Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 12163, 2024 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-38806553

RESUMO

Hepatocellular carcinoma (HCC) is a significant contributor to morbidity and mortality worldwide. The interaction between receptors and ligands is the primary mode of intercellular signaling and plays a vital role in the progression of HCC. This study aimed to identify the macrophage-related receptor ligand marker genes associated with HCC and further explored the molecular immune mechanisms attributed to altered biomarkers. Single-cell RNA sequencing data containing primary and recurrent samples were downloaded from the China National GeneBank. Cell types were first identified to explore differences between immune cells from different sample sources. CellChat analysis was used to infer and analyze intercellular communication networks quantitatively. Three molecular subtypes were constructed based on the screened twenty macrophage-associated receptor ligand genes. Bulk RNA-Seq data were downloaded from The Cancer Genome Atlas and Gene Expression Omnibus databases. After the screening, the minor absolute shrinkage and selection operator (LASSO) regression model was employed to identify key markers. After collecting peripheral blood and clinical information from patients, an enzyme-linked immunosorbent assay (ELISA) was used to detect the correlation between key markers and IL-10, one of the macrophage markers. After developing a new HCC risk adjustment model and conducting analysis, it was found that there were significant differences in immune status and gene mutations between the high-risk and low-risk groups of patients based on macrophage-associated receptor and ligand genes. This study identified SPP1, ANGPT2, and NCL as key biological targets for HCC. The drug-gene interaction network analysis identified wortmannin, ribavirin, and tarnafloxin as potential therapeutic drugs for the three key markers. In a clinical cohort study, patients with immune checkpoint inhibitor (ICI) resistance had significantly higher expression levels of OPN, ANGPT2, NCL, and IL-10 than patients with ICI-responsiveness. These three key markers were positively correlated with the expression level of IL-10. The signature based on macrophage-associated receptor and ligand genes can accurately predict the prognosis of patients with HCC and the sensitivity to immunotherapy. These results may help guide the development of targeted prevention and personalized treatment of HCC.


Assuntos
Biomarcadores Tumorais , Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/metabolismo , Prognóstico , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Ligantes , Masculino , Feminino , Pessoa de Meia-Idade , Regulação Neoplásica da Expressão Gênica , Receptores Imunológicos/genética , Receptores Imunológicos/metabolismo , Interleucina-10/genética , Interleucina-10/metabolismo , Macrófagos/metabolismo , Macrófagos/imunologia , Multiômica
2.
Front Immunol ; 14: 1170223, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37662928

RESUMO

Introduction: Tumor-associated macrophage 2 (TAM2) abundantly infiltrates pancreatic ductal adenocarcinoma (PAAD), and its interaction with malignant cells is involved in the regulation of tumor metabolism. In this study, we explored the metabolic heterogeneity involved in TAM2 by constructing TAM2-associated metabolic subtypes in PAAD. Materials and methods: PAAD samples were classified into molecular subtypes with different metabolic characteristics based on a multi-omics analysis strategy. 20 PAAD tissues and 10 normal pancreatic tissues were collected for proteomic and metabolomic analyses. RNA sequencing data from the TCGA-PAAD cohort were used for transcriptomic analyses. Immunohistochemistry was used to assess TAM2 infiltration in PAAD tissues. Results: The results of transcriptomics and immunohistochemistry showed that TAM2 infiltration levels were upregulated in PAAD and were associated with poor patient prognosis. The results of proteomics and metabolomics indicated that multiple metabolic processes were aberrantly regulated in PAAD and that this dysregulation was linked to the level of TAM2 infiltration. WGCNA confirmed pyruvate and glycolysis/gluconeogenesis as co-expressed metabolic pathways of TAM2 in PAAD. Based on transcriptomic data, we classified the PAAD samples into four TAM2-associated metabolic subtypes (quiescent, pyruvate, glycolysis/gluconeogenesis and mixed). Metabolic subtypes were each characterized in terms of clinical prognosis, tumor microenvironment, immune cell infiltration, chemotherapeutic drug sensitivity, and functional mechanisms. Conclusion: Our study confirmed that the metabolic remodeling of pyruvate and glycolysis/gluconeogenesis in PAAD was closely related to TAM2. Molecular subtypes based on TAM2-associated metabolic pathways provided new insights into prognosis prediction and therapy for PAAD patients.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Ácido Pirúvico , Proteômica , Transcriptoma , Neoplasias Pancreáticas/genética , Metabolômica , Carcinoma Ductal Pancreático/genética , Glicólise , Microambiente Tumoral , Neoplasias Pancreáticas
3.
Chem Biol Drug Des ; 102(5): 1202-1212, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37599210

RESUMO

The present study was to investigate the underlying mechanism of the antitumor effect of curcumin in colorectal cancer cells, focusing on the M2 polarization of tumor-associated macrophages (TAMs). The effect of curcumin on the malignant behavior of colorectal cancer cells was investigated by WST assay for cell growth, and Transwell assay for cell migration/invasion. THP-1 cells were differentiated into macrophages and coculture with colorectal cancer cells to study the influence of curcumin on M2 polarization, presenting as the levels of ARG1 mRNA, IL-10, and CD163-positive cells. GEO database was searched for the shared altered gene of curcumin in colorectal cells and human monocytes. Molecular docking was used to visualize the binding between curcumin and MACC1. Curcumin restricted the proliferation, apoptosis, and migration/invasion of HCT 116 and SW620 cells. Curcumin attenuated levels of the M2 macrophage markers, CD163 + cells, IL-10 secretion, and ARG1 mRNA. MACC1 was a target of curcumin in colorectal cancer cells, relating to macrophage. Rescue experiments showed that MACC1 overexpression can reverse the antitumor effect of curcumin in colorectal cancer cells and M2 polarization of TAMs. Curcumin's antiproliferative and anti-migratory effects in colorectal cancer cells may be mediated by MACC1 and inhibition of M2 polarization of TAMs.


Assuntos
Neoplasias do Colo , Neoplasias Colorretais , Curcumina , Humanos , Interleucina-10/genética , Interleucina-10/farmacologia , Macrófagos Associados a Tumor/metabolismo , Macrófagos Associados a Tumor/patologia , Curcumina/farmacologia , Simulação de Acoplamento Molecular , Linhagem Celular Tumoral , Proliferação de Células , Neoplasias Colorretais/tratamento farmacológico , RNA Mensageiro , Microambiente Tumoral , Transativadores/farmacologia
4.
J Reprod Immunol ; 152: 103649, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35714422

RESUMO

Endometriosis (EMs) is a common gynecological disease whose pathogenesis remains unclear. Immunological factors have been a key hotspot in recent years. Peritoneal fluid samples from women with EMs show defectively activated macrophages (MΦs) and strong NOD-like receptor family pyrin domain containing 3 (NLRP3) expression. Activated MΦs secrete interleukin 1ß, which stimulates migration of endometrial stromal cells (ESCs) and promotes accumulation of extracellular matrix. Levels of interleukin 1ß in peritoneal fluid were significantly higher in patients with stage III-IV EMs compared with stage I-II EMs. We also found that the size and weight of endometrial lesions in NLRP3-/- mice were significantly lower than those of wild-type mice, and this phenomenon was reversed by intraperitoneally injecting peritoneal MΦs derived from wild-type mice. Moreover, we observed that the NLRP3 inflammasome was activated in MΦs by crosstalk between MΦs and ESCs. Targeted inhibition of NLRP3 significantly reduced lesion development in vivo and suppressed the migration ability of ESCs in vitro. Collectively, these findings suggest that the occurrence of EMs may be associated with the interaction between MΦs and ESCs.


Assuntos
Endometriose , Animais , Feminino , Interleucina-1beta/metabolismo , Macrófagos/metabolismo , Camundongos , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Transdução de Sinais , Células Estromais
5.
Mol Cell Biochem ; 468(1-2): 153-168, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32222879

RESUMO

Accumulating evidence indicates that ceramide (Cer) and palmitic acid (PA) possess the ability to modulate switching of macrophage phenotypes and possess anti-tumorigenic effects; however, the underlying molecular mechanisms are largely unknown. The aim of the present study was to investigate whether Cer and PA could induce switching of macrophage polarization from the tumorigenic M2- towards the pro-inflammatory M1-phenotype, and whether this consequently altered the potential of colorectal cancer cells to undergo epithelial-mesenchymal transition (EMT), a hallmark of tumor progression. Our study showed that Cer- and PA-treated macrophages increased expression of the macrophage 1 (M1)-marker CD68 and secretion of IL-12 and attenuated expression of the macrophage 2 (M2)-marker CD163 and IL-10 secretion. Moreover, Cer and PA abolished M2 macrophage-induced EMT and migration of colorectal cancer cells. At the molecular level, this coincided with inhibition of SNAI1 and vimentin expression and upregulation of E-cadherin. Furthermore, Cer and PA attenuated expression levels of IL-10 in colorectal cancer cells co-cultured with M2 macrophages and downregulated STAT3 and NF-κB expression. For the first time, our findings suggest the presence of an IL-10-STAT3-NF-κB signaling axis in colorectal cancer cells co-cultured with M2 macrophages, mimicking the tumor microenvironment. Importantly, PA and Cer were powerful inhibitors of this signaling axis and, consequently, EMT of colorectal cancer cells. These results contribute to our understanding of the immunological mechanisms that underlie the anti-tumorigenic effects of lipids for future combination with drugs in the therapy of colorectal carcinoma.


Assuntos
Ceramidas/farmacologia , Neoplasias Colorretais/metabolismo , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Macrófagos/metabolismo , Ácido Palmítico/farmacologia , Animais , Antígenos CD/metabolismo , Antígenos de Diferenciação Mielomonocítica/metabolismo , Caderinas/metabolismo , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Interleucina-10/farmacologia , Ativação de Macrófagos/efeitos dos fármacos , Camundongos , NF-kappa B/metabolismo , Células RAW 264.7 , Receptores de Superfície Celular/metabolismo , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...