Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 695
Filtrar
1.
Chem Biodivers ; : e202401979, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-39352265

RESUMO

O chna integerrima (Louri) Merr. is one of the two species of the genus Ochna (family Ochnaceae) found in Thailand. Its bark is used in traditional Thai medicine to treat digestive disorders. Phytochemical investigation of the crude MeOH extract of the root woods of O. integerrima furnished an unreported isoflavone glycoside, gerontoisoflavone A-4'-O-ß-D-xylopyranoside (1), together with the previously described irisolone methyl ether (2), iriskumaonin methyl ether (3), iriskumaonin (4), gerontoisoflavone A (5), isoprunetin (6), a flavone glycoside, vitexin (7), and a chromone derivative, lophilone A (8). The structure of 1 was elucidated by 1D and 2D NMR spectral analysis as well as HRMS data. Compounds 1-7 were evaluated for their 2,2-diphenyl-1-picrylhydrazil radical (DPPH●) scavenging activity and antiplasmodial activity against a chloroquine- and pyrimethamine-resistant strain of Plasmodium falciparum (K1). Compounds 5 exhibited strongest scavenging activity, with a scavenging concentration at 50% (SC50) of 137.7 mM, while 4 and 6 displayed weak scavenging activity, with SC50 values of 4 and 5 times higher than that of 5. None of the tested compounds showed antiplasmodial activity against P. falciparum (K1) at a concentration of 5 mg/mL.

2.
Eur J Pharmacol ; 982: 176956, 2024 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-39209096

RESUMO

Excessive activity of osteoclasts(OCs) lead to bone resorption in chronic inflammatory conditions. The use of natural compounds to target OCs offers significant promise in the treatment or prevention of OC-associated diseases. Irilin D (IRD), a natural isoflavone derived from Belamcanda chinensis (L.) DC., has potential effects on OC differentiation both in vitro and in vivo that have yet to be thoroughly explored. In our study, we found that IRD inhibited receptor activator of nuclear factor-κB ligand (RANKL)-induced OC differentiation, actin ring formation, and bone resorption in vitro without compromising cell viability. However, IRD did not exhibit anti-inflammatory effects in lipopolysaccharide (LPS)-stimulated macrophages. Furthermore, IRD reduced LPS-induced inflammatory bone loss by blocking osteoclastogenesis in a mouse model. Mechanistically, IRD disrupted RANKL-induced activation of mitogen-activated protein kinases (MAPKs) and nuclear factor-κB (NF-κB), leading to the inhibition of c-Fos and nuclear factor of activated T cells cytoplasmic 1 (NFATc1) activation. We also demonstrated that IRD inhibited RANKL-induced osteoclastic NFATc1 target genes, including DC-STAMP, ACP5, and CtsK. Our results indicate that IRD mitigates LPS-induced inflammatory bone resorption in mice by inhibiting RANKL-activated MAPKs and NF-κB signaling pathways, suggesting its potential as a natural isoflavone for preventing or treating OC-associated diseases.


Assuntos
Reabsorção Óssea , Inflamação , Isoflavonas , Sistema de Sinalização das MAP Quinases , NF-kappa B , Osteoclastos , Osteogênese , Ligante RANK , Animais , Masculino , Camundongos , Reabsorção Óssea/prevenção & controle , Reabsorção Óssea/induzido quimicamente , Reabsorção Óssea/tratamento farmacológico , Reabsorção Óssea/patologia , Reabsorção Óssea/metabolismo , Diferenciação Celular/efeitos dos fármacos , Inflamação/patologia , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Isoflavonas/farmacologia , Isoflavonas/uso terapêutico , Lipopolissacarídeos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Camundongos Endogâmicos C57BL , NF-kappa B/metabolismo , Fatores de Transcrição NFATC/metabolismo , Osteoclastos/efeitos dos fármacos , Osteoclastos/metabolismo , Osteogênese/efeitos dos fármacos , Ligante RANK/metabolismo , Células RAW 264.7
3.
J Agric Food Chem ; 72(33): 18573-18584, 2024 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-39105709

RESUMO

Isoflavone is a secondary metabolite of the soybean phenylpropyl biosynthesis pathway with physiological activity and is beneficial to human health. In this study, the isoflavone content of 205 soybean germplasm resources from 3 locations in 2020 showed wide phenotypic variation. A joint genome-wide association study (GWAS) and weighted gene coexpression network analysis (WGCNA) identified 33 single-nucleotide polymorphisms and 11 key genes associated with soybean isoflavone content. Gene ontology enrichment analysis, gene coexpression, and haplotype analysis revealed natural variations in the Glyma.12G109800 (GmOMT7) gene and promoter region, with Hap1 being the elite haplotype. Transient overexpression and knockout of GmOMT7 increased and decreased the isoflavone content, respectively, in hairy roots. The combination of GWAS and WGCNA effectively revealed the genetic basis of soybean isoflavone and identified potential genes affecting isoflavone synthesis and accumulation in soybean, providing a valuable basis for the functional study of soybean isoflavone.


Assuntos
Regulação da Expressão Gênica de Plantas , Estudo de Associação Genômica Ampla , Glycine max , Isoflavonas , Proteínas de Plantas , Polimorfismo de Nucleotídeo Único , Sementes , Glycine max/genética , Glycine max/metabolismo , Glycine max/química , Isoflavonas/metabolismo , Isoflavonas/análise , Sementes/genética , Sementes/química , Sementes/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Redes Reguladoras de Genes
4.
DNA Cell Biol ; 2024 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-39180442

RESUMO

Isoorientin (ISO) is a naturally occurring flavonoid with diverse functional properties that mitigate the risk of diseases stemming from oxidation, inflammation, and cancer cell proliferation. P-glycoprotein (P-gp) is a vital component of the intestinal epithelium and may play a role in the onset of intestinal inflammatory conditions, such as inflammatory bowel disease (IBD). Recent studies have suggested that short-chain fatty acids (SCFAs) and secondary bile acids (SBAs) produced by the gut microbiota stimulate the increase of P-gp expression, alleviating excessive inflammation and thereby preservation of intestinal homeostasis. ISO has been shown to improve colon health and modulate the gut microbiota. In this study, we aimed to explore whether ISO can modulate the microbes and their metabolites to influence P-gp expression to alleviate IBD. First, the impact of ISO on dextran sulfate sodium (DSS)-treated colitis in mice was investigated. Second, 16S rRNA gene sequencing was conducted. The present study indicated that ISO mitigated the symptoms and pathological damage associated with DSS-treated colitis in mice. Western blot analysis revealed ISO upregulated P-gp in colon tissues, suggesting the critical role of P-gp protein in intestinal epithelial cells. 16S microbial diversity sequencing revealed ISO restored the richness and variety of intestinal microorganisms in colitis-bearing mice and enriched SCFA-producing bacteria, such as Lachnospiraceae_NK4A136_group. The experiments also revealed that the ISO fecal microbiota transplantation (FMT) inoculation of DSS-treated mice had similarly beneficial results. FMT mice showed a reduction in colitis symptoms, which was more pronounced in ISO-FMT than in CON-FMT mice. Meanwhile, ISO-FMT expanded the abundance of beneficial microorganisms, increased the expression of metabolites, such as SCFAs and total SBAs, and significantly upregulated the expression of P-gp protein. In addition, Spearman's correlation analysis demonstrated a positive correlation between the production of SCFAs and SBAs and the expression of P-gp. The present study identified that ISO increases the expression of P-gp in the intestinal epithelium by regulating intestinal microorganisms and their metabolites, which maintains colonic homeostasis, improves the integrity of the colonic epithelium, and alleviates colitis.

5.
Artigo em Inglês | MEDLINE | ID: mdl-39134513

RESUMO

This study aimed to determine the anti-inflammatory activities and bioactive compounds of soymilk yogurt prepared using Lactiplantibacillus plantarum TOKAI 17 or Pediococcus pentosaceus TOKAI 759 m. Mice were divided into five groups: normal diet (ND), soymilk (SM), soymilk yogurt using L. plantarum TOKAI 17 (SY 17) or P. pentosaceus TOKAI 759 m (SY 759 m), and 0.5 × 109 cells of each starter strain (BC 17 or BC759m). In the SY 759 m group, the serum pro-inflammatory cytokine levels and the cytotoxicity of natural killer cells were attenuated compared to the ND group. In the cecum microbiota, the abundances of butyrate-producing bacteria increased in the SY 759 m and BC 17 groups. Furthermore, SY 759 m metabolites contained high levels of aglycone isoflavone, adenine and showed a significant decrease in CCL-2 and IL-6 production in LPS-induced macrophage. In conclusion, soymilk yogurt produced using P. pentosaceus TOKAI 759 m modulates the gut microbiota and can potentially prevent pro-inflammatory cytokine production.

6.
Endocr Pract ; 2024 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-39214463

RESUMO

OBJECTIVE: Previous meta-analyses have investigated the effects of isoflavones on bone metabolism in perimenopausal or postmenopausal women. However, there were still conflicting results. Thereby, this umbrella review assessed the existing meta-analysis evidence of the effects of isoflavone interventions on bone metabolism in perimenopausal and postmenopausal women. METHODS: This study was conducted following the guidelines of the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA). From the inception until August 24, 2023, PubMed, Embase, Cochrane, and Web of Science databases were searched to identify meta-analyses of randomized controlled trials (RCTs). The outcomes included bone mineral densities (BMDs), and bone turnover markers (BTMs) of osteocalcin (OC), bone-specific alkaline phosphatase (BAP), pyridinoline (PYD), deoxypyridinoline (DPD), Procollagen Type 1 N-Terminal Propeptide (P1NP), and C-telopeptide of Type 1 Collagen (CTX). The random-effects model was used to recalculate the extracted effect sizes. Mean difference (MD) was used as a summary effect measure. RESULTS: Ten meta-analyses of RCTs were included. The isoflavone intervention was associated with increased BMDs in lumbar spine (MD: 11.50 mg/cm2, 95% confidence interval (CI): 6.46 to 16.55), femoral neck (MD: 2.03%, 95% CI: 0.57 to 3.50), and top hip (MD: 0.31%, 95% CI: 0.03 to 0.59) in perimenopausal and postmenopausal women. CONCLUSION: Our findings indicate that isoflavone interventions have the potential to improve BMD at different bone sites, including the lumbar spine, femoral neck, and total hip in perimenopausal and postmenopausal women. Isoflavone may be considered a complementary option in the bone loss of perimenopausal and postmenopausal women.

7.
J Food Sci ; 2024 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-39169542

RESUMO

This research explored the impact of incorporating various levels of whole soybean pulp (WSP) (10%, 20%, 30%, 40%, and 50%) into wheat flour on the physical and nutritional qualities of steamed bread. In comparison with the traditional steamed bread, the substitution of up to 20% WSP did not significantly alter the specific volume, hardness, and chewiness of the steamed bread. Additionally, the crumb texture of the steamed bread with 20% WSP maintained small and uniform pores, with optimal springiness and cohesiveness. Nutritionally, the substitution of 10%-50% WSP enhanced total dietary fiber, total phenolics, and protein by 9.40%-89.79%, 14.96%-116.31%, and 3.45%-34.36%, respectively. Isoflavones in the steamed bread increased markedly from 22.92 µg/g to a range of 140.12-997.12 µg/g. The expected glycemic index showed a decrease from 90.24 to between 85.85 and 70.75, whereas amino acid scores improved from 59.22 to a range of 64.58-65.08, with lysine (Lys) scores notably increasing from 59.22 to between 64.96 and 88.80. In conclusion, partially replacing wheat flour with WSP is an effective method for enhancing the nutritional profile and addressing the essential amino acid imbalance in steamed bread. PRACTICAL APPLICATION: This study partially replaced flour with WSP to improve the steamed bread's nutritional quality. The optimal substitution level was determined to be 20% WSP, which improves the bread's nutritional value without significantly impacting its physical qualities. Furthermore, WSP is produced from soaked soybeans through hot water milling. This process simplifies soybean processing, lowers energy consumption and costs, and reduces pollution. It also effectively retains essential nutrients, such as protein, dietary fiber, polyphenols, and soy isoflavones, ensuring the full utilization of soybeans.

8.
J Agric Food Chem ; 72(33): 18465-18477, 2024 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-39110140

RESUMO

Legume plants form symbiotic relationships with rhizobia, which allow plants to utilize atmospheric nitrogen as a nutrient. This symbiosis is initiated by secretion of specific signaling metabolites from the roots, which induce the expression of nod genes in rhizobia. These metabolites are called nod gene inducers (NGIs), and various flavonoids have been found to act as NGIs. However, NGIs of chickpea, the second major pulse crop, remain elusive. We conducted untargeted metabolome analysis of chickpea root exudates to explore metabolites with increased secretion under nitrogen deficiency. Principal component (PC) analysis showed a clear difference between nitrogen deficiency and control, with PC1 alone accounting for 37.5% of the variance. The intensity of two features with the highest PC1 loading values significantly increased under nitrogen deficiency; two prominent peaks were identified as O-methylated isoflavones, pratensein and biochanin A. RNA-seq analysis showed that they induce nodABC gene expression in the Mesorhizobium ciceri symbiont, suggesting that pratensein and biochanin A are chickpea NGIs. Pratensein applied concurrently with M. ciceri at sowing promoted chickpea nodulation. These results demonstrate that pratensein and biochanin A are chickpea NGIs, and pratensein can be useful for increasing nodulation efficiency in chickpea production.


Assuntos
Cicer , Isoflavonas , Mesorhizobium , Nodulação , Simbiose , Cicer/microbiologia , Cicer/genética , Cicer/metabolismo , Isoflavonas/metabolismo , Isoflavonas/farmacologia , Mesorhizobium/genética , Mesorhizobium/metabolismo , Mesorhizobium/fisiologia , Nodulação/genética , Nodulação/efeitos dos fármacos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Raízes de Plantas/microbiologia , Raízes de Plantas/metabolismo , Raízes de Plantas/química , Raízes de Plantas/genética , Metilação , Genisteína/metabolismo , Genisteína/farmacologia
9.
Plant Sci ; 347: 112197, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39019089

RESUMO

Isoflavone, which are mainly found in soybeans, are a secondary metabolite with a variety of physiological functions. In recent years, increasing the isoflavone content of soybeans has received widespread attention. Although ethephon treatment significantly increased isoflavone content in soybean sprouts, it also had a certain inhibitory effect on the growth of sprouts. Melatonin (MT), as a new type of plant hormone, not only alleviated the damage caused by abiotic stress to plants, but also promoted the synthesis of secondary metabolites. In this study, we aimed to elucidate the mechanism of exogenous MT in regulating the growth and development, and the metabolism of isoflavone in soybean sprouts under ethephon treatment. The results indicated that MT alleviated the adverse effects of ethephon treatment on soybean sprouts by increasing the activities of superoxide dismutase, peroxidase, catalase, and the expression of their corresponding genes, as well as decreased the content of malondialdehyde and hydrogen peroxide. In addition, MT further increased the isoflavone content by up-regulating the expression level of isoflavone synthesis genes and increased the activities of phenylalanine ammonia-lyase and cinnamic acid 4-hydroxylase under ethephon treatment. This study provided technical support and reference value for the production of high-quality soybean sprouts to a certain extent.


Assuntos
Antioxidantes , Etilenos , Glycine max , Isoflavonas , Melatonina , Reguladores de Crescimento de Plantas , Glycine max/metabolismo , Glycine max/efeitos dos fármacos , Glycine max/crescimento & desenvolvimento , Glycine max/genética , Melatonina/metabolismo , Isoflavonas/metabolismo , Isoflavonas/biossíntese , Etilenos/metabolismo , Antioxidantes/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Plântula/metabolismo , Plântula/efeitos dos fármacos , Plântula/crescimento & desenvolvimento , Compostos Organofosforados/farmacologia , Compostos Organofosforados/metabolismo
10.
Spectrochim Acta A Mol Biomol Spectrosc ; 322: 124785, 2024 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-39008929

RESUMO

Measuring the chemical composition in soybeans is time-consuming and laborious, and even simple near-infrared sensors generally require the creation of calibration curves before application. In this study, a new screening method for soybeans without calibration curves was investigated by combining the excitation emission matrix (EEM) and dimensionality reduction analysis. The EEMs of 34 soybean samples were measured, and representative chemical contents including crude protein, crude oil and isoflavone contents were measured by chemical analysis. Two methods of dimensionality reduction: principal component analysis (PCA) and t-distributed Stochastic Neighbor Embedding (t-SNE) were applied on the EEM data to obtain two-dimensional plots, which were divided into two regions with large or small amount of each chemical components. To classify the large or small levels of each of the chemical composition, machine learning classification models were constructed on the two-dimensional plots after dimensionality reduction. As a result, the classification accuracy was higher in t-SNE than in the combinations of PC1 and PC2 from PCA. Furthermore, in t-SNE, the classification accuracy reached over 90% for all the chemical components. From these results, t-SNE dimensionality reduction on the soybean EEM has the potential for easy and accurate screening of soybeans especially based on isoflavone contents.


Assuntos
Glycine max , Análise de Componente Principal , Glycine max/química , Glycine max/classificação , Isoflavonas/análise , Isoflavonas/química , Aprendizado de Máquina , Proteínas de Soja/análise , Proteínas de Soja/classificação , Proteínas de Soja/química
11.
Phytother Res ; 38(8): 3935-3953, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38831683

RESUMO

Genistein, a potent phytoconstituent, has garnered significant attention for its diverse bioactivities, making it a subject of extensive research and exploration. This review delves into the multifaceted properties of genistein, encompassing its antioxidant and anticancer potential. Its ability to modulate various cellular pathways and interact with diverse molecular targets has positioned it as a promising candidate in the prevention and treatment of various diseases. This review provides a comprehensive examination of Genistein, covering its chemical properties, methods of isolation, synthesis, therapeutic attributes with regard to cancer management, and the proposed mechanisms of action as put forth by researchers.


Assuntos
Antioxidantes , Genisteína , Genisteína/farmacologia , Genisteína/química , Humanos , Antioxidantes/farmacologia , Antioxidantes/química , Animais , Antineoplásicos Fitogênicos/farmacologia , Antineoplásicos Fitogênicos/química , Neoplasias/tratamento farmacológico , Compostos Fitoquímicos/farmacologia , Compostos Fitoquímicos/química
12.
PeerJ ; 12: e17325, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38832044

RESUMO

The azalea (Rhododendron simsii Planch.) is an important ornamental woody plant with various medicinal properties due to its phytochemical compositions and components. However little information on the metabolite variation during flower development in Rhododendron has been provided. In our study, a comparative analysis of the flavonoid profile was performed in Rhododendron pulchrum sweet at three stages of flower development, bud (stage 1), partially open flower (stage 2), and full bloom (stage 3). A total of 199 flavonoids, including flavone, flavonol, flavone C-glycosides, flavanone, anthocyanin, and isoflavone were identified. In hierarchical clustering analysis (HCA) and principal component analysis (PCA), the accumulation of flavonoids displayed a clear development stage variation. During flower development, 78 differential accumulated metabolites (DAMs) were identified, and most were enriched to higher levels at the full bloom stage. A total of 11 DAMs including flavone (chrysin, chrysoeriol O-glucuronic acid, and chrysoeriol O-hexosyl-O-pentoside), isoflavone (biochanin A), and flavonol (3,7-di-O-methyl quercetin and isorhamnetin) were significantly altered at three stages. In particular, 3,7-di-O-methyl quercetin was the top increased metabolite during flower development. Furthermore, integrative analyses of metabolomic and transcriptomic were conducted, revealing that the contents of isoflavone, biochanin A, glycitin, and prunetin were correlated with the expression of 2-hydroxyisoflavanone dehydratase (HIDH), which provide insight into the regulatory mechanism that controls isoflavone biosynthesis in R. pulchrum. This study will provide a new reference for increasing desired metabolites effectively by more accurate or appropriate genetic engineering strategies.


Assuntos
Flavonoides , Flores , Rhododendron , Rhododendron/metabolismo , Rhododendron/genética , Rhododendron/crescimento & desenvolvimento , Flores/metabolismo , Flores/crescimento & desenvolvimento , Flores/genética , Flavonoides/metabolismo , Flavonoides/análise
13.
Curr Res Food Sci ; 8: 100777, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38840809

RESUMO

The novel ß-glucosidase gene (pgbgl1) of glycoside hydrolase (GH) family 1 from the psychrotrophic bacterium Psychrobacillus glaciei sp. PB01 was successfully expressed in Escherichia coli BL21 (DE3). The deduced PgBgl1 contained 447 amino acid residues with a calculated molecular mass of 51.4 kDa. PgBgl1 showed its maximum activity at pH 7.0 and 40 °C, and still retained over 10% activity at 0 °C, suggesting that the recombinant PgBgl1 is a cold-adapted enzyme. The substrate specificity, Km, Vmax, and Kcat/Km for the p-Nitrophenyl-ß-D-glucopyranoside (pNPG) as the substrate were 1063.89 U/mg, 0.36 mM, 1208.31 U/mg and 3871.92/s, respectively. Furthermore, PgBgl1 demonstrated remarkable stimulation of monosaccharides such as glucose, xylose, and galactose, as well as NaCl. PgBgl1 also demonstrated a high capacity to convert the primary soybean isoflavone glycosides (daidzin, genistin, and glycitin) into their respective aglycones. Overall, PgBgl1 exhibited high catalytic activity towards aryl glycosides, suggesting promising application prospects in the food, animal feed, and pharmaceutical industries.

14.
Curr Pharm Biotechnol ; 25(7): 807-824, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38902930

RESUMO

Throughout the past several centuries, herbal constituents have been the subject of scientific interest and the latest research into their therapeutic potential is underway. Genistein is a soy-derived isoflavone found in huge amounts in soy, along with the plants of the Fabaceae family. Scientific studies have demonstrated the beneficial effects of genistein on various health conditions. Genistein presents a broad range of pharmacological activities, including anticancer, neuroprotective, cardioprotective, antiulcer, anti-diabetic, wound healing, anti-bacterial, antiviral, skin, and radioprotective effects. However, the hydrophobic nature of genistein results in constrained absorption and restricts its therapeutic potential. In this review, the number of nanocarriers for genistein delivery has been explored, such as polymeric nanoparticles, nanostructured lipid carriers, solid lipid nanoparticles, liposomes, micelles, transferosomes, and nanoemulsions and nanofibers. These nano-formulations of genistein have been utilized as a potential strategy for various disorders, employing a variety of ex vivo, in vitro, and in vivo models and various administration routes. This review concluded that genistein is a potential therapeutic agent for treating various diseases, including cancer, neurodegenerative disorders, cardiovascular disorders, obesity, diabetes, ulcers, etc., when formulated in suitable nanocarriers.


Assuntos
Genisteína , Nanopartículas , Genisteína/farmacologia , Genisteína/uso terapêutico , Genisteína/química , Humanos , Animais , Nanopartículas/química , Nanotecnologia/métodos , Portadores de Fármacos/química , Sistemas de Liberação de Medicamentos/métodos , Neoplasias/tratamento farmacológico
15.
Nutrients ; 16(11)2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38892626

RESUMO

In this study, we prepared fermented products of isoflavone-enriched soybean leaves (IESLs) and analyzed their nutrients, isoflavones, anti-obesity efficacy, and effects on gut microbiota. Fermented IESLs (FIESLs) were found to be rich in nutrients, especially lauric acid, oleic acid, and linoleic acid. In addition, the concentrations of most essential free amino acids were increased compared to those of IESLs. The contents of bioactive compounds, such as total phenolic, total flavonoid, daidzein, and genistein, significantly increased as well. In addition, FIESLs administration in a high-fat diet (HFD) animal model improved the final body weight, epididymal fat, total lipid, triglyceride, total cholesterol, blood glucose, and leptin levels, as well as reverting microbiota dysbiosis. In conclusion, these findings indicate that FIESLs have the potential to inhibit obesity caused by HFDs and serve as a modulator of gut microbiota, offering the prevention of diet-induced gut dysbiosis and metabolite diseases associated with obesity.


Assuntos
Fármacos Antiobesidade , Dieta Hiperlipídica , Fermentação , Microbioma Gastrointestinal , Glycine max , Isoflavonas , Ácido Láctico , Obesidade , Folhas de Planta , Microbioma Gastrointestinal/efeitos dos fármacos , Animais , Isoflavonas/farmacologia , Obesidade/metabolismo , Obesidade/microbiologia , Masculino , Dieta Hiperlipídica/efeitos adversos , Fármacos Antiobesidade/farmacologia , Ácido Láctico/metabolismo , Camundongos Endogâmicos C57BL , Camundongos , Disbiose
16.
Food Res Int ; 189: 114571, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38876583

RESUMO

The non-covalent and covalent complexes of ultrasound treated soybean protein isolate (SPI) and soybean isoflavone (SI) were prepared, and the structure, physicochemical properties and in vitro digestion characteristics of SPI-SI complexes were investigated. Ultrasonic treatment increased the non-covalent and covalent binding degree of SPI with SI, and the 240 W ultrasonic covalent complexes had higher binding efficiency. Appropriate ultrasonic treatment caused more uniform particle size distribution, lower average particle size and higher surface charge, which enhanced the free sulfhydryl groups and surface hydrophobicity, thus improving the stability, solubility and emulsifying properties of complexes. Ultrasonic treatment resulted in more disordered secondary structure, tighter tertiary conformation, higher thermal stability and stronger SPI-SI covalent interactions of complexes. These structural modifications of particles had important effects on the chemical stability and gastrointestinal digestion fate of SI. The ultrasonic covalent complexation had a greater resistance to heat-induced chemical degradation of SI and improved its chemical stability. Furthermore, the 240 W ultrasonic covalent complexes showed lower protein digestibility during digestion, and provided stronger protection for SI, which improved the digestion stability and antioxidant activity. Therefore, appropriate ultrasound promoted SPI-SI interactions to improve the stability and functional properties of complexes, which provided a theoretical basis for the development of new complexes and their applications in functional foods.


Assuntos
Digestão , Interações Hidrofóbicas e Hidrofílicas , Isoflavonas , Tamanho da Partícula , Solubilidade , Proteínas de Soja , Proteínas de Soja/química , Isoflavonas/química , Glycine max/química , Antioxidantes/química , Manipulação de Alimentos/métodos , Temperatura Alta
17.
Int Ophthalmol ; 44(1): 287, 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38937293

RESUMO

PURPOSE: Equol is metabolized by intestinal bacteria from soy isoflavones and is chemically similar to estrogen. Dietary habits, such as consumption of soy products, influence equol production. A relationship between glaucoma and estrogen has been identified; here, we investigated the relationship between equol production status and glaucoma in Japan. METHODS: We recruited 68 normal-tension glaucoma (NTG) patients (male to female ratio 26:42, average age 63.0 ± 7.6 years) and 31 controls (male to female ratio 13:18, average age 66.0 ± 6.3 years) from our hospital. All women included were postmenopausal. Urinary equol concentration was quantified with the ELISA method. MD was calculated based on the Humphrey visual field. The association between MD and equol was analyzed with Spearman's rank correlation coefficient. The Mann-Whitney U test was used to compare the equol-producing (> 1 µM) and non-producing (< 1 µM) subjects. We also investigated the association between equol and glaucoma with a logistic regression analysis. RESULTS: There was a significant association between equol and MD (r = 0.36, P < 0.01) in the NTG patients. Glaucoma, represented by MD, was significantly milder in the equol-producing subjects than the non-equol producing subjects (P = 0.03). A multivariate analysis revealed the independent contributions of equol, cpRNFLT, and IOP to MD (P = 0.03, P = 0.04, and P < 0.01, respectively). CONCLUSION: Our results suggest that equol, acting through estrogen receptor-mediated neuroprotective effects, might be involved in suppressing the progression of NTG. This result also adds to evidence that glaucoma may be influenced by lifestyle.


Assuntos
Equol , Pressão Intraocular , Glaucoma de Baixa Tensão , Humanos , Glaucoma de Baixa Tensão/metabolismo , Glaucoma de Baixa Tensão/fisiopatologia , Feminino , Pessoa de Meia-Idade , Idoso , Masculino , Equol/metabolismo , Equol/biossíntese , Pressão Intraocular/fisiologia , Campos Visuais/fisiologia , Japão/epidemiologia , Ensaio de Imunoadsorção Enzimática
18.
ISME Commun ; 4(1): ycae052, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38707841

RESUMO

Plant roots secrete various metabolites, including plant specialized metabolites, into the rhizosphere, and shape the rhizosphere microbiome, which is crucial for the plant health and growth. Isoflavones are major plant specialized metabolites found in legume plants, and are involved in interactions with soil microorganisms as initiation signals in rhizobial symbiosis and as modulators of the legume root microbiota. However, it remains largely unknown the molecular basis underlying the isoflavone-mediated interkingdom interactions in the legume rhizosphere. Here, we isolated Variovorax sp. strain V35, a member of the Comamonadaceae that harbors isoflavone-degrading activity, from soybean roots and discovered a gene cluster responsible for isoflavone degradation named ifc. The characterization of ifc mutants and heterologously expressed Ifc enzymes revealed that isoflavones undergo oxidative catabolism, which is different from the reductive metabolic pathways observed in gut microbiota. We further demonstrated that the ifc genes are frequently found in bacterial strains isolated from legume plants, including mutualistic rhizobia, and contribute to the detoxification of the antibacterial activity of isoflavones. Taken together, our findings reveal an isoflavone catabolism gene cluster in the soybean root microbiota, providing molecular insights into isoflavone-mediated legume-microbiota interactions.

19.
BMC Public Health ; 24(1): 1362, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38773414

RESUMO

BACKGROUND: Non-alcoholic fatty liver disease (NAFLD) accounts as a crucial health concern with a huge burden on health and economic systems. The aim of this study is to evaluate the effect of soy isoflavones supplementation on metabolic status in patients with NAFLD. METHODS: In this randomized clinical trial, 50 patients with NAFLD were randomly allocated to either soy isoflavone or placebo groups for 12 weeks. The soy isoflavone group took 100 mg/d soy isoflavone and the placebo group took the similar tablets containing starch. Anthropometric indices, blood lipids, glycemic parameters and blood pressure were measured at the beginning and at the end of the study. RESULTS: At the end of week 12 the level of serum triglyceride (TG), low density lipoprotein (LDL) and total cholesterol (TC) was significantly decreased only in soy isoflavone group compared to baseline (P < 0.05). Although waist circumference (WC) decreased significantly in both groups after 12 weeks of intervention (P < 0.05), hip circumference (HC) decreased significantly only in soy isoflavone group (P = 0.001). No significant changes observed regarding high density lipoprotein (HDL) and blood pressure in both groups. At the end of the study, serum glucose level was significantly decreased in the placebo group compared to baseline (P = 0.047). No significant changes demonstrated in the soy isoflavone group in regard to glycemic parameters (P > 0.05). CONCLUSIONS: This study revealed that soy isoflavones could significantly reduce TG, LDL TC, WC and HC in NAFLD patients. TRIAL REGISTRATION: The Ethics committee of Ahvaz Jundishapur University of Medical Sciences approved the protocol of the present clinical research (IR.AJUMS.REC.1401.155). The study was in accordance with the Declaration of Helsinki. This study's registered number and date are IRCT20220801055597N1 and 20.09.2022, respectively at https://fa.irct.ir .


Assuntos
Suplementos Nutricionais , Isoflavonas , Hepatopatia Gordurosa não Alcoólica , Humanos , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/dietoterapia , Hepatopatia Gordurosa não Alcoólica/metabolismo , Isoflavonas/farmacologia , Masculino , Feminino , Pessoa de Meia-Idade , Adulto , Glycine max/química
20.
Plant Physiol Biochem ; 210: 108667, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38678946

RESUMO

This study aims to investigate the quality changes of germinated soybeans during refrigerated storage (4 °C), with an emphasis on the stimulatory effect of refrigeration on their special functional compounds. After germinating for two days, germinated soybeans were stored at 4 °C for seven days, while the germinated soybeans stored at 25 °C served as control group. The results showed that refrigerated storage significantly affected the physiological changes in germinated soybeans. The weight loss rate, browning rate, malondialdehyde (MDA) content and H2O2 content all decreased dramatically during refrigerated storage compared to the control group. The total phenolic and total flavonoid contents of germinated soybeans under refrigeration exhibited a trend of increasing and then decreasing over time. Additionally, during refrigerated storage, the total isoflavone content reached a peak of 8.72 g/kg on the fifth day, in which the content of daidzein and glycitin increased by 45% and 49% respectively, when compared with the control group. Moreover, the content of γ-aminobutyric acid (GABA) peaked on the first day, and kept a high level during storage. In which, the refrigerated group was 2.35-, 2.88-, 1.67-fold respectively after storage for three to seven days. These results indicated that refrigeration stimulated the biosynthesis of isoflavones and GABA in germinated soybeans during storage. More importantly, there was a sequential difference in the timing of the stimulation of the two functional components under refrigeration.


Assuntos
Armazenamento de Alimentos , Germinação , Glycine max , Isoflavonas , Refrigeração , Ácido gama-Aminobutírico , Glycine max/metabolismo , Glycine max/crescimento & desenvolvimento , Isoflavonas/metabolismo , Ácido gama-Aminobutírico/metabolismo , Armazenamento de Alimentos/métodos , Malondialdeído/metabolismo , Peróxido de Hidrogênio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...