Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 514
Filtrar
1.
Dig Dis Sci ; 2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-39110366

RESUMO

BACKGROUND: The Bacillus-derived cyclic lipopeptides (surfactin, iturin, and fengycin) form potent Heterogeneous Lipopeptide Micelle (HeLM) complexes. HeLM is a small molecule that has been shown to have immunomodulatory effects. However, how HeLM regulates inflammation is not clear, moreover its application to Inflammatory Bowel Disease (IBD), specifically Ulcerative Colitis (UC), has not been tested before. AIMS: To use a murine model of IBD and determine the effects of HeLM and related molecular mechanisms of action. METHODS: Colitis was induced in mice by administration of 4% Dextran Sodium Sulfate. Three preparations were tested against negative and positive controls: Purified HeLM, the wild-type strain that produces it, and an isogenic mutant that does not produce HeLM. Clinical, biochemical, and histological scoring systems were used to assess the severity of colitis. RT-qPCR and cell cultures were used to determine the levels of molecular signaling. Fecal samples were processed for metagenomic analysis. RESULTS: Purified HeLM, and the wild-type strain, significantly decreased the severity of colitis as determined by the disease activity index (DAI), mouse colitis histology index (MCHI), fecal calprotectin, and colonic length. This effect was not seen in the mutant. HeLM was found to be an agonist to TLR-2, seemingly activating the Toll-Like Receptor 2/IL-10 pathway, with subsequent downregulation of inflammatory cytokines (TNF-α, IL-1ß, and IL-6). At higher concentrations HeLM inhibited lipopolysaccharide ligands from activating TLR-4. The reduction in colitis was not due to microbiome modulation, as had previously been hypothesized. CONCLUSION: Our results indicate that HeLM ameliorates colitis by TLR-2-induced IL-10 production and possibly via the inhibition of lipopolysaccharide.

2.
Artigo em Inglês | MEDLINE | ID: mdl-39088023

RESUMO

A previously isolated lipopeptide biosurfactant-producing bacterium Bacillus licheniformis SCV1 was investigated for the production of the biosurfactant using wastewater from parboiled paddy rice. The biosurfactant thus produced was evaluated for its antifungal property against dermatophyte fungi Trichophyton ajelloi and Microsporum fulvum. Results revealed that the bacterial strain reduced surface tension of the media from 56.16 ± 1 mN/m to 35 ± 0.9 mN/m within 12 h, which further shrank to 29.3 ± 1 mN/m in 24 h of incubation. The yield of the biosurfactant was 3.15 ± 0.25 g/L at 48 h of incubation. The obtained biosurfactant exhibited efficient emulsifying activity against a wide range of hydrophobic substrates such as crude oil, olive oil, engine oil, and kerosene oil used in the study. The critical micelle concentration of the biosurfactant was found to be 80 mg/L. Structural characterization using FT-IR and TLC revealed that the biosurfactant produced by the strain in the wastewater is a lipopeptide consisting of surfactin and iturin. LCMS analysis revealed that the surfactin homologs range from C12 to C17-surfactin while the iturin contains C13 to C17-iturin homologs. It also revealed an in vitro study that the biosurfactant has antifungal properties against dermatophyte fungi Trichophyton ajelloi and Microsporum fulvum. Microscopic observation of the hyphae of the treated dermatophyte revealed disruption and fissure of the mycelia. The chemical composition of the wastewater revealed that it contains adequate nutritional composition and micronutrients to support bacterial growth. This is the first report that the wastewater of parboiled paddy could be used as a low-cost substrate for the production of lipopeptide biosurfactant, and the biosurfactant could be used for preventing dermatophytes fungi.

3.
Methods Mol Biol ; 2821: 111-127, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38997484

RESUMO

Immune stimulants (adjuvants) enhance immune system recognition to provide an effective and individualized immune response when delivered with an antigen. Synthetic cyclic deca-peptides, co-administered with a toll-like receptor targeting lipopeptide, have shown self-adjuvant properties, dramatically boosting the immune response in a murine model as a subunit peptide-based vaccine containing group A Streptococcus peptide antigens.Here, we designed a novel peptide and lipid adjuvant system for the delivery of group A Streptococcus peptide antigen and a T helper peptide epitope. Following linear peptide synthesis on 2-chlorotrityl chloride resin, the linear peptide was cleaved and head-to-tail cyclized in solution. The selective arrangement of amino acids in the deca-peptide allowed for selective conjugation of lipids and/or peptide antigens following cyclisation. Using both solution-phase peptide chemistry and copper-catalyzed azide-alkyne cycloaddition reaction were covalently (and selectively) ligated lipid and/or peptide antigens onto the cyclic deca-peptide core. Subcutaneous administration of the vaccine design to mice resulted in the generation of a large number of serum immunoglobulin (Ig) G antibodies.


Assuntos
Adjuvantes Imunológicos , Imunização , Peptídeos Cíclicos , Vacinas Conjugadas , Animais , Camundongos , Peptídeos Cíclicos/imunologia , Peptídeos Cíclicos/química , Vacinas Conjugadas/imunologia , Vacinas Conjugadas/química , Vacinas Conjugadas/administração & dosagem , Imunização/métodos , Adjuvantes Imunológicos/química , Adjuvantes Imunológicos/administração & dosagem , Injeções Subcutâneas , Vacinas de Subunidades Antigênicas/imunologia , Vacinas de Subunidades Antigênicas/administração & dosagem , Vacinas de Subunidades Antigênicas/química , Streptococcus pyogenes/imunologia , Imunoglobulina G/imunologia , Imunoglobulina G/sangue , Antígenos de Bactérias/imunologia , Antígenos de Bactérias/química , Vacinas de Subunidades Proteicas
4.
Metab Eng ; 85: 35-45, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39019251

RESUMO

Colistin, also known as polymyxin E, is a lipopeptide antibiotic used to treat infections caused by multidrug-resistant gram-negative bacteria. It is considered a "last-line antibiotic", but its clinical development is hindered by low titer and impurities resulting from the presence of diverse homologs in microbial fermentation. To ensure consistent pharmaceutical activity and kinetics, it is crucial to have high-purity colistin active pharmaceutical ingredient (API) in the pharmaceutical industry. This study focused on the metabolic engineering of a natural colistin producer strain to produce colistin with a high titer and purity. Guided by genome mining, we identified Paenibacillus polymyxa ATCC 842 as a natural colistin producer capable of generating a high proportion of colistin A. By systematically inactivating seven non-essential biosynthetic gene clusters (BGCs) of peptide metabolites that might compete precursors with colistin or inhibit colistin production, we created an engineered strain, P14, which exhibited an 82% increase in colistin titer and effectively eliminated metabolite impurities such as tridecaptin, paenibacillin, and paenilan. Additionally, we engineered the L-2,4-diaminobutyric acid (L-2,4-DABA) pathway to further enhance colistin production, resulting in the engineered strain P19, which boosted a remarkable colistin titer of 649.3 mg/L - a 269% improvement compared to the original strain. By concurrently feeding L-isoleucine and L-leucine, we successfully produced high-purity colistin A, constituting 88% of the total colistin products. This study highlights the potential of metabolic engineering in improving the titer and purity of lipopeptide antibiotics in the non-model strain, making them more suitable for clinical use. These findings indicate that efficiently producing colistin API in high purity directly from fermentation can now be achieved in a straightforward manner.

5.
Molecules ; 29(13)2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38998921

RESUMO

The emergence of antimicrobial resistance represents a serious threat to public health and for infections due to multidrug-resistant (MDR) microorganisms, representing one of the most important causes of death worldwide. The renewal of old antimicrobials, such as colistin, has been proposed as a valuable therapeutic alternative to the emergence of the MDR microorganisms. Although colistin is well known to present several adverse toxic effects, its usage in clinical practice has been reconsidered due to its broad spectrum of activity against Gram-negative (GN) bacteria and its important role of "last resort" agent against MDR-GN. Despite the revolutionary perspective of treatment with this old antimicrobial molecule, many questions remain open regarding the emergence of novel phenotypic traits of resistance and the optimal usage of the colistin in clinical practice. In last years, several forward steps have been made in the understanding of the resistance determinants, clinical usage, and pharmacological dosage of this molecule; however, different points regarding the role of colistin in clinical practice and the optimal pharmacokinetic/pharmacodynamic targets are not yet well defined. In this review, we summarize the mode of action, the emerging resistance determinants, and its optimal administration in the treatment of infections that are difficult to treat due to MDR Gram-negative bacteria.


Assuntos
Antibacterianos , Colistina , Farmacorresistência Bacteriana Múltipla , Bactérias Gram-Negativas , Colistina/uso terapêutico , Colistina/farmacologia , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Humanos , Farmacorresistência Bacteriana Múltipla/efeitos dos fármacos , Bactérias Gram-Negativas/efeitos dos fármacos , Infecções por Bactérias Gram-Negativas/tratamento farmacológico , Testes de Sensibilidade Microbiana , Animais
6.
Int J Pharm ; 662: 124492, 2024 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-39038720

RESUMO

PURPOSES: The objective of this study is to develop a versatile gene carrier based on lipopeptides capable of delivering genetic material into target cells with minimal cytotoxicity. METHODS: Two lipopeptide molecules, palmitoyl-CKKHH and palmitoyl-CKKHH-YGRKKRRQRRR-PKKKRKV, were synthesized using solid phase peptide synthesis and evaluated as transfection agents. Physicochemical characterization of the lipopeptides included a DNA shift mobility assay, particle size measurement, and transmission electron microscopy (TEM) analysis. Cytotoxicity was assessed in CHO-K1 and HepG2 cells using the MTT assay, while transfection efficiency was determined by evaluating the expression of the green fluorescent protein-encoding gene. RESULTS: Our findings demonstrate that the lipopeptides can bind, condense, and shield DNA from DNase degradation. The inclusion of the YGRKKRRQRRR sequence, a transcription trans activator, and the PKKKRKV sequence, a nuclear localization signal, imparts desirable properties. Lipopeptide-based TAT-NLS/DNA nanoparticles exhibited stability for up to 20 days when stored at 6-8 °C, displaying uniformity with a compact size of approximately 120 nm. Furthermore, the lipopeptides exhibited lower cytotoxicity compared to the poly-L-lysine. Transfection experiments revealed that protein expression mediated by the lipopeptide occurred at a charge ratio ranging from 4.0 to 8.0. CONCLUSION: These results indicate that the lipopeptide, composed of a palmitoyl alkyl chain and TAT and NLS sequences, can efficiently condense and protect DNA, form stable and uniform nanoparticles, and exhibit promising characteristics as a potential gene carrier with minimal cytotoxicity.

7.
Cell Rep ; 43(7): 114384, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-38970790

RESUMO

Microbial plant pathogens deploy amphipathic cyclic lipopeptides to reduce surface tension in their environment. While plants can detect these molecules to activate cellular stress responses, the role of these lipopeptides or associated host responses in pathogenesis are not fully clear. The gramillin cyclic lipopeptide is produced by the Fusarium graminearum fungus and is a virulence factor and toxin in maize. Here, we show that gramillin promotes virulence and necrosis in both monocots and dicots by disrupting ion balance across membranes. Gramillin is a cation-conducting ionophore and causes plasma membrane depolarization. This disruption triggers cellular signaling, including a burst of reactive oxygen species (ROS), transcriptional reprogramming, and callose production. Gramillin-induced ROS depends on expression of host ILK1 and RBOHD genes, which promote fungal induction of virulence genes during infection and host susceptibility. We conclude that gramillin's ionophore activity targets plant membranes to coordinate attack by the F. graminearum fungus.


Assuntos
Membrana Celular , Fusarium , Lipopeptídeos , Doenças das Plantas , Fusarium/patogenicidade , Fusarium/metabolismo , Lipopeptídeos/farmacologia , Lipopeptídeos/metabolismo , Virulência , Membrana Celular/metabolismo , Doenças das Plantas/microbiologia , Peptídeos Cíclicos/farmacologia , Peptídeos Cíclicos/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Zea mays/microbiologia
8.
Arch Microbiol ; 206(8): 354, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-39017726

RESUMO

Titanium implants are subject to bacterial adhesion and peri-implantitis induction, and biosurfactants bring a new alternative to the fight against infections. This work aimed to produce and characterize the biosurfactant from Bacillus subtilis ATCC 19,659, its anti-adhesion and antimicrobial activity, and cell viability. Anti-adhesion studies were carried out against Streptococcus sanguinis, Staphylococcus aureus, Fusobacterium nucleatum, Aggregatibacter actinomycetemcomitans, Porphyromonas gingivalis, and Proteus mirabilis as the minimum inhibitory concentration and the minimum bactericidal concentration. Cell viability was measured against osteoblast and fibroblast cells. The biosurfactant was classified as lipopeptide, with critical micelle concentration at 40 µg mL- 1, and made the titanium surface less hydrophobic. The anti-adhesion effect was observed for Staphylococcus aureus and Streptococcus sanguinis with 54% growth inhibition and presented a minimum inhibitory concentration of 15.7 µg mL- 1 for Streptococcus sanguinis and Aggregatibacter actinomycetemcomitans. The lipopeptide had no cytotoxic effect and demonstrated high potential application against bacterial biofilms.


Assuntos
Aderência Bacteriana , Biofilmes , Implantes Dentários , Lipopeptídeos , Testes de Sensibilidade Microbiana , Titânio , Titânio/farmacologia , Titânio/química , Biofilmes/efeitos dos fármacos , Biofilmes/crescimento & desenvolvimento , Aderência Bacteriana/efeitos dos fármacos , Implantes Dentários/microbiologia , Lipopeptídeos/farmacologia , Humanos , Antibacterianos/farmacologia , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/fisiologia , Bacillus subtilis/efeitos dos fármacos , Porphyromonas gingivalis/efeitos dos fármacos , Porphyromonas gingivalis/fisiologia , Porphyromonas gingivalis/crescimento & desenvolvimento , Aggregatibacter actinomycetemcomitans/efeitos dos fármacos , Propriedades de Superfície , Fibroblastos/efeitos dos fármacos , Fusobacterium nucleatum/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Osteoblastos/efeitos dos fármacos , Tensoativos/farmacologia
9.
Microbiol Spectr ; 12(8): e0062424, 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-38958463

RESUMO

Growing numbers of infections caused by antibiotic-resistant Streptococcus pneumoniae strains are a major concern for healthcare systems that will require new antibiotics for treatment as well as preventative measures that reduce the number of infections. Lipopeptides are antimicrobial molecules, of which some are used as antibiotics, including the last resort antibiotics daptomycin and polymyxins. Here we have studied the antimicrobial effect of the cyclic lipopeptide viscosin on S. pneumoniae growth and morphology. Most lipopeptides function as surfactants that create pores in membrane layers, which is regarded as their main antimicrobial activity. We show that viscosin can inhibit growth of S. pneumoniae without disintegration of the cytoplasmic membrane. Instead, the cells developed abnormal shapes and misplaced new division sites. The cell wall of these bacteria appeared less dense in electron microscopy images, suggesting that viscosin interfered with normal cell wall synthesis. Corroborating this observation, a luciferase reporter assay was used to show that the two-component systems LiaFSR and CiaRH, which are known to be activated upon cell wall stress, were strongly induced by viscosin. Furthermore, a mutant displaying 1.8-fold decreased susceptibility to viscosin was generated by sequential exposure to increasing concentrations of the lipopeptide. The mutant suffered from significant fitness loss and had mutations in genes involved in fatty acid synthesis, teichoic acid synthesis, and cell wall synthesis as well as transcription and translation. How these mutations might be linked to decreased viscosin susceptibility is discussed.IMPORTANCEStreptococcus pneumoniae is a leading cause of bacterial pneumonia, sepsis, and meningitis in children, and the incidence of infections caused by antibiotic-resistant strains is increasing. Development of new antibiotics is therefore necessary to treat these types of infections in the future. Here, we have studied the activity of the antimicrobial lipopeptide viscosin on S. pneumoniae and show that in addition to having the typical membrane destabilizing activity of lipopeptides, viscosin inhibits pneumococcal growth by obstructing normal cell wall synthesis. This suggests a more specific mode of action than just the surfactant activity. Furthermore, we show that S. pneumoniae does not easily acquire resistance to viscosin, which makes it a promising molecule to explore further, for example, by synthesizing less toxic derivates that can be tested for therapeutic potential.


Assuntos
Antibacterianos , Parede Celular , Farmacorresistência Bacteriana , Lipopeptídeos , Testes de Sensibilidade Microbiana , Streptococcus pneumoniae , Streptococcus pneumoniae/efeitos dos fármacos , Streptococcus pneumoniae/genética , Streptococcus pneumoniae/metabolismo , Antibacterianos/farmacologia , Parede Celular/efeitos dos fármacos , Parede Celular/metabolismo , Farmacorresistência Bacteriana/efeitos dos fármacos , Lipopeptídeos/farmacologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Peptídeos Cíclicos/farmacologia , Humanos
10.
World J Microbiol Biotechnol ; 40(9): 281, 2024 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-39060617

RESUMO

Antibiotics are essential for combating pathogens; however, their misuse has led to increased resistance, necessitating the search for effective, low-toxicity alternatives. Surfactin, a cyclic lipopeptide with a C12-C17 ß-hydroxy fatty acid chain, exhibits significant antibacterial activity and resists resistance, making it a research focus. Nonetheless, the effects of branched-chain amino acids (BCAAs) on surfactin's structure and activity are not well understood. This study examines the influence of BCAAs (L-valine, L-leucine, and L-isoleucine) on the lipopeptide (surfactin) produced by Bacillus velezensis YA215. Process optimization shows that adding 1 g/L of L-Leu and L-Ile, and 0.5 g/L of L-Val, maximized surfactin production to 18.59%, 19.23%, and 20.64%, respectively. Surfactin content peaked at 36 h with L-Val and L-Ile, yielding 19.72% and 11.37%. In contrast, L-Leu addition peaked at 24 h, yielding 11.33%. Notably, L-Val supplementation resulted in the highest relative surfactin content. Antimicrobial testing demonstrated that BCAAs significantly enhance the antibacterial effects of lipopeptides against Escherichia coli and Staphylococcus aureus, with Val showing the most pronounced effect. The addition of BCAAs notably altered the composition of surfactin fatty acid chains. Specifically, Val increased the proportions of iso C14 and iso C16 ß-hydroxy fatty acids from 13.3% and 4.216-23.803% and 8.31%, respectively. Additionally, the amino acid composition at the 7th position of the peptide chain changed significantly, especially with Val addition, which increased the proportion of C14 [Val 7] surfactin by 3.29 times. These structural changes are likely associated with the enhanced antibacterial activity of surfactin. These findings provide valuable insights into the roles of BCAAs in microbial fermentation, underscoring their importance in metabolic engineering to enhance the production of bioactive compounds.


Assuntos
Aminoácidos de Cadeia Ramificada , Antibacterianos , Bacillus , Lipopeptídeos , Testes de Sensibilidade Microbiana , Lipopeptídeos/farmacologia , Lipopeptídeos/química , Bacillus/química , Bacillus/efeitos dos fármacos , Antibacterianos/farmacologia , Antibacterianos/química , Aminoácidos de Cadeia Ramificada/farmacologia , Peptídeos Cíclicos/farmacologia , Peptídeos Cíclicos/química , Fermentação
11.
MedComm (2020) ; 5(8): e666, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39070180

RESUMO

Development of potent and broad-spectrum drugs against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) remains one of the top priorities, especially in the cases of the emergence of mutant viruses and inability of current vaccines to prevent viral transmission. In this study, we have generated a novel membrane fusion-inhibitory lipopeptide IPB29, which is currently under clinical trials; herein, we report its design strategy and preclinical data. First, we surprisingly found that IPB29 with a rigid linker between the peptide sequence and lipid molecule had greatly improved α-helical structure and antiviral activity. Second, IPB29 potently inhibited a large panel of SARS-CoV-2 variants including the previously and currently circulating viruses, such as Omicron XBB.5.1 and EG.5.1. Third, IPB29 could also cross-neutralize the bat- and pangolin-isolated SARS-CoV-2-related CoVs (RatG13, PCoV-GD, and PCoV-GX) and other human CoVs (SARS-CoV, MERS-CoV, HCoV-NL63, and HCoV-229E). Fourth, IPB29 administrated as an inhalation solution (IPB29-IS) in Syrian hamsters exhibited high therapeutic and preventive efficacies against SARS-CoV-2 Delta or Omicron variant. Fifth, the pharmacokinetic profiles and safety pharmacology of IPB29-IS were extensively characterized, providing data to support its evaluation in humans. In conclusion, our studies have demonstrated a novel design strategy for viral fusion inhibitors and offered an ideal drug candidate against SARS-CoV-2 and other coronaviruses.

12.
Biotechnol J ; 19(6): e2400202, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38896411

RESUMO

Daptomycin, a lipopeptide comprising an N-decanoyl fatty acyl chain and a peptide core, is used clinically as an antimicrobial agent. The start condensation domain (dptC1) is an enzyme that catalyzes the lipoinitiation step of the daptomycin synthesis. In this study, we integrated enzymology, protein engineering, and computer simulation to study the substrate selectivity of the start condensation domain (dptC1) and to screen mutants with improved activity for decanoyl loading. Through molecular docking and computer simulation, the fatty acyl substrate channel and the protein-protein interaction interface of dptC1 are analyzed. Key residues at the protein-protein interface between dptC1 and the acyl carrier were mutated, and a single-point mutant showed more than three-folds improved catalytic efficiency of the target n-decanoyl substrate in comparing with the wild type. Moreover, molecular dynamics simulations suggested that mutants with increased catalytic activity may correlated with a more "open" and contracted substrate binding channel. Our work provides a new perspective for the elucidation of lipopeptide natural products biosynthesis, and also provides new resources to enrich its diversity and optimize the production of important components.


Assuntos
Daptomicina , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Engenharia de Proteínas , Daptomicina/biossíntese , Daptomicina/química , Engenharia de Proteínas/métodos , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/química , Especificidade por Substrato , Antibacterianos/biossíntese , Antibacterianos/química , Antibacterianos/metabolismo , Domínios Proteicos
13.
Foods ; 13(11)2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38891014

RESUMO

Plipastatin, an antimicrobial peptide produced by Bacillus subtilis, exhibits remarkable antimicrobial activity against a diverse range of pathogenic bacteria and fungi. However, the practical application of plipastatin has been significantly hampered by its low yield in wild Bacillus species. Here, the native promoters of both the plipastatin operon and the sfp gene in the mono-producing strain M-24 were replaced by the constitutive promoter P43, resulting in plipastatin titers being increased by 27% (607 mg/mL) and 50% (717 mg/mL), respectively. Overexpression of long chain fatty acid coenzyme A ligase (LCFA) increased the yield of plipastatin by 105% (980 mg/mL). A new efflux transporter, YoeA, was identified as a MATE (multidrug and toxic compound extrusion) family member, overexpression of yoeA enhanced plipastatin production to 1233 mg/mL, an increase of 157%, and knockout of yoeA decreased plipastatin production by 70%; in contrast, overexpression or knockout of yoeA in mono-producing surfactin and iturin engineered strains only slightly affected their production, demonstrating that YoeA acts as the major exporter for plipastatin. Co-overexpression of lcfA and yoeA improved plipastatin production to 1890 mg/mL, which was further elevated to 2060 mg/mL after abrB gene deletion. Lastly, the use of optimized culture medium achieved 2514 mg/mL plipastatin production, which was 5.26-fold higher than that of the initial strain. These results suggest that multiple strain engineering is an effective strategy for increasing lipopeptide production, and identification of the novel transport efflux protein YoeA provides new insights into the regulation and industrial application of plipastatin.

14.
Compr Rev Food Sci Food Saf ; 23(4): e13394, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38925624

RESUMO

Lipopeptides are a class of lipid-peptide-conjugated compounds with differing structural features. This structural diversity is responsible for their diverse range of biological properties, including antimicrobial, antioxidant, and anti-inflammatory activities. Lipopeptides have been attracting the attention of food scientists due to their potential as food additives and preservatives. This review provides a comprehensive overview of lipopeptides, their production, structural characteristics, and functional properties. First, the classes, chemical features, structure-activity relationships, and sources of lipopeptides are summarized. Then, the gene expression and biosynthesis of lipopeptides in microbial cell factories and strategies to optimize lipopeptide production are discussed. In addition, the main methods of purification and characterization of lipopeptides have been described. Finally, some biological activities of the lipopeptides, especially those relevant to food systems along with their mechanism of action, are critically examined.


Assuntos
Lipopeptídeos , Lipopeptídeos/química , Lipopeptídeos/biossíntese , Antioxidantes/química , Anti-Infecciosos/química , Anti-Infecciosos/farmacologia , Aditivos Alimentares/química , Conservantes de Alimentos/química , Relação Estrutura-Atividade , Anti-Inflamatórios/química , Anti-Inflamatórios/farmacologia
15.
Anim Sci J ; 95(1): e13971, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38899765

RESUMO

This study investigated the effects of cyclic antimicrobial lipopeptides (CLPs) from Bacillus subtilis on the growth performance, gut morphology, and cecal gene expression and microbiota in broilers; 120 1-day-old unsexed Arbor Acres chicks were randomly divided into four groups, with six replicates in each group and five broilers per cage. These groups were fed a basal diet (C), basal diet plus 10-mg enramycin/kg (E), and basal diet plus 51-mg CLPs/kg (L) or 102-mg CLPs/kg (H). The results indicated that CLP supplementation linearly increased the body weight compared with the C group at 35 days of age. Between 15 and 35 days and 1 and 35 days of age, CLP supplementation linearly increased the average daily gain compared with the C group. The duodenal villus height was significantly increased in the H group compared with the C and E groups. In the cecum, CLP supplementation linearly increased SOD and ZO-1 mRNA expression compared with the C group. ß diversity of microbiota indicated distinct clusters between the groups. CLP supplementation linearly increased the abundance of the genus Lactobacillus in the cecal digesta compared with the C group. These results demonstrate that B. subtilis-produced CLPs dose-dependently increase broilers' growth performance, improve their gut morphology, and modulate their gut microbiota.


Assuntos
Bacillus subtilis , Ceco , Galinhas , Dieta , Suplementos Nutricionais , Microbioma Gastrointestinal , Expressão Gênica , Lipopeptídeos , Animais , Galinhas/crescimento & desenvolvimento , Galinhas/microbiologia , Ceco/microbiologia , Microbioma Gastrointestinal/efeitos dos fármacos , Lipopeptídeos/farmacologia , Expressão Gênica/efeitos dos fármacos , Dieta/veterinária , RNA Mensageiro/metabolismo , Ração Animal , Peptídeos Cíclicos/farmacologia , Peptídeos Cíclicos/administração & dosagem , Lactobacillus , Intestinos/anatomia & histologia , Intestinos/microbiologia , Intestinos/efeitos dos fármacos
16.
Adv Healthc Mater ; : e2401470, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38924797

RESUMO

The incorporation of well-designed antibiotic nanocarriers, along with an antibiotic adjuvant effect, in combination with various antibiotics, offers an opportunity to combat drug-resistant strains. However, precise control over morphology and encapsulated payload release can significantly impact their antibacterial efficacy and synergistic effects when used alongside antibiotics. Here, this study focuses on developing lipopeptide-based nanoantibiotics, which demonstrate an antibiotic adjuvant effect by inducing pH-induced collapse and negative-charged-surface-induced deformation. This enhances the disruption of the bacterial outer membrane and facilitates drug penetration, effectively boosting the antimicrobial activity against drug-resistant strains. The modulation regulations of the lipopeptide nanocarriers with modular design are governed by the authors. The nanoantibiotics, made from lipopeptide and ciprofloxacin (Cip), have a drug loading efficiency of over 80%. The combination with Cip results in a significantly low fractional inhibitory concentration index of 0.375 and a remarkable reduction in the minimum inhibitory concentration of Cip against multidrug-resistant (MDR) Escherichia coli (clinical isolated strains) by up to 32-fold. The survival rate of MDR E. coli peritonitis treated with nanoantibiotics is significantly higher, reaching over 87%, compared to only 25% for Cip and no survival for the control group. Meanwhile, the nanoantibiotic shows no obvious toxicity to major organs.

17.
Microbiol Spectr ; 12(7): e0295223, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38842361

RESUMO

The study aimed to investigate the antibacterial activity, cytotoxicity, and mechanism of action of the non-ionic, cyclic lipopeptide, serrawettin W2-FL10 against Staphylococcus aureus. W2-FL10 exhibited potent activity against the Gram-positive bacteria S. aureus, Enterococcus faecalis, Enterococcus faecium, Listeria monocytogenes, and Bacillus subtilis, with minimum inhibitory concentration (MIC) values ranging from 6.3 to 31.3 µg/mL, while no activity was observed against Gram-negative bacteria. Broth microdilution assays showed that W2-FL10 interacted with key cell membrane components, such as lipid phosphatidyl glycerol and lipoteichoic acid of S. aureus. Upon membrane interaction, W2-FL10 dissipated membrane potential within 12 min and increased S. aureus membrane permeability within 28-40 min, albeit at slower rates and higher concentrations than the lytic peptide melittin. The observed membrane permeability, as detected with propidium iodide (PI), may be attributed to transmembrane pores/lesions, possibly dependent on dimer-driven lipopeptide oligomerization in the membrane. Scanning electron microscopy (SEM) imaging also visually confirmed the formation of lesions in the cell wall of one of the S. aureus strains, and cell damage within 1 h of exposure to W2-FL10, corroborating the rapid time-kill kinetics of the S. aureus strains. This bactericidal action against the S. aureus strains corresponded to membrane permeabilization by W2-FL10, indicating that self-promoted uptake into the cytosol may be part of the mode of action. Finally, this lipopeptide exhibited low to moderate cytotoxicity to the Chinese hamster ovarian (CHO) cell line in comparison to the control (emetine) with an optimal lipophilicity range (log D value of 2.5), signifying its potential as an antibiotic candidate. IMPORTANCE: Antimicrobial resistance is a major public health concern, urgently requiring antibacterial compounds exhibiting low adverse health effects. In this study, a novel antibacterial lipopeptide analog is described, serrawettin W2-FL10 (derived from Serratia marcescens), with potent activity displayed against Staphylococcus aureus. Mechanistic studies revealed that W2-FL10 targets the cell membrane of S. aureus, causing depolarization and permeabilization because of transmembrane lesions/pores, resulting in the leakage of intracellular components, possible cytosolic uptake of W2-FL10, and ultimately cell death. This study provides the first insight into the mode of action of a non-ionic lipopeptide. The low to moderate cytotoxicity of W2-FL10 also highlights its application as a promising therapeutic agent for the treatment of bacterial infections.


Assuntos
Antibacterianos , Membrana Celular , Lipopeptídeos , Testes de Sensibilidade Microbiana , Staphylococcus aureus , Antibacterianos/farmacologia , Antibacterianos/química , Lipopeptídeos/farmacologia , Lipopeptídeos/química , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Animais , Staphylococcus aureus/efeitos dos fármacos , Bactérias Gram-Positivas/efeitos dos fármacos , Permeabilidade da Membrana Celular/efeitos dos fármacos , Ácidos Teicoicos/metabolismo , Ácidos Teicoicos/química , Bactérias Gram-Negativas/efeitos dos fármacos
18.
BMC Microbiol ; 24(1): 227, 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38937715

RESUMO

This study investigated the influence of bacterial cyclic lipopeptides (LP; surfactins, iturins, fengycins) on microbial interactions. The objective was to investigate whether the presence of bacteria inhibits fungal growth and whether this inhibition is due to the release of bacterial metabolites, particularly LP. Selected endophytic bacterial strains with known plant-growth promoting potential were cultured in the presence of Fusarium oxysporum f.sp. strigae (Fos), which was applied as model fungal organism. The extracellular metabolome of tested bacteria, with a focus on LP, was characterized, and the inhibitory effect of bacterial LP on fungal growth was investigated. The results showed that Bacillus velezensis GB03 and FZB42, as well as B. subtilis BSn5 exhibited the strongest antagonism against Fos. Paraburkholderia phytofirmans PsJN, on the other hand, tended to have a slight, though non-significant growth promotion effect. Crude LP from strains GB03 and FZB42 had the strongest inhibitory effect on Fos, with a significant inhibition of spore germination and damage of the hyphal structure. Liquid chromatography tandem mass spectrometry revealed the production of several variants of iturin, fengycin, and surfactin LP families from strains GB03, FZB42, and BSn5, with varying intensity. Using plate cultures, bacillomycin D fractions were detected in higher abundance in strains GB03, FZB42, and BSn5 in the presence of Fos. Additionally, the presence of Fos in dual plate culture triggered an increase in bacillomycin D production from the Bacillus strains. The study demonstrated the potent antagonistic effect of certain Bacillus strains (i.e., GB03, FZB42, BSn5) on Fos development. Our findings emphasize the crucial role of microbial interactions in shaping the co-existence of microbial assemblages.


Assuntos
Antibiose , Antifúngicos , Bacillus , Fusarium , Lipopeptídeos , Fusarium/efeitos dos fármacos , Fusarium/crescimento & desenvolvimento , Lipopeptídeos/farmacologia , Lipopeptídeos/metabolismo , Bacillus/metabolismo , Antifúngicos/farmacologia , Peptídeos Cíclicos/farmacologia , Interações Microbianas , Burkholderiaceae/crescimento & desenvolvimento , Burkholderiaceae/metabolismo , Esporos Fúngicos/efeitos dos fármacos , Esporos Fúngicos/crescimento & desenvolvimento , Hifas/efeitos dos fármacos , Hifas/crescimento & desenvolvimento
19.
Biomed Pharmacother ; 176: 116810, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38823276

RESUMO

Globally, infections due to multi-drug resistant (MDR) Gram-negative bacterial (GNB) pathogens are on the rise, negatively impacting morbidity and mortality, necessitating urgent treatment alternatives. Herein, we report a detailed bio-evaluation of an ultrashort, cationic lipopeptide 'SVAP9I' that demonstrated potent antibiotic activity and acted as an adjuvant to potentiate existing antibiotic classes towards GNBs. Newly synthesized lipopeptides were screened against ESKAPE pathogens and cytotoxicity assays were performed to evaluate the selectivity index (SI). SVAP9I exhibited broad-spectrum antibacterial activity against critical MDR-GNB pathogens including members of Enterobacteriaceae (MIC 4-8 mg/L), with a favorable CC50 value of ≥100 mg/L and no detectable resistance even after 50th serial passage. It demonstrated fast concentration-dependent bactericidal action as determined via time-kill analysis and also retained full potency against polymyxin B-resistant E. coli, indicating distinct mode of action. SVAP9I targeted E. coli's outer and inner membranes by binding to LPS and phospholipids such as cardiolipin and phosphatidylglycerol. Membrane damage resulted in ROS generation, depleted intracellular ATP concentration and a concomitant increase in extracellular ATP. Checkerboard assays showed SVAP9I's synergism with narrow-spectrum antibiotics like vancomycin, fusidic acid and rifampicin, potentiating their efficacy against MDR-GNB pathogens, including carbapenem-resistant Acinetobacter baumannii (CRAB), a WHO critical priority pathogen. In a murine neutropenic thigh infection model, SVAP9I and rifampicin synergized to express excellent antibacterial efficacy against MDR-CRAB outcompeting polymyxin B. Taken together, SVAP9I's distinct membrane-targeting broad-spectrum action, lack of resistance and strong in vitro andin vivopotency in synergism with narrow spectrum antibiotics like rifampicin suggests its potential as a novel antibiotic adjuvant for the treatment of serious MDR-GNB infections.


Assuntos
Antibacterianos , Farmacorresistência Bacteriana Múltipla , Bactérias Gram-Negativas , Lipopeptídeos , Testes de Sensibilidade Microbiana , Animais , Antibacterianos/farmacologia , Farmacorresistência Bacteriana Múltipla/efeitos dos fármacos , Bactérias Gram-Negativas/efeitos dos fármacos , Camundongos , Lipopeptídeos/farmacologia , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Infecções por Bactérias Gram-Negativas/tratamento farmacológico , Infecções por Bactérias Gram-Negativas/microbiologia , Sinergismo Farmacológico , Feminino , Humanos , Adjuvantes Farmacêuticos/farmacologia
20.
Microb Cell Fact ; 23(1): 144, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38773450

RESUMO

Fengycin is an important member of the lipopeptide family with a wide range of applications in the agricultural, food, medical and cosmetic industries. However, its commercial application is severely hindered by low productivity and high cost. Therefore, numerous studies have been devoted to improving the production of fengycin. We summarize these studies in this review with the aim of providing a reference and guidance for future researchers. This review begins with an overview of the synthesis mechanism of fengycin via the non-ribosomal peptide synthetases (NRPS), and then delves into the strategies for improving the fengycin production in recent years. These strategies mainly include fermentation optimization and metabolic engineering, and the metabolic engineering encompasses enhancement of precursor supply, application of regulatory factors, promoter engineering, and application of genome-engineering (genome shuffling and genome-scale metabolic network model). Finally, we conclude this review with a prospect of fengycin production.


Assuntos
Lipopeptídeos , Engenharia Metabólica , Engenharia Metabólica/métodos , Lipopeptídeos/biossíntese , Lipopeptídeos/metabolismo , Fermentação , Peptídeo Sintases/genética , Peptídeo Sintases/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...