Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.176
Filtrar
1.
Ambio ; 2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-39093372

RESUMO

Human-driven land use change can result in unequitable outcomes in the provision and appropriation of ecosystem services (ES). To better address equity-related effects of land use change in decision-making, analyses of land use and ES changes under different land use management alternatives should incorporate ecological and social information and take a disaggregated approach to ES analysis. Because such approaches are still scarce in the literature, we present a generalized social-ecological approach to support equitable land use decision-making (in terms of process and outcomes) and an example of its application to a case study in southwestern Ethiopia. We propose a six-step approach that combines scenario planning with equity-focused, disaggregated analyses of ES. Its application in our study area made equity-related effects of land use change explicit through the recognition of different beneficiary groups, value types, and spatial locations. We recommend the application of our approach in other contexts, especially in the Global South.

2.
Ambio ; 2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-39093373

RESUMO

Indonesia is the world's third largest cocoa producer, but production is decreasing since 2011. We revisited cocoa farmers for an environmental assessment in Luwu Timur, Sulawesi, 7 months after a socio-economic survey on cocoa certification outcomes and observed many cocoa plantations being converted into oil palm and maize. Including our field data as well as secondary data on commodity prices and yields, we outline reasons for cocoa conversion, potential consequences for biodiversity, and assess the future outlook for the Indonesian cocoa sector. Low cocoa productivity, volatile cocoa prices and higher revenue for oil palm, among others, drive land-use change. If shade trees are cut during cocoa conversion, it may have negative implications for biodiversity. Solutions to low soil fertility, omnipresent pests and diseases, and stable producer prices are needed to increase profitability of cocoa and prevent conversion of cocoa agroforests to oil palm monocultures.

3.
Sci Total Environ ; : 174960, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39089383

RESUMO

Both natural revegetation and cropping have great impact on long-term soil carbon (C) sequestration, yet the differences in their underlying mechanisms remain unclear. In this study, we investigated trends in soil organic C (SOC) accumulation during natural revegetation (VR) and cropping processes over 24 years, and explored the contributions of microbial necromass and plant-derived C to SOC formation and their primary controls. Over the course of 24 years of land use/cover change (LUCC) from 1995, SOC content exhibited a more substantial increase in VR (0.31 g kg-1 a-1) than in cropland (0.14 g kg-1 a-1) during Stage II (>10 y after LUCC), and recalcitrant organic carbon explained more of the SOC variation than easily oxidizable carbon. The higher SOC content in VR was attributed to a greater contribution of plant-derived C (14-28 %) than that in cropland (3-11 %) to SOC and a consistently lower ratio of cinnamyl (C)- to vanillyl (V)-type phenols in VR across all the assessed years. Although there were higher proportion of microbial necromass of SOC (41-84 %) in cropland than in VR, the differences were not significant. The dominant bacterial phylum of Chloroflexi and soil nitrogen content were the primary biotic and abiotic factors regulating microbial-derived and plant-derived C in both cropland and VR. However, soil phosphorus content was the main factor in cropland, while climatic factors such as mean annual precipitation were more important in VR. These results provided evidence that long-term natural revegetation enhanced SOC sequestration by greater contribution of plant-derived C to SOC formation compared to cropping. These findings underscore the synergistic contribution of vegetation and microorganisms to long-term SOC sequestration, offering insights into the different mechanisms of carbon formation during VR and cropping processes, and providing support for optimizing land management to achieve global carbon neutrality goals.

4.
Sci Total Environ ; : 175082, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39097030

RESUMO

Lake Naivasha, Kenya's second-largest freshwater body is a wetland of international ecological importance and currently subjected to unprecedented anthropogenic influence. The study aims to chronologically reconstruct the main human activities and background weathering reactions that govern metal mobilizations into the lake and their potentially adverse effects on its ecological status. We combine extensive geochemical analyses (major, trace elements, Zn-Pb isotope ratios) in a dated lake sediment record and catchment rocks with remote sensing techniques. Downcore geochemical variations reflect natural ecosystem destabilizations occurring as early as the first half of the 20th century. These coincide with changes towards less radiogenic Pb-isotope values which persist towards the top of the core (206Pb/207Pb = 1.243 at core base ~1843, to 206Pb/207Pb = 1.225 at ~1978). We interpret the land-clearance for agricultural purposes on the Aberdare Range and documented early aviation activities as vectors of this early Pb-isotope excursion. The overlapping Pb-isotope signatures between sediment sources and anthropogenic contributions challenges a straightforward deconvolution of the two. Our conservative model calculations suggest, nevertheless, that an addition of up to ~1.8 % Pb-gasoline influx to the total Pb flux, peaking in the 1980s is able to explain the Pb distribution trend. Homogeneous Zn-isotope compositions in sediments deposited until ~1970s (δ66/64Zn = 0.216-0.225 ‰) do not follow major hydro-climatic events or anthropogenic forcing but reflect lake-specific natural cycling. Subsequent higher variations to both heavier (up to δ66/64Zn = 0.242 ±â€¯0.005 ‰) and lighter (down to δ66/64Zn = 0.184 ±â€¯0.003 ‰) Zn-isotope values are contemporaneous with intensification of large-scale horticultural industry in the catchment. Together with supporting indicators, the lighter Zn-isotope compositions in youngest analysed sediments (21st century) are attributable to increased biological productivity (algal blooms) and ongoing lake eutrophication. Our study demonstrates the applicability of the heavy metal isotope tool to reconstruct human influences on lake environments with complex geological settings such as the East African Rift System.

5.
J R Soc Interface ; 21(216): 20240106, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39045680

RESUMO

Lassa fever is a West African rodent-borne viral haemorrhagic fever that kills thousands of people a year, with 100 000 to 300 000 people a year probably infected by Lassa virus (LASV). The main reservoir of LASV is the Natal multimammate mouse, Mastomys natalensis. There is reported asynchrony between peak infection in the rodent population and peak Lassa fever risk among people, probably owing to differing seasonal contact rates. Here, we developed a susceptible-infected-recovered ([Formula: see text])-based model of LASV dynamics in its rodent host, M. natalensis, with a persistently infected class and seasonal birthing to test the impact of changes to seasonal birthing in the future owing to climate and land use change. Our simulations suggest shifting rodent birthing timing and synchrony will alter the peak of viral prevalence, changing risk to people, with viral dynamics mainly stable in adults and varying in the young, but with more infected individuals. We calculate the time-average basic reproductive number, [Formula: see text], for this infectious disease system with periodic changes to population sizes owing to birthing using a time-average method and with a sensitivity analysis show four key parameters: carrying capacity, adult mortality, the transmission parameter among adults and additional disease-induced mortality impact the maintenance of LASV in M. natalensis most, with carrying capacity and adult mortality potentially changeable owing to human activities and interventions.


Assuntos
Febre Lassa , Vírus Lassa , Murinae , Animais , Febre Lassa/epidemiologia , Febre Lassa/transmissão , Febre Lassa/virologia , Vírus Lassa/fisiologia , Murinae/virologia , Humanos , Modelos Biológicos , Reservatórios de Doenças/virologia , África Ocidental/epidemiologia , Estações do Ano , Feminino
6.
Ecol Evol ; 14(7): e11654, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38979000

RESUMO

Past forest use often has a long-term negative impact on the recovery of the original plant composition of semi-natural grasslands, which is known as a legacy effect. This study investigates the impact of seed dispersal limitations on the restoration of grassland plant diversity on ski slopes with past forest use, highlighting the negative legacy effect on biodiversity recovery. Focusing on ski areas, our research contrasts the vegetation on ski slopes originally created on semi-natural grasslands such as pasture (pasture slopes) and constructed by clearing secondary forests or conifer plantations (forest slopes). We examined species richness and diversity, considering seed dispersal modes, grassland management history, and seed source proximity. We reveal that the proximity to species-rich grassland sources is pivotal for the restoration of native grassland vegetation. Particularly, wind-dispersed species show significant recovery on slopes with sustained management for more than 70 years and those with neighboring species-rich grasslands, suggesting that both the duration of management and the proximity to seed sources are critical for overcoming the legacy effects of past forest use. Meanwhile, gravity-dispersed species failed to recover their richness and diversity regardless of both the duration of management and the proximity to seed source grasslands, which their diversity recovered where seed sources neighbored. Our findings emphasize the importance of considering seed dispersal limitation and management history in the restoration and conservation of grasslands and their biodiversity, particularly in landscapes experiencing past human intervention.

7.
Philos Trans R Soc Lond B Biol Sci ; 379(1909): 20230168, 2024 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-39034700

RESUMO

Species-rich natural and semi-natural ecosystems are under threat owing to land use change. To conserve the biodiversity associated with these ecosystems, we must identify and target conservation efforts towards functionally important species and supporting habitats that create connections between remnant patches in the landscape. Here, we use a multi-layer network approach to identify species that connect a metanetwork of plant-bee interactions in remnant semi-natural grasslands which are biodiversity hotspots in European landscapes. We investigate how these landscape connecting species, and their interactions, persist in their proposed supporting habitat, road verges, across a landscape with high human impact. We identify 11 plant taxa and nine bee species that connect semi-natural grassland patches. We find the beta diversity of these connector species to be low across road verges, indicating a poor contribution of these habitats to the landscape-scale diversity in semi-natural grasslands. We also find a significant influence of the surrounding landscape on the beta diversity of connector species and their interactions with implications for landscape-scale management. Conservation actions targeted toward species with key functional roles as connectors of fragmented ecosystems can provide cost-effective management of the diversity and functioning of threatened ecosystems.This article is part of the theme issue 'Connected interactions: enriching food web research by spatial and social interactions'.


Assuntos
Biodiversidade , Conservação dos Recursos Naturais , Pradaria , Animais , Abelhas/fisiologia , Ecossistema , Plantas/classificação
8.
J Environ Manage ; 366: 121906, 2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-39032258

RESUMO

Increased ecological land (IEL) such as forests and grasslands can greatly enhance ecosystem carbon sinks. Understanding the mechanisms for the magnitude of IEL-induced ecosystem carbon sinks is crucial for achieving carbon neutrality. We estimated the impact of IEL, specifically the increase in forests and grasslands, as well as global changes including atmospheric CO2 concentration, nitrogen deposition, and climate change on net ecosystem productivity (NEP) in National Key Ecological Function Zones (NKEFZs) in China using a calibrated ecological process model. The NEP in NKEFZs in China was calculated to be 119.4 Tg C yr-1, showing an increase of 42.6 Tg C yr-1 from 2001 to 2021. Compared to the slight contributions of climate change (-8.0%), nitrogen deposition (11.5%), and reduction in ecological land (-3.5%), the increase in NEP was primarily attributed to CO2 (66.5%) and IEL (33.5%). Moreover, the effect of IEL (14.8 Tg C yr-1) surpassed that of global change (13.1 Tg C yr-1) in the land use change zone. The IEL-induced NEP is significantly associated with CO2 fertilization, regulated by precipitation and nitrogen deposition. The high values of IEL-induced NEP occurred in areas with precipitation exceeding 800 mm and nitrogen deposition exceeding 25 kg N ha-1 yr-1. We recommend prioritizing the expansion of ecological land in areas with sufficient water and nutrients to enhance CO2 fertilization, while avoiding increasing ecological land in regions facing unfavorable climate change conditions. This study serves as a foundation for comprehending the NEP response to ecological restoration and global change.

9.
J Environ Manage ; 366: 121622, 2024 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-38972185

RESUMO

Land-use land-cover (LULC) change contributes to major ecological impacts, particularly in areas undergoing land abandonment, inducing modifications on habitat structure and species distributions. Alternative land-use policies are potential solutions to alleviate the negative impacts of contemporary tendencies of LULC change on biodiversity. This work analyzes these tendencies in the Montesinho Natural Park (Portugal), an area representative of European abandoned mountain rural areas. We built ecological niche models for 226 species of vertebrates (amphibians, reptiles, birds, and mammals) and vascular plants, using a consensus modelling approach available in the R package 'biomod2'. We projected the models to contemporary (2018) and future (2050) LULC scenarios, under four scenarios aiming to secure relevant ecosystem services and biodiversity conservation for 2050: an afforestation and a rewilding scenario, focused on climate-smart management strategies, and a farmland and an agroforestry recovery scenario, based on re-establishing human traditional activities. We quantified the influences of these scenarios on biodiversity through species habitat suitability changes for 2018-2050. We analyzed how these management strategies could influence indices of functional diversity (functional richness, functional evenness and functional dispersion) within the park. Habitat suitability changes revealed complementary patterns among scenarios. Afforestation and rewilding scenarios benefited more species adapted to habitats with low human influence, such as forests and open woodlands. The highest functional richness and dispersion was predicted for rewilding scenarios, which could improve landscape restoration and provide opportunities for the expansion and recolonization of forest areas by native species. The recovery of traditional farming and agroforestry activities results in the lowest values of functional richness, but these strategies contribute to complex landscape matrices with diversified habitats and resources. Moreover, this strategy could offer opportunities for fire suppression and increase landscape fire resistance. An integrative approach reconciling rewilding initiatives with the recovery of extensive agricultural and agroforestry activities is potentially an harmonious strategy for supporting the provision of ecosystem services while securing biodiversity conservation and functional diversity within the natural park.

10.
Sci China Life Sci ; 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-39028374

RESUMO

Climate and land-use changes are predicted to impact biodiversity, threatening ecosystem services and functions. However, their combined effects on the functional diversity of mammals at the regional scale remain unclear, especially at the beta level. Here, we use projected climate and land-use changes in China to investigate their potential effects on the alpha and beta functional diversities of terrestrial mammals under low- and high-emission scenarios. In the current projection, we showed strong positive spatial correlations between functional richness and species richness. Functional evenness (FEve), functional specialization (FSpe), and functional originality (FOri) decreased with species richness, and functional divergence (FDiv) increased first and then plateaued. Functional beta diversity was dominated by its nestedness component, in contrast to the taxonomic facet. Potential changes in species richness are more strongly influenced by land-use change under the low-emission scenario, while under the high-emission scenario, they are more strongly influenced by climate change. Changes in functional richness (FRic) were inconsistent with those in species richness, with a magnitude of decreases greater than predicted from species richness. Moreover, mammal assemblages showed potential functional differentiation (FD) across the country, and the trends exceeded those towards taxonomic differentiation (TD). Our findings help us understand the processes underlying biodiversity responses to global changes on multiple facets and provide new insight for conservation plans.

11.
Sci Total Environ ; 948: 174611, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38992356

RESUMO

Air pollution induced by fine particulate matter with diameter ≤ 2.5 µm (PM2.5) poses a significant challenge for global air quality management. Understanding how factors such as climate change, land use and land cover change (LULCC), and changing emissions interact to impact PM2.5 remains limited. To address this gap, we employed the Community Earth System Model and examined both the individual and combined effects of these factors on global surface PM2.5 in 2010 and projected scenarios for 2050 under different Shared Socioeconomic Pathways (SSPs). Our results reveal biomass-burning and anthropogenic emissions as the primary drivers of surface PM2.5 across all SSPs. Less polluted regions like the US and Europe are expected to experience substantial PM2.5 reduction in all future scenarios, reaching up to ~5 µg m-3 (70 %) in SSP1. However, heavily polluted regions like India and China may experience varied outcomes, with a potential decrease in SSP1 and increase under SSP3. Eastern China witness ~20 % rise in PM2.5 under SSP3, while northern India may experience ~70 % increase under same scenario. Depending on the region, climate change alone is expected to change PM2.5 up to ±5 µg m-3, while the influence of LULCC appears even weaker. The modest changes in PM2.5 attributable to LULCC and climate change are associated with aerosol chemistry and meteorological effects, including biogenic volatile organic compound emissions, SO2 oxidation, and NH4NO3 formation. Despite their comparatively minor role, LULCC and climate change can still significantly shape future air quality in specific regions, potentially counteracting the benefits of emission control initiatives. This study underscores the pivotal role of changes in anthropogenic emissions in shaping future PM2.5 across all SSP scenarios. Thus, addressing all contributing factors, with a primary focus on reducing anthropogenic emissions, is crucial for achieving sustainable reduction in surface PM2.5 levels and meeting sustainable pollution mitigation goals.

12.
Sci Rep ; 14(1): 15984, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38987401

RESUMO

Land-use change is the main driver of carbon storage change in terrestrial ecosystems. Currently, domestic and international studies mainly focus on the impact of carbon storage changes on climate, while studies on the impact of land-use changes on carbon storage in complex terrestrial ecosystems are few. The Jialing River Basin (JRB), with a total area of ~ 160,000 km2, diverse topography, and elevation differences exceeding 5 km, is an ideal case for understanding the complex interactions between land-use change and carbon storage dynamics. Taking the JRB as our study area, we analyzed land-use changes from 2000 to 2020. Subsequently, we simulated land-use patterns for business-as-usual (BAU), cropland protection (CP), and ecological priority (EP) scenarios in 2035 using the PLUS model. Additionally, we assessed carbon storage using the InVEST model. This approach helps us to accurately understand the carbon change processes in regional complex terrestrial ecosystems and to formulate scientifically informed land-use policies. The results revealed the following: (1) Cropland was the most dominant land-use type (LUT) in the region, and it was the only LUT experiencing net reduction, with 92.22% of newly designated construction land originating from cropland. (2) In the JRB, total carbon storage steadily decreased after 2005, with significant spatial heterogeneity. This pattern was marked by higher carbon storage levels in the north and lower levels in the south, with a distinct demarcation line. The conversion of cropland to construction land is the main factor driving the reduction in carbon storage. (3) Compared with the BAU and EP scenarios, the CP scenario demonstrated a smaller reduction in cropland area, a smaller addition to construction land area, and a lower depletion in the JRB total carbon storage from 2020 to 2035. This study demonstrates the effectiveness of the PLUS and InVEST models in analyzing complex ecosystems and offers data support for quantitatively assessing regional ecosystem services. Strict adherence to the cropland replenishment task mandated by the Chinese government is crucial to increase cropland areas in the JRB and consequently enhance the carbon sequestration capacity of its ecosystem. Such efforts are vital for ensuring the food and ecological security of the JRB, particularly in the pursuit of the "dual-carbon" objective.

13.
Glob Chang Biol ; 30(7): e17411, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39001641

RESUMO

Humans have substantially transformed the global land surface, resulting in the decline in variation in biotic communities across scales, a phenomenon known as "biological homogenization." However, different biota are affected by biological homogenization to varying degrees, but this variation and the underlying mechanisms remain little studied, particularly in soil systems. To address this topic, we used metabarcoding to investigate the biogeography of soil protists and their prey/hosts (prokaryotes, fungi, and meso- and macrofauna) in three human land-use ecosystem types (farmlands, residential areas, and parks) and natural forest ecosystems across subtropical and temperate regions in China. Our results showed that the degree of community homogenization largely differed between taxa and functional groups of soil protists, and was strongly and positively linked to their colonization ability of human land-use systems. Removal analysis showed that the introduction of widespread, generalist taxa (OTUs, operational taxonomic units) rather than the loss of narrow-ranged, specialist OTUs was the major cause of biological homogenization. This increase in generalist OTUs seemingly alleviated the negative impact of land use on specialist taxa, but carried the risk of losing functional diversity. Finally, homogenization of prey/host biota and environmental conditions were also important drivers of biological homogenization in human land-use systems, with their importance being more pronounced in phagotrophic than parasitic and phototrophic protists. Overall, our study showed that the variation in biological homogenization strongly depends on the colonization ability of taxa in human land-use systems, but is also affected by the homogenization of resources and environmental conditions. Importantly, biological homogenization is not the major cause of the decline in the diversity of soil protists, and conservation and study efforts should target at taxa highly sensitive to local extinction, such as parasites.


Assuntos
Biodiversidade , Solo , China , Solo/química , Ecossistema , Microbiologia do Solo , Atividades Humanas , Humanos , Fungos , Florestas
14.
Environ Res ; 259: 119559, 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38969316

RESUMO

Anthropogenic activities significantly impact river ecosystem nutrient fluxes and microbial metabolism. Here, we examined the seasonal and spatial variation of sediments physicochemical parameters and the associated microbiome in the Pengxi river, a representative tributary of Three Gorges Reservoir, in response to seasonal impoundment and land use change by human activities. Results revealed that seasonal impoundment and land use change enhanced total organic carbon (TOC), total nitrogen (TN) and ammonium nitrogen (NH4+-N) concentration in the sediment, but have different effects on sediment microbiome. Sediment microbiota showed higher similarity during the seasonal high-water level (HWL) in consecutive two years. The abundant phyla Acidobacteria, Gemmatimonadetes, Cyanobacteria, Actinobacteria and Planctomycetes significantly increased as water level increased. Along the changes in bacterial taxa, we also observed changes in predicted carbon fixation functions and nitrogen-related functions, including the significantly higher levels of Calvin cycle, 4HB/3HP cycle, 3HP cycle and assimilatory nitrate reduction, while significantly lower level of denitrification. Though land use change significantly increased TOC, TN and NH4+-N concentration, its effects on spatial variation of bacterial community composition and predicted functions was not significant. The finding indicates that TGR hydrologic changes and land use change have different influences on the carbon and nitrogen fluxes and their associated microbiome in TGR sediments. A focus of future research will be on assessing on carbon and nitrogen flux balance and the associated carbon and nitrogen microbial cycling in TGR sediment.

15.
PeerJ ; 12: e17563, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38948225

RESUMO

Changes in land cover directly affect biodiversity. Here, we assessed land-cover change in Cuba in the past 35 years and analyzed how this change may affect the distribution of Omphalea plants and Urania boisduvalii moths. We analyzed the vegetation cover of the Cuban archipelago for 1985 and 2020. We used Google Earth Engine to classify two satellite image compositions into seven cover types: forest and shrubs, mangrove, soil without vegetation cover, wetlands, pine forest, agriculture, and water bodies. We considered four different areas for quantifications of land-cover change: (1) Cuban archipelago, (2) protected areas, (3) areas of potential distribution of Omphalea, and (4) areas of potential distribution of the plant within the protected areas. We found that "forest and shrubs", which is cover type in which Omphalea populations have been reported, has increased significantly in Cuba in the past 35 years, and that most of the gained forest and shrub areas were agricultural land in the past. This same pattern was observed in the areas of potential distribution of Omphalea; whereas almost all cover types were mostly stable inside the protected areas. The transformation of agricultural areas into forest and shrubs could represent an interesting opportunity for biodiversity conservation in Cuba. Other detailed studies about biodiversity composition in areas of forest and shrubs gain would greatly benefit our understanding of the value of such areas for conservation.


Assuntos
Agricultura , Biodiversidade , Conservação dos Recursos Naturais , Cuba , Animais , Mariposas/fisiologia , Florestas
16.
Artigo em Inglês | MEDLINE | ID: mdl-38961449

RESUMO

Woody plants are encroaching across terrestrial ecosystems globally, and this has dramatic effects on how these systems function and the livelihoods of producers who rely on the land to support livestock production. Consequently, the removal of woody plants is promoted widely in the belief that it will reinstate former grasslands or open savanna. Despite this popular management approach to encroachment, we still have a relatively poor understanding of the effects of removal on society, and of alternative management practices that could balance the competing needs of pastoral production, biodiversity conservation and cultural values. This information is essential for maintaining both ecological and societal benefits in encroached systems under predicted future climate changes. In this review, we provide a comprehensive synthesis of the social-ecological perspectives of woody encroachment based on recent studies and global meta-analyses by assessing the ecological impacts of encroachment and its effects on sustainable development goals (SDGs) when woody plants are retained and when they are removed. We propose a working definition of woody encroachment based on species- and community-level characteristics; such a definition is needed to evaluate accurately the effects of encroachment. We show that encroachment is a natural process of succession rather than a sign of degradation, with encroachment resulting in an overall 8% increase in ecosystem multifunctionality. Removing woody plants can increase herbaceous plant richness, biomass and cover, but at the expense of biocrust cover. The effectiveness of woody plant removal depends on plant identity, and where, when and how they are removed. Under current management practices, either removal or retention of woody plants can induce trade-offs among ecosystem services, with no management practice maximising all SDGs [e.g. SDG2 (end hunger), SDG13 (climate change), SDG 15 (combat desertification)]. Given that encroachment of woody plants is likely to increase under future predicted hotter and drier climates, alternative management options such as carbon farming and ecotourism could be effective land uses for areas affected by encroachment.

17.
Conserv Biol ; : e14326, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38949049

RESUMO

Effects of anthropogenic activities, including climate change, are modifying fire regimes, and the dynamic nature of these modifications requires identification of general patterns of organisms' responses to fire. This is a challenging task because of the high complexity of factors involved (including climate, geography, land use, and species-specific ecology). We aimed to describe the responses of the reptile community to fire across a range of environmental and fire-history conditions in the western Mediterranean Basin. We sampled 8 sites that spanned 4 Mediterranean countries. We recorded 6064 reptile sightings of 36 species in 1620 transects and modeled 3 community metrics (total number of individuals, species richness, and Shannon diversity) as responses to environmental and fire-history variables. Reptile community composition was also analyzed. Habitat type (natural vs. afforestation), fire age class (time since the last fire), rainfall, and temperature were important factors in explaining these metrics. The total number of individuals varied according to fire age class, reaching a peak at 15-40 years after the last fire. Species richness and Shannon diversity were more stable during postfire years. The 3 community metrics were higher under postfire conditions than in unburned forest plots. This pattern was particularly prevalent in afforested plots, indicating that the negative effect of fire on reptiles was lower than the negative effect of afforestation. Community composition varied by fire age class, indicating the existence of early- and late-successional species (xeric and saxicolous vs. mesic reptiles, respectively). Species richness was 46% higher in areas with a single fire age class relative to those with a mixture of fire age classes, which indicates pyrodiverse landscapes promoted reptile diversity. An expected shift to more frequent fires will bias fire age distribution toward a predominance of early stages, and this will be harmful to reptile communities.


Respuestas de reptiles al fuego en la Cuenca Mediterránea occidental Resumen Los efectos de actividades antropogénicas, incluyendo el cambio climático, están modificando los regímenes de fuego, y la naturaleza dinámica de estas modificaciones requiere la identificación de patrones generales de las respuestas de los organismos al fuego. Esta es una tarea desafiante debido a la gran complejidad de los factores involucrados (incluyendo clima, geografía, uso de suelo y la ecología de cada especie). Nuestro objetivo fue describir las respuestas de la comunidad de reptiles al fuego bajo diversas condiciones ambientales e historias de fuego en la Cuenca Mediterránea occidental. Muestreamos ocho sitios en cuatro países mediterráneos. Registramos 6064 avistamientos de reptiles de 36 especies en 1620 transectos y modelamos tres métricas comunitarias (número total de individuos, riqueza de especies y diversidad de Shannon) como respuestas a las variables ambientales y de historia de fuego. También analizamos la composición de la comunidad de reptiles. El tipo de hábitat (natural versus forestación), la clase de edad del fuego (tiempo transcurrido desde el último incendio), la precipitación pluvial y la temperatura fueron factores importantes en la explicación de estas métricas. El número total de individuos varió de acuerdo con la clase de edad del fuego, alcanzando un pico a los 15­40 años después del último incendio. La riqueza de especies y la diversidad de Shannon fueron más estables durante los años posteriores a incendios. Las tres métricas de la comunidad fueron más altas bajo condiciones post incendio que en las parcelas sin historial de fuego. Este patrón fue particularmente prevalente en parcelas forestadas, lo cual indica que el efecto negativo del fuego sobre los reptiles fue menor que el efecto negativo de la forestación. La composición de la comunidad varió por clase de edad del fuego, indicando la existencia de especies sucesionales tempranas y tardías (reptiles xéricos y saxícolas, respectivamente). La riqueza de especie fue 46% mas alta en áreas con una sola clase de edad del fuego que en aquellas con una mezcla de clases de edad del fuego, lo cual indica que los paisajes pirodiversos promovieron la diversidad de reptiles. Un cambio esperado hacia incendios más frecuentes sesgará la distribución de la edad del fuego hacia una predominancia de etapas tempranas, y esto será perjudicial para las comunidades de reptiles.

18.
J Environ Manage ; 367: 121993, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39083938

RESUMO

Tropical deforestation in the African continent plays a key role in the global carbon cycle and bears significant implications in terms of climate change and sustainable development. Especially in Sub-Saharan Africa, where more than two-thirds of the population rely on forest and woodland resources for their livelihoods, deforestation and land use changes for crop production lead to a substantial loss of ecosystem-level carbon stock. Unfortunately, the impacts of deforestation and land use change can be more critical than in any other region, but these are poorly quantified. We analyse changes in the main carbon pools (above- and below-ground, soil and litter, respectively) after deforestation and land use/land cover change, for the Jomoro District (Ghana), by assessing the initial reference level of carbon stock for primary forest and the subsequent stock changes and dynamics as a consequence of conversion to the secondary forest and to five different tree plantations (rubber, coconut, cocoa, oil palm, and mixed plantations) on a total of 72 plots. Results indicate overall a statistically significant carbon loss across all the land uses/covers and for all the carbon pools compared to the primary forest with the total carbon stock loss ranging between 35% and 85% but with no statistically significant differences observed in the comparison between primary forest and mixed plantations and secondary forest. Results also suggest that above-ground carbon and soil organic carbon are the primary pools contributing to the total carbon stocks but with opposite trends of carbon loss and accumulation. Strategies for sustainable development, policies to reduce emissions from deforestation and forest degradation, carbon stock enhancement (REDD+), and planning for sustainable land use management should carefully consider the type of conversion and carbon stock dynamics behind land use change for a win-win strategy while preserving carbon stocks potential in tropical ecosystems.

19.
Glob Chang Biol ; 30(8): e17444, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39082602

RESUMO

Converting natural vegetation for agriculture has resulted in the loss of approximately 5% of the current global terrestrial soil organic carbon (SOC) stock to the atmosphere. Increasing the agricultural area under grassland may reverse some of these losses, but the effectiveness of such a strategy is limited by how quickly SOC recovers after conversion from cropland. Using soil data and extensive land-use histories gathered during the national German agricultural soil inventory, this study aims to answer three questions regarding agricultural land-use change (LUC): (i) how do SOC stocks change with depth following LUC; (ii) how long does it take to reach SOC equilibrium after LUC; and (iii) what is the legacy effect of historic LUC on present day SOC dynamics? By using a novel approach that substitutes space for time and accounts for differences in site properties using propensity score balancing, we determined that sites that were converted from cropland to grassland reached a SOC equilibrium level 47.3% (95% confidence interval (CI): 43.4% to 49.5%) above permanent cropland levels 83 years (95% CI: 79 to 90 years) after conversion. Meanwhile, sites converted from grassland to cropland reached a SOC equilibrium level -33.6% (95% CI: -34.1% to -33.5%) below permanent grassland levels after 180 years (95% CI: 151 to 223 years). We estimate that, over the past century, today's German agricultural soils (16.6 million ha) have gained about 40 million Mg C. Furthermore, croplands with historic LUC from grassland are losing SOC by -0.26 Mg ha-1 year-1 (10% of agricultural land) while grasslands historically converted from cropland are gaining SOC by 0.27 Mg ha-1 year-1 (18% of agricultural land). This study shows that even long-standing temperate agricultural sites likely have ongoing SOC change as a result of historical LUC.


Assuntos
Agricultura , Carbono , Solo , Solo/química , Agricultura/história , Alemanha , Carbono/análise , Pradaria
20.
J Environ Manage ; 366: 121813, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39018854

RESUMO

For many years, the Weihe River Basin (WRB) has struggled to achieve a balance between ecological protection and economic growth. Constructing an Ecological Security Pattern (ESP) is extremely important for ensuring ecological security (ES). This study employed a coupling of multi-objective programming (MOP) and the patch-generating land use simulation (PLUS) model to project land use change (LUCC) in 2040 across three scenarios. Leveraging circuit theory, we generated ecological corridors and identified key ecological nodes, enabling a comparative analysis of ESPs within the WRB. The main results showed that: (1) The Ecological Protection (EP) scenario showed the highest proportions of forestland, grassland, and water, indicating an optimal ecological environment. Conversely, the Economic Development (ED) scenario features the greatest proportion of construction land, particularly evident in the rapid urban expansion. The Natural Development (ND) scenario exhibits a more balanced change, aligning closely with historical trends. (2) The ecological source areas in the EP scenario is 13,856.70 km2, with the largest and most intact patch area. The ecological source patches that have been identified in the ED scenario exhibit fragmentation and dispersion, encompassing a total area of 8018.82 km2. The ecological source areas in the ND scenario is most similar to the actual situation in 2020, encompassing 8474.99 km2. (3) The EP scenario demonstrates minimal landscape fragmentation. The ED scenario presents a more intricate corridor pattern, hindering species and energy flow efficiency. The ND scenario is more similar to the actual distribution in 2020. Protecting and restoring key ecological nodes, and ensuring the integrity and connectivity of ecological sources are crucial for ESP optimization in various scenarios. Combining all results, we categorize the WRB's spatial pattern into "three zones, three belts, and one center" and offer strategic suggestions for ecological preservation, promoting sustainable local ecological and socioeconomic development.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...