores Odorantes/genética , Receptores Odorantes/metabolismo , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Antenas de Artrópodes/metabolismo
6.
Insects ; 14(12)2023 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-38132621

RESUMO

In insects, the chemical senses influence most vital behaviors, including mate seeking and egg laying; these sensory modalities are predominantly governed by odorant receptors (ORs), ionotropic receptors (IRs), and gustatory receptors (GRs). The codling moth, Cydia pomonella, is a global pest of apple, pear, and walnut, and semiochemically based management strategies limit the economic impacts of this species. The previous report of expression of a candidate pheromone-responsive OR in female codling moth ovipositor and pheromone glands raises further questions about the chemosensory capacity of these organs. With an RNA-sequencing approach, we examined chemoreceptors' expression in the female codling moth abdomen tip, sampling tissues from mated and unmated females and pupae. We report 37 ORs, 22 GRs, and 18 IRs expressed in our transcriptome showing overlap with receptors expressed in adult antennae as well as non-antennal candidate receptors. A quantitative PCR approach was also taken to assess the effect of mating on OR expression in adult female moths, revealing a few genes to be upregulated or downregulating after mating. These results provide a better understanding of the chemosensory role of codling moth female abdomen tip organs in female-specific behaviors. Future research will determine the function of specific receptors to augment current semiochemical-based strategies for codling moth management.

7.
Insect Sci ; 2023 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-38114448

RESUMO

Phenylacetaldehyde (PAH), an aromatic compound, is present in a diverse range of fruits including overripe bananas and prickly pear cactus, the two major host fruits for Drosophila melanogaster. PAH acts as a potent ligand for the ionotropic receptor 84a (IR84a) in the adult fruit fly and it is detected by the IR84a/IR8a heterotetrameric complex. Its role in the male courtship behavior through IR84a as an environmental aphrodisiac is of additional importance. In D. melanogaster, two distinct kinds of olfactory receptors, that is, odorant receptors (ORs) and ionotropic receptors (IRs), perceive the odorant stimuli. They display unique structural, molecular, and functional characteristics in addition to having different evolutionary origins. Traditionally, olfactory cues detected by the ORs such as ethyl acetate, 1-butanol, isoamyl acetate, 1-octanol, 4-methylcyclohexanol, etc. classified as aliphatic esters and alcohols have been employed in olfactory classical conditioning using fruit flies. This underlines the participation of OR-activated olfactory pathways in learning and memory formation. Our study elucidates that likewise ethyl acetate (EA) (an OR-responsive odorant), PAH (an IR-responsive aromatic compound) too can form learning and memory when associated with an appetitive gustatory reinforcer. The association of PAH with sucrose (PAH/SUC) led to learning and formation of the long-term memory (LTM). Additionally, the Orco1 , Ir84aMI00501 , and Ir8a1 mutant flies were used to confirm the exclusive participation of the IR84a/IR8a complex in PAH/SUC olfactory associative conditioning. These results highlight the involvement of IRs via an IR-activated pathway in facilitating robust olfactory behavior.

8.
Insect Biochem Mol Biol ; 162: 104012, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37743031

RESUMO

The order Isopoda contains both aquatic and terrestrial species, among which Hemilepistus reaumurii, which lives in arid environments and is the most adapted to terrestrial life. Olfaction has been deeply investigated in insects while it has received very limited attention in other arthropods, particularly in terrestrial crustaceans. In insects, soluble proteins belonging to two main families, Odorant Binding Proteins (OBPs) and Chemosensory Proteins (CSPs), are contained in the olfactory sensillar lymph and are suggested to act as carriers of hydrophobic semiochemicals to or from membrane-bound olfactory receptors. Other protein families, namely Nieman-Pick type 2 (NPC2) and Lipocalins (LCNs) have been also reported as putative odorant carriers in insects and other arthropod clades. In this study, we have sequenced and analysed the transcriptomes of antennae and of the first pair of legs of H. reaumurii focusing on soluble olfactory proteins. Interestingly, we have found 13 genes encoding CSPs, whose sequences differ from those of the other arthropod clades, including non-isopod crustaceans, for the presence of two additional cysteine residues, besides the four conserved ones. Binding assays on two of these proteins showed strong affinities for fatty acids and long-chain unsaturated esters and aldehydes, putative semiochemicals for this species.


Assuntos
Artrópodes , Isópodes , Receptores Odorantes , Animais , Feromônios/metabolismo , Isópodes/genética , Isópodes/metabolismo , Insetos/metabolismo , Transcriptoma , Olfato/genética , Proteínas de Insetos/metabolismo , Artrópodes/genética , Receptores Odorantes/metabolismo , Antenas de Artrópodes/metabolismo , Filogenia , Perfilação da Expressão Gênica
9.
Front Psychiatry ; 14: 1199097, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37547211

RESUMO

Autism spectrum disorder (ASD) comprises a wide range of neurodevelopment conditions primarily characterized by impaired social interaction and repetitive behavior, accompanied by a variable degree of neuropsychiatric characteristics. Synaptic dysfunction is undertaken as one of the key underlying mechanisms in understanding the pathophysiology of ASD. The excitatory/inhibitory (E/I) hypothesis is one of the most widely held theories for its pathogenesis. Shifts in E/I balance have been proven in several ASD models. In this study, we investigated three mouse lines recapitulating both idiopathic (the BTBR strain) and genetic (Fmr1 and Shank3 mutants) forms of ASD at late infancy and early adulthood. Using receptor autoradiography for ionotropic excitatory (AMPA and NMDA) and inhibitory (GABAA) receptors, we mapped the receptor binding densities in brain regions known to be associated with ASD such as prefrontal cortex, dorsal and ventral striatum, dorsal hippocampus, and cerebellum. The individual mouse lines investigated show specific alterations in excitatory ionotropic receptor density, which might be accounted as specific hallmark of each individual line. Across all the models investigated, we found an increased binding density to GABAA receptors at adulthood in the dorsal hippocampus. Interestingly, reduction in the GABAA receptor binding density was observed in the cerebellum. Altogether, our findings suggest that E/I disbalance individually affects several brain regions in ASD mouse models and that alterations in GABAergic transmission might be accounted as unifying factor.

10.
bioRxiv ; 2023 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-36993705

RESUMO

Modulation of odorant receptors mRNA induced by prolonged odor exposure is highly correlated with ligand-receptor interactions in Drosophila as well as mammals of the Muridae family. If this response feature is conserved in other organisms, this presents a potentially potent initial screening tool when searching for novel receptor-ligand interactions in species with predominantly orphan olfactory receptors. We demonstrate that mRNA modulation in response to 1-octen-3-ol odor exposure occurs in a time- and concentration-dependent manner in Aedes aegypti mosquitoes. To investigate gene expression patterns at a global level, we generated an odor-evoked transcriptome associated with 1-octen-3-ol odor exposure. Transcriptomic data revealed that ORs and OBPs were transcriptionally responsive whereas other chemosensory gene families showed little to no differential expression. Alongside chemosensory gene expression changes, transcriptomic analysis found that prolonged exposure to 1-octen-3-ol modulated xenobiotic response genes, primarily members of the cytochrome P450, insect cuticle proteins, and glucuronosyltransferases families. Together, these findings suggest that mRNA transcriptional modulation caused by prolonged odor exposure is pervasive across taxa and accompanied by the activation of xenobiotic responses. Furthermore, odor-evoked transcriptomics create a potential screening tool for filtering and identification of chemosensory and xenobiotic targets of interest.

11.
Plants (Basel) ; 12(4)2023 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-36840263

RESUMO

Anastatus japonicus Ashmead is an egg parasitoid wasp important for the biological control of fruit crop pests. The olfaction of parasitoids is crucial to searching for host pests in fruit crops. In this study, we sequenced and analyzed the antennal and abdominal transcriptomes of A. japonicus to better understand the olfactory mechanisms in this species. A total of 201 putative olfactory receptor genes were identified, including 184 odorant receptors (ORs) and 17 ionotropic receptors (IRs). Then, we assayed the tissue-specific and sex-biased expression profiles of those genes based on the transcriptional levels. In total, 165 ORs and 15 IRs had upregulated expression in the antennae. The expression levels of 133 ORs, including odorant receptor co-receptor (AjapORco), and 10 IRs, including AjapIR8a, were significantly different between the female and male antennae. Our results provide valuable information for further studies on the molecular mechanisms of the olfactory system in A. japonicus.

12.
Int J Mol Sci ; 24(3)2023 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-36768227

RESUMO

Since the 1990s, ionotropic glutamate receptors have served as an outstanding target for drug discovery research aimed at the discovery of new neurotherapeutic agents. With the recent approval of perampanel, the first marketed non-competitive antagonist of AMPA receptors, particular interest has been directed toward 'non-NMDA' (AMPA and kainate) receptor inhibitors. Although the role of AMPA receptors in the development of neurological or psychiatric disorders has been well recognized and characterized, progress in understanding the function of kainate receptors (KARs) has been hampered, mainly due to the lack of specific and selective pharmacological tools. The latest findings in the biology of KA receptors indicate that they are involved in neurophysiological activity and play an important role in both health and disease, including conditions such as anxiety, schizophrenia, epilepsy, neuropathic pain, and migraine. Therefore, we reviewed recent advances in the field of competitive and non-competitive kainate receptor antagonists and their potential therapeutic applications. Due to the high level of structural divergence among the compounds described here, we decided to divide them into seven groups according to their overall structure, presenting a total of 72 active compounds.


Assuntos
Epilepsia , Transtornos Mentais , Humanos , Receptores de Ácido Caínico , Receptores de AMPA
13.
Front Mol Biosci ; 10: 1275901, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38344364

RESUMO

In insects, antennal ionotropic receptors (IRs) and odorant receptors (ORs) are among the main sensors of olfactory cues. To functionally characterize the subunits from these receptors, the use of ab3A neurons from transgenic Drosophila melanogaster represented one of the most powerful tools, allowing the identification of ligands (deorphanization) and decrypting their pharmacological properties. However, further investigation is needed to shed light on possible metabotropic functionalities behind insect olfactory receptors and test potentials from the up-to-now-used empty neuronal systems to express subunits belonging to variegate receptor classes. In this project, we adopted the most updated system of Drosophila ab3A empty neurons to test various olfactory receptors, ranging from human ORs working as metabotropic G-protein coupled receptors to insect ionotropic IRs and ORs. Testing transgenic Drosophila expressing human ORs into ab3A neurons by single sensillum recording did not result in an OR response to ligands, but it rather re-established neuronal spiking from the empty neurons. When transgenic D. melanogaster expressed ionotropic IRs and ORs, both heterologous and cis-expressed IRs were non-functional, but the Drosophila suzukii OR19A1 subunit responded to a wide asset of ligands, distinguishing phasic or tonic compound-dependent effects. Despite the use of Drosophila ab3A neurons to test the activation of some metabotropic and ionotropic receptor subunits resulted non-functional, this study deorphanized a key OR of D. suzukii demonstrating its binding to alcohols, ketones, terpenes, and esters.

14.
Mar Drugs ; 20(11)2022 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-36355004

RESUMO

Living organisms deeply rely on the acquisition of chemical signals in any aspect of their life, from searching for food, mating and defending themselves from stressors. Copepods, the most abundant and ubiquitous metazoans on Earth, possess diversified and highly specified chemoreceptive structures along their body. The detection of chemical stimuli activates specific pathways, although this process has so far been analyzed only on a relatively limited number of species. Here, in silico mining of 18 publicly available transcriptomes is performed to delve into the copepod chemosensory genes, improving current knowledge on the diversity of this multigene family and on possible physiological mechanisms involved in the detection and analysis of chemical cues. Our study identifies the presence of ionotropic receptors, chemosensory proteins and gustatory receptors in copepods belonging to the Calanoida, Cyclopoida and Harpacticoida orders. We also confirm the absence in these copepods of odorant receptors and odorant-binding proteins agreeing with their insect specificity. Copepods have evolved several mechanisms to survive in the harsh marine environment such as producing proteins to respond to external stimulii. Overall, the results of our study open new possibilities for the use of the chemosensory genes as biomarkers in chemical ecology studies on copepods and possibly also in other marine holozooplankters.


Assuntos
Copépodes , Animais , Copépodes/genética , Copépodes/metabolismo , Antenas de Artrópodes/metabolismo , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Perfilação da Expressão Gênica , Transcriptoma/genética , Filogenia
15.
Exp Appl Acarol ; 87(4): 337-350, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35971047

RESUMO

Studies have shown that the main pathway for tick host localization and perception of mating information may be chemosensory. However, chemical communication in ticks is poorly understood, especially in those other than the Ixodes ticks. Niemann-Pick C2 (NPC2) protein and ionotropic receptors (IRs) are considered to be closely related to the perception of infochemicals in arthropods. Through bioinformatic analysis, eight NPC2 and four IR candidate genes were identified through screening and identification of the transcriptome sequencing database of Haemaphysalis longicornis. Phylogenetic tree analysis indicated that H. longicornis possesses similar homology to the genus Ixodes. A comparison of the expression of NPC2 and IR in tick forelegs (first pair of legs), hind legs (fourth pair of legs), and capitula using RT-PCR revealed that, barring HlonNPC2-8, 11 candidate genes were highly expressed in the foreleg and capitulum, which are the main sensory organs of ticks. They were also expressed in the hind legs, except for six genes that were not expressed in the males. RT-qPCR analysis showed upregulation and higher relative expression of HlonNPC2-1, HlonNPC2-3, HlonNPC2-6, and HlonNPC2-8 when stimulated by ammonium hydroxide, whereas the others were downregulated and demonstrated lower relative expression. These results further support the putative role of NPC2s as a new odorant carrier in ticks and present 12 promising candidate genes for understanding tick olfactory communication, enriching the data on these genes, especially outside the genus Ixodes.


Assuntos
Artrópodes , Ixodes , Ixodidae , Animais , Ixodes/genética , Ixodidae/genética , Masculino , Filogenia , Transcriptoma
17.
Curr Biol ; 32(14): 3070-3081.e5, 2022 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-35772408

RESUMO

Dietary salt detection and consumption are crucial to maintaining fluid and ionic homeostasis. To optimize salt intake, animals employ salt-dependent activation of multiple taste pathways. Generally, sodium activates attractive taste cells, but attraction is overridden at high salt concentrations by cation non-selective activation of aversive taste cells. In flies, high salt avoidance is driven by both "bitter" taste neurons and a class of glutamatergic "high salt" neurons expressing pickpocket23 (ppk23). Although the cellular basis of salt taste has been described, many of the molecular mechanisms remain elusive. Here, we show that ionotropic receptor 7c (IR7c) is expressed in glutamatergic high salt neurons, where it functions with co-receptors IR76b and IR25a to detect high salt and is essential for monovalent salt taste. Misexpression of IR7c in sweet neurons, which endogenously express IR76b and IR25a, confers responsiveness to non-sodium salts, indicating that IR7c is sufficient to convert a sodium-selective gustatory receptor neuron to a cation non-selective one. Furthermore, the resultant transformation of taste neuron tuning switches potassium chloride from an aversive to an attractive tastant. This research provides insight into the molecular basis of monovalent and divalent salt-taste coding.


Assuntos
Proteínas de Drosophila , Drosophila , Animais , Drosophila/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/fisiologia , Cloreto de Sódio/farmacologia , Paladar/fisiologia , Percepção Gustatória/fisiologia
18.
Elife ; 112022 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-35442190

RESUMO

Drosophila melanogaster olfactory neurons have long been thought to express only one chemosensory receptor gene family. There are two main olfactory receptor gene families in Drosophila, the odorant receptors (ORs) and the ionotropic receptors (IRs). The dozens of odorant-binding receptors in each family require at least one co-receptor gene in order to function: Orco for ORs, and Ir25a, Ir8a, and Ir76b for IRs. Using a new genetic knock-in strategy, we targeted the four co-receptors representing the main chemosensory families in D. melanogaster (Orco, Ir8a, Ir76b, Ir25a). Co-receptor knock-in expression patterns were verified as accurate representations of endogenous expression. We find extensive overlap in expression among the different co-receptors. As defined by innervation into antennal lobe glomeruli, Ir25a is broadly expressed in 88% of all olfactory sensory neuron classes and is co-expressed in 82% of Orco+ neuron classes, including all neuron classes in the maxillary palp. Orco, Ir8a, and Ir76b expression patterns are also more expansive than previously assumed. Single sensillum recordings from Orco-expressing Ir25a mutant antennal and palpal neurons identify changes in olfactory responses. We also find co-expression of Orco and Ir25a in Drosophila sechellia and Anopheles coluzzii olfactory neurons. These results suggest that co-expression of chemosensory receptors is common in insect olfactory neurons. Together, our data present the first comprehensive map of chemosensory co-receptor expression and reveal their unexpected widespread co-expression in the fly olfactory system.


Assuntos
Neurônios Receptores Olfatórios , Receptores Odorantes , Animais , Células Quimiorreceptoras/metabolismo , Drosophila melanogaster/fisiologia , Neurônios Receptores Olfatórios/fisiologia , Receptores Odorantes/genética , Receptores Odorantes/metabolismo , Olfato
20.
Curr Biol ; 32(8): 1776-1787.e4, 2022 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-35294865

RESUMO

Salt taste is one of the most ancient of all sensory modalities. However, the molecular basis of salt taste remains unclear in invertebrates. Here, we show that the response to low, appetitive salt concentrations in Drosophila depends on Ir56b, an atypical member of the ionotropic receptor (Ir) family. Ir56b acts in concert with two coreceptors, Ir25a and Ir76b. Mutation of Ir56b virtually eliminates an appetitive behavioral response to salt. Ir56b is expressed in neurons that also sense sugars via members of the Gr (gustatory receptor) family. Misexpression of Ir56b in bitter-sensing neurons confers physiological responses to appetitive doses of salt. Ir56b is unique among tuning Irs in containing virtually no N-terminal region, a feature that is evolutionarily conserved. Moreover, Ir56b is a "pseudo-pseudogene": its coding sequence contains a premature stop codon that can be replaced with a sense codon without loss of function. This stop codon is conserved among many Drosophila species but is absent in a number of species associated with cactus in arid regions. Thus, Ir56b serves the evolutionarily ancient function of salt detection in neurons that underlie both salt and sweet taste modalities.


Assuntos
Proteínas de Drosophila , Drosophila , Animais , Drosophila/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Cloreto de Sódio , Paladar/fisiologia , Percepção Gustatória/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...