Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 85
Filtrar
Mais filtros












Intervalo de ano de publicação
1.
Toxics ; 12(4)2024 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-38668486

RESUMO

Acute intoxication with organophosphorus (OP) cholinesterase inhibitors can produce seizures that rapidly progress to life-threatening status epilepticus. Significant research effort has been focused on investigating the involvement of muscarinic acetylcholine receptors (mAChRs) in OP-induced seizure activity. In contrast, there has been far less attention on nicotinic AChRs (nAChRs) in this context. Here, we address this data gap using a combination of in vitro and in vivo models. Pharmacological antagonism and genetic deletion of α4, but not α7, nAChR subunits prevented or significantly attenuated OP-induced electrical spike activity in acute hippocampal slices and seizure activity in mice, indicating that α4 nAChR activation is necessary for neuronal hyperexcitability triggered by acute OP exposures. These findings not only suggest that therapeutic strategies for inhibiting the α4 nAChR subunit warrant further investigation as prophylactic and immediate treatments for acute OP-induced seizures, but also provide mechanistic insight into the role of the nicotinic cholinergic system in seizure generation.

2.
Front Physiol ; 15: 1345397, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38405118

RESUMO

Acetylcholine (ACh) is a major excitatory neurotransmitter in the insect central nervous system, and insect neurons express several types of ACh receptors (AChRs). AChRs are classified into two subgroups, muscarinic AChRs and nicotinic AChRs (nAChRs). nAChRs are also divided into two subgroups by sensitivity to α-bungarotoxin (α-BGT). The cricket Gryllus bimaculatus is one of the useful insects for studying the molecular mechanisms in olfactory learning and memory. However, the roles of nAChRs in olfactory learning and memory of the cricket are still unknown. In the present study, to investigate whether nAChRs are involved in cricket olfactory learning and memory, we tested the effects of two different AChR antagonists on long-term memory (LTM) formation and retrieval in a behavioral assay. The two AChR antagonists that we used are mecamylamine (MEC), an α-BGT-insensitive nAChR antagonist, and methyllycaconitine (MLA), an α-BGT-sensitive nAChR antagonist. In crickets, multiple-trial olfactory conditioning induced 1-day memory (LTM), whereas single-trial olfactory conditioning induced 1-h memory (mid-term memory, MTM) but not 1-day memory. Crickets injected with MEC 20 min before the retention test at 1 day after the multiple-trial conditioning exhibited no memory retrieval. This indicates that α-BGT-insensitive nAChRs participate in memory retrieval. In addition, crickets injected with MLA before the multiple-trial conditioning exhibited MTM but not LTM, indicating that α-BGT-sensitive nAChRs participate in the formation of LTM. Moreover, injection of nicotine (an nAChR agonist) before the single-trial conditioning induced LTM. Finally, the nitric oxide (NO)-cGMP signaling pathway is known to participate in the formation of LTM in crickets, and we conducted co-injection experiments with an agonist or inhibitor of the nAChR and an activator or inhibitor of the NO-cGMP signaling pathway. The results suggest that nAChR works upstream of the NO-cGMP signaling system in the LTM formation process.

3.
J Psychopharmacol ; 38(3): 280-296, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38332661

RESUMO

BACKGROUND: Addiction to tobacco and nicotine products has adverse health effects and afflicts more than a billion people worldwide. Therefore, there is an urgent need for new treatments to reduce tobacco and nicotine use. Glucocorticoid receptor blockade shows promise as a novel treatment for drug abuse and stress-related disorders. AIM: These studies aim to investigate whether glucocorticoid receptor blockade with mifepristone diminishes the reinforcing properties of nicotine in rats with intermittent or daily long access to nicotine. METHODS: The rats self-administered 0.06 mg/kg/inf of nicotine for 6 h per day, with either intermittent or daily access for 4 weeks before treatment with mifepristone. Daily nicotine self-administration models regular smoking, while intermittent nicotine self-administration models occasional smoking. To determine whether the rats were dependent, they were treated with the nicotinic acetylcholine receptor antagonist mecamylamine, and somatic signs were recorded. RESULTS: The rats with intermittent access to nicotine had a higher level of nicotine intake per session than those with daily access but only the rats with daily access to nicotine showed signs of physical dependence. Furthermore, mecamylamine increased nicotine intake during the first hour of access in rats with daily access but not in those with intermittent access. Mifepristone decreased total nicotine intake in rats with intermittent and daily access to nicotine. Moreover, mifepristone decreased the distance traveled and rearing in the open field test and operant responding for food pellets. CONCLUSION: These findings indicate that mifepristone decreases nicotine intake but this effect may be partially attributed to the sedative effects of mifepristone.


Assuntos
Síndrome de Abstinência a Substâncias , Tabagismo , Humanos , Ratos , Animais , Nicotina , Mecamilamina/farmacologia , Mifepristona/farmacologia , Mifepristona/uso terapêutico , Fumar , Receptores de Glucocorticoides , Tabagismo/tratamento farmacológico , Síndrome de Abstinência a Substâncias/tratamento farmacológico , Ratos Wistar , Autoadministração , Relação Dose-Resposta a Droga
4.
Cureus ; 15(2): e35086, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36938244

RESUMO

A chronic, recurring illness, known as nicotine addiction and dependence, is defined by a person's dependence on the substance up to the extent that their normal day-to-day activities are compromised in the absence of the substance. This paper will highlight first-line smoking cessation treatments, such as nicotine replacement therapy (NRT), bupropion, and varenicline, and second-line medications, such as clonidine, nortriptyline, anxiolytics, mecamylamine, naltrexone, and NicVAX (Nabi Biopharmaceuticals, Rockville, MD, USA). NRT offers many options for nicotine delivery methods, comprising nicotine gum, rapid-release gum, lozenges, transdermal patches, high-dose nicotine patches, oral inhalers, nasal sprays, electronic nicotine delivery systems (ENDS), and sublingual tablets. Pharmacotherapies for quitting tobacco should lessen withdrawal symptoms and stop nicotine's reinforcing effects without having too many side effects.

5.
Pharmacol Res ; 189: 106698, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36796465

RESUMO

Despite recent advances in understanding the causes of epilepsy, especially the genetic, comprehending the biological mechanisms that lead to the epileptic phenotype remains difficult. A paradigmatic case is constituted by the epilepsies caused by altered neuronal nicotinic acetylcholine receptors (nAChRs), which exert complex physiological functions in mature as well as developing brain. The ascending cholinergic projections exert potent control of forebrain excitability, and wide evidence implicates nAChR dysregulation as both cause and effect of epileptiform activity. First, tonic-clonic seizures are triggered by administration of high doses of nicotinic agonists, whereas non-convulsive doses have kindling effects. Second, sleep-related epilepsy can be caused by mutations on genes encoding nAChR subunits widely expressed in the forebrain (CHRNA4, CHRNB2, CHRNA2). Third, in animal models of acquired epilepsy, complex time-dependent alterations in cholinergic innervation are observed following repeated seizures. Heteromeric nAChRs are central players in epileptogenesis. Evidence is wide for autosomal dominant sleep-related hypermotor epilepsy (ADSHE). Studies of ADSHE-linked nAChR subunits in expression systems suggest that the epileptogenic process is promoted by overactive receptors. Investigation in animal models of ADSHE indicates that expression of mutant nAChRs can lead to lifelong hyperexcitability by altering i) the function of GABAergic populations in the mature neocortex and thalamus, ii) synaptic architecture during synaptogenesis. Understanding the balance of the epileptogenic effects in adult and developing networks is essential to plan rational therapy at different ages. Combining this knowledge with a deeper understanding of the functional and pharmacological properties of individual mutations will advance precision and personalized medicine in nAChR-dependent epilepsy.


Assuntos
Epilepsia , Receptores Nicotínicos , Animais , Receptores Nicotínicos/genética , Agonistas Nicotínicos/farmacologia , Convulsões , Fenótipo
6.
Psychopharmacology (Berl) ; 240(4): 871-880, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36795109

RESUMO

RATIONALE: Acetylcholinergic antagonists have shown some promise in reducing addiction-related behaviors in both preclinical and clinical studies. However, the psychological mechanisms by which these drugs are able to affect addictive behavior remain unclear. A particular key process for the development of addiction is the attribution of incentive salience to reward-related cues, which can be specifically measured in animals using a Pavlovian conditioned approach procedure. When confronted with a lever that predicts food delivery, some rats engage with the lever directly (i.e., they sign track), indicating attribution of incentive-motivational properties to the lever itself. In contrast, others treat the lever as a predictive cue and approach the location of impending food delivery (i.e., they goal track), without treating the lever itself as a reward. OBJECTIVES: We tested whether systemic antagonism of the either nicotinic or muscarinic acetylcholine receptors would selectively affect sign- or goal-tracking behavior, indicating a selective effect on incentive salience attribution. METHODS: A total of 98 male Sprague Dawley rats were either given the muscarinic antagonist scopolamine (100, 50, or 10 µg/kg i.p.) or the nicotinic antagonist mecamylamine (0.3, 1.0, or 3 mg/kg i.p.) before being trained on a Pavlovian conditioned approach procedure. RESULTS: Scopolamine dose-dependently decreased sign tracking behavior and increased goal-tracking behavior. Mecamylamine reduced sign-tracking but did not affect goal-tracking behavior. CONCLUSIONS: Antagonism of either muscarinic or nicotinic acetylcholine receptors can reduce incentive sign-tracking behavior in male rats. This effect appears to be specifically due to a reduction in incentive salience attribution since goal-tracking either increased or was not affected by these manipulations.


Assuntos
Motivação , Nicotina , Ratos , Animais , Masculino , Ratos Sprague-Dawley , Nicotina/farmacologia , Mecamilamina/farmacologia , Recompensa , Derivados da Escopolamina/farmacologia , Sinais (Psicologia)
7.
Biomed Rep ; 18(2): 13, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36643694

RESUMO

Acetylcholine (ACh), as a ligand of nicotinic acetylcholine receptors (nAChRs), plays a key role in the cholinergic anti-inflammatory pathway; however, its role in the immunoglobulin A (IgA) response remains unknown. Therefore, the present study aimed to investigate the role of ACh in the intestinal biomarkers involved in IgA synthesis and the polymeric immunoglobulin receptor (pIgR) involved in IgA transcytosis. Groups of mice were administered GTS-21 (an α7nAChR agonist) or mecamylamine (a non-selective nAChR antagonist) intraperitoneally for 7 days. Intestinal fluids were used for antibody concentration assessment by ELISA, cell suspensions from Peyer's patches and the lamina propria were obtained for flow cytometric analysis of plasma cells, and CD4+ T-cells expressing intracellular transforming growth factor (TGF)-ß and IgA-producing interleukin (IL)-4, -5, -6 and -10, and isolated epithelial cells to determine the levels of pIgR mRNA using reverse transcription-quantitative PCR. Regarding to the untreated control group, the concentration of IgA was reduced in the mecamylamine group and unaltered in the GTS-21 group while IgM levels exhibited no differences; the percentage of IgA+ plasma cells from Peyer's patches and the lamina propria, and the percentage of TGF-ß+/CD4+ T-cells from Peyer's patches were greater in the GTS-21-group. In both treatment groups, the percentages of IgM+ plasma cells and IL-6+/IL-10+ CD4+ T cells were greater in both compartments; pIgR mRNA expression levels decreased in epithelial cells. The percentage of IL-4 CD4+ T-cells were greater in Peyer's patches and lower in the lamina propria in the mecamylamine group, and the percentage of IL-5 CD4+ T-cells in the lamina propria were decreased in both treatment groups. These findings require further examination to address the impact of cholinergic modulation on IgA-transcytosis via pIgR. The present study may be an experimental reference for clinical trials that address the role of nicotinic system in intestinal dysfunctions as postoperative ileus.

8.
Neural Regen Res ; 18(2): 364-367, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35900431

RESUMO

Therapeutic intervention for spinal cord injury is limited, with many approaches relying on strengthening the remaining substrate and driving recovery through rehabilitative training. As compared with learning novel compensatory strategies, rehabilitation focuses on restoring movements lost to injury. Whether rehabilitation of previously learned movements after spinal cord injury requires the molecular mechanisms of motor learning, or if it engages previously trained motor circuits without requiring novel learning remains an open question. In this study, mice were randomly assigned to receive intraperitoneal injection with the pan-nicotinic, non-competitive antagonist mecamylamine and the nicotinic α7 subunit selective antagonist methyllycaconitine citrate salt or vehicle (normal saline) prior to motor learning assays, then randomly reassigned after motor learning for rehabilitation study post-injury. Cervical spinal cord dorsal column lesion was used as a model of incomplete injury. Results of this study showed that nicotinic acetylcholine signaling was required for motor learning of the single pellet-reaching task but it was dispensable for the rehabilitation of the same task after injury. Our findings indicate that critical differences exist between the molecular mechanisms supporting compensatory motor learning strategies and the restoration of behavior lost to spinal cord injury.

9.
Neurosci Biobehav Rev ; 142: 104910, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36228926

RESUMO

It has been more than thirty years since the two inaugural IBNS presidents sat down at a larger neuroscience conference and decided that there should be more to behavioral neuroscience than a single theme at a meeting. The progeny of these conversations is the International Behavioral Neuroscience Society (IBNS) and this year will be its thirty year anniversary. We reflect back on the last thirty years of the research career of the society's second president, Paul R. Sanberg, as an example of how behavioral neuroscience research has changed these last few decades.


Assuntos
Neurociências , Síndrome de Tourette , Humanos , Pesquisa Comportamental , Comunicação
10.
Mol Brain ; 15(1): 77, 2022 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-36068635

RESUMO

Nicotinic acetylcholine receptors are thought to be associated with a wide range of phenomena, such as movement, learning, memory, attention, and addiction. However, the causal relationship between nicotinic receptor activity and behavior remains unclear. Contrary to the studies that examined the functions of muscarinic acetylcholine receptors, the role of the nicotinic acetylcholine receptors on behavior has not been examined as extensively. Here, we examined the effects of intraperitoneal injection of mecamylamine, a nicotinic acetylcholine receptor antagonist, on the performance of male mice in a head-fixed temporal conditioning task and a free-moving open-field task. The head-fixed experimental setup allowed us to record and precisely quantify the licking response while the mice performed the behavioral task with no external cues. In addition, by combining the utility of the head-fixed experimental design with computer vision analysis based on deep learning algorithms, we succeeded in quantifying the eyelid size of awake mice. In the temporal conditioning task, we delivered a 10% sucrose solution every 10 s using a blunt-tipped needle placed within the licking distance of the mice. After the training, the mice showed increased anticipatory licking toward the timing of sucrose delivery, suggesting that the mice could predict the timing of the reward. Systemic injection of mecamylamine decreased licking behavior and caused eye closure but had no effect on learned conditioned predictive behavior in the head-fixed temporal conditioning task. In addition, the injection of mecamylamine decreased spontaneous locomotor activity in a dose-dependent manner in the free-moving open-field task. The results in the open-field experiments further revealed that the effect of mecamylamine on fecal output and urination, suggesting the effects on autonomic activities. Our achievement of successful eyelid size recording has potential as a useful approach in initial screening for drug discovery. Our study paves a way forward to understanding the role of nicotinic acetylcholine receptors on learning and behavior.


Assuntos
Antagonistas Nicotínicos , Receptores Nicotínicos , Animais , Relação Dose-Resposta a Droga , Pálpebras , Masculino , Mecamilamina/farmacologia , Camundongos , Antagonistas Nicotínicos/farmacologia , Receptores Nicotínicos/fisiologia , Sacarose
11.
Psychopharmacology (Berl) ; 239(9): 3019-3029, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35802143

RESUMO

RATIONALE: The central cholinergic system is a major therapeutic target for restoring cognitive functions. Although manipulation of cholinergic signaling is known to alter working memory (WM), the underlying mechanism remains unclear. It is widely accepted that WM consists of multiple functional modules, one storing short-term memory and the other manipulating and utilizing it. A recently developed visual search task and a relevant model can be used to assess multiple components of WM during administration of acetylcholine receptor (AChR)-related substances. OBJECTIVES: The effects of systemic administration of AChR-related agents on WM and eye movements were examined during the oculomotor foraging task. METHODS: Three monkeys performing the task received an intramuscular injection of saline or the following AChR-related agents: nicotine (24 or 56 µg/kg), mecamylamine (nicotinic AChR antagonist, 1.0 mg/kg), oxotremorine (muscarinic AChR agonist, 3.0 µg/kg), and scopolamine (muscarinic AChR antagonist, 20 µg/kg). The task was to find a target among 15 identical objects by making eye movements within 6 s. The data were analyzed according to the foraging model that incorporated three parameters. RESULTS: Nicotine and mecamylamine significantly increased the utility but not the capacity of short-term memory, while muscarinic AChR-related agents did not alter any WM parameters. Further regression analyses with a mixed-effect model showed that the beneficial effect of nicotine on memory utility remained after considering eye movement variability, but the beneficial effect of mecamylamine disappeared. CONCLUSIONS: Nicotine improves visual search, mainly by increasing the utility of short-term memory, with minimal changes in oculomotor parameters.


Assuntos
Memória de Curto Prazo , Nicotina , Animais , Haplorrinos , Macaca , Mecamilamina/farmacologia , Antagonistas Muscarínicos/farmacologia , Nicotina/farmacologia , Antagonistas Nicotínicos/farmacologia , Receptores Muscarínicos
12.
Elife ; 112022 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-35579422

RESUMO

Striatal spiny projection neurons (SPNs) transform convergent excitatory corticostriatal inputs into an inhibitory signal that shapes basal ganglia output. This process is fine-tuned by striatal GABAergic interneurons (GINs), which receive overlapping cortical inputs and mediate rapid corticostriatal feedforward inhibition of SPNs. Adding another level of control, cholinergic interneurons (CINs), which are also vigorously activated by corticostriatal excitation, can disynaptically inhibit SPNs by activating α4ß2 nicotinic acetylcholine receptors (nAChRs) on various GINs. Measurements of this disynaptic inhibitory pathway, however, indicate that it is too slow to compete with direct GIN-mediated feedforward inhibition. Moreover, functional nAChRs are also present on populations of GINs that respond only weakly to phasic activation of CINs, such as parvalbumin-positive fast-spiking interneurons (PV-FSIs), making the overall role of nAChRs in shaping striatal synaptic integration unclear. Using acute striatal slices from mice we show that upon synchronous optogenetic activation of corticostriatal projections blockade of α4ß2 nAChRs shortened SPN spike latencies and increased postsynaptic depolarizations. The nAChR-dependent inhibition was mediated by downstream GABA release, and data suggest that the GABA source was not limited to GINs that respond strongly to phasic CIN activation. In particular, the observed decrease in spike latency caused by nAChR blockade was associated with a diminished frequency of spontaneous inhibitory postsynaptic currents in SPNs, a parallel hyperpolarization of PV-FSIs, and was occluded by pharmacologically preventing cortical activation of PV-FSIs. Taken together, we describe a role for tonic (as opposed to phasic) activation of nAChRs in striatal function. We conclude that tonic activation of nAChRs by CINs maintains a GABAergic brake on cortically-driven striatal output by 'priming' feedforward inhibition, a process that may shape SPN spike timing, striatal processing, and synaptic plasticity.


Assuntos
Corpo Estriado , Nicotina , Animais , Colinérgicos/metabolismo , Corpo Estriado/fisiologia , Interneurônios/fisiologia , Camundongos , Neurônios/metabolismo , Nicotina/metabolismo , Ácido gama-Aminobutírico/metabolismo
13.
Addict Biol ; 27(3): e13166, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35470549

RESUMO

Levamisole is a veterinary anthelmintic drug and a common adulterant of misused drugs. This study analyses the lethal, antinociceptive and haematological effects produced by acute or repeated levamisole administration by itself or combined with morphine. Independent groups of male Swiss Webster mice were i.p. injected with 100 mg/kg morphine, 31.6 mg/kg levamisole (lethal doses at 10%, LD10 ) or the same doses combined. Naloxone pretreatment (10 mg/kg, i.p.) prevented morphine-induced death, as did 2.5 mg/kg, i.p. mecamylamine with levamisole. Co-administration of levamisole and morphine (Lvm + Mor) increased lethality from 10% to 80%. This augmented effect was prevented by 30 mg/kg, i.p. naloxone and reduced with 10 mg/kg naloxone plus 2.5 mg/kg, i.p. mecamylamine. In independent groups of mice, 17.7 mg/kg, i.p. levamisole antagonized the acute morphine's antinociceptive effect evaluated in the tail-flick test. Repeated 17.7 mg/kg levamisole administration (2×/day/3 weeks) did not affect tolerance development to morphine (10 mg/kg, 3×/day/1 week). Blood samples obtained from mice repeatedly treated with levamisole showed leukopenia and neutropenia. Morphine also produced neutropenia, increased erythrocyte count and other related parameters (e.g. haemoglobin). Lvm + Mor had similar effects on leukocyte and neutrophil counts to those seen with levamisole only, but no erythrocyte-related alterations were evident. Blood chemistry analysis did not indicate liver damage but suggested some degree of electrolyte balance impairment. In conclusion, Lvm + Mor increased death risk, altered morphine-induced antinociceptive effects and produced haematologic abnormalities. The importance of studying combinations of drugs of abuse lies in the fact that drug users frequently combine drugs, which are commonly adulterated.


Assuntos
Morfina , Neutropenia , Analgésicos , Animais , Levamisol/farmacologia , Masculino , Mecamilamina , Camundongos , Morfina/farmacologia , Naloxona/farmacologia , Neutropenia/induzido quimicamente
14.
Hum Psychopharmacol ; 37(5): e2838, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35212023

RESUMO

OBJECTIVE: Older women are at increased risk of developing Alzheimer's disease compared to men. One proposed reason is that following menopause there is a decline in estrogens. Estrogens are important for cholinergic functioning and attenuate the impact of cholinergic antagonists on cognitive performance in postmenopausal women. Self-reported or subjective cognitive complaints in middle or older age may represent a harbinger of cognitive decline and those who endorse cognitive complaints appear more likely to develop future cognitive impairment. However, the response of individuals with cognitive complaints after menopause to estrogen and the relationship to cholinergic functioning has not been investigated. This study investigated the effect of estrogen treatment using 17ß-estradiol on cognitive performance following anticholinergic blockade in postmenopausal women and the relationship of this interaction with the level of self-reported (subjective) postmenopausal cognitive complaints. METHODS: Forty postmenopausal women (aged 50-60 years) completed a 3-month treatment regimen of either 1 mg oral estradiol or placebo. Participants then completed four challenge days in which they completed cognitive and behavioral tasks after one of four cholinergic antagonist drug conditions (oral mecamylamine (MECA), intravenous scopolamine, combined MECA and scopolamine, or PLC). RESULTS: Compared to PLC, the estradiol treated group performed worse on attention tasks under cholinergic challenge including the choice reaction time task and the critical flicker fusion task. In addition, participants who endorsed greater cognitive complaints showed reduced performance on the N-back working memory task, regardless of whether they received estradiol treatment. CONCLUSIONS: The findings of this study indicate that estradiol treatment was unable to mitigate anticholinergic blockade in postmenopausal women with subjective cognitive complaints, and worsened performance on attention tasks. Moreover, the present study suggests that greater levels of cognitive complaints following menopause may be associated with an underlying decline in cholinergic function that may manifest as an inability to compensate during working memory tasks.


Assuntos
Estradiol , Pós-Menopausa , Idoso , Colinérgicos/farmacologia , Antagonistas Colinérgicos/efeitos adversos , Cognição , Estradiol/farmacologia , Estrogênios/farmacologia , Feminino , Humanos , Pós-Menopausa/fisiologia , Pós-Menopausa/psicologia , Escopolamina/efeitos adversos , Autorrelato
15.
Behav Brain Res ; 416: 113574, 2022 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-34499942

RESUMO

The habenula is an epithalamic structure through which descending connections go from the telencephalon to the brainstem, putting it in a key location to provide feedback control over the ascending projections from the brainstem to the telencephalon. The medial habenula has a high concentration of nicotinic receptors. We assessed the role of medial habenular nicotinic receptors for nicotine self-administration (SA) in female young adult Sprague-Dawley rats. The rats had bilateral chronic infusion cannulae placed into the medial habenula nucleus. Each cannula was connected to a slow delivery osmotic minipump to chronically infuse mecamylamine (100 µg/side/day) or vehicle for four consecutive weeks. The rats were tested for nicotine SA for the first two weeks of mecamylamine infusion. Then, they had one week of enforced abstinence, during which they had no access to the nicotine SA. Finally, they had one week of resumed nicotine SA access. There was a significantly differential mecamylamine effects in animals with lower and higher pretreatment baseline nicotine SA. Rats with lower baseline nicotine SA levels showed a nearly significant mecamylamine-induced reduction in SA while those with higher baseline levels of SA showed a significant mecamylamine-induced increase in nicotine SA. This study determined that medial habenular nicotinic receptors are important for nicotine reinforcement. Baseline level of performance makes a crucial difference for the involvement of habenular mechanisms in nicotine reinforcement with nicotinic activation being important for maintaining nicotine self-administration for those with lower levels of baseline self-administration and the opposite effect with subjects with higher levels of baseline self-administration.


Assuntos
Habenula/efeitos dos fármacos , Mecamilamina/farmacologia , Nicotina/farmacologia , Receptores Nicotínicos/metabolismo , Autoadministração , Animais , Feminino , Habenula/fisiologia , Infusões Intraventriculares , Nicotina/administração & dosagem , Ratos , Ratos Sprague-Dawley , Reforço Psicológico
16.
Int J Mol Sci ; 22(19)2021 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-34639101

RESUMO

A well-functional intestinal mucosal barrier can be compromised as a result of various diseases, chemotherapy, radiation, and chemical exposures including surfactants. Currently, there are no approved drugs targeting a dysfunctional intestinal barrier, which emphasizes a significant medical need. One candidate drug reported to regulate intestinal mucosal permeability is melatonin. However, it is still unclear if its effect is primarily receptor mediated or antioxidative, and if it is associated with enteric neural pathways. The aim of this rat intestinal perfusion study was to investigate the mechanisms of melatonin and nicotinic acetylcholine receptors on the increase in intestinal mucosal clearance of 51Cr-labeled ethylenediaminetetraacetate induced by 15 min luminal exposure to the anionic surfactant, sodium dodecyl sulfate. Our results show that melatonin abolished the surfactant-induced increase in intestinal permeability and that this effect was inhibited by luzindole, a melatonin receptor antagonist. In addition, mecamylamine, an antagonist of nicotinic acetylcholine receptors, reduced the surfactant-induced increase in mucosal permeability, using a signaling pathway not influenced by melatonin receptor activation. In conclusion, our results support melatonin as a potentially potent candidate for the oral treatment of a compromised intestinal mucosal barrier, and that its protective effect is primarily receptor-mediated.


Assuntos
Permeabilidade da Membrana Celular , Mucosa Intestinal/efeitos dos fármacos , Doenças do Jejuno/prevenção & controle , Jejuno/efeitos dos fármacos , Melatonina/farmacologia , Receptores de Melatonina/metabolismo , Tensoativos/toxicidade , Animais , Antioxidantes/farmacologia , Motilidade Gastrointestinal , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patologia , Doenças do Jejuno/induzido quimicamente , Doenças do Jejuno/metabolismo , Doenças do Jejuno/patologia , Jejuno/metabolismo , Jejuno/patologia , Masculino , Ratos , Ratos Wistar , Receptores de Melatonina/genética , Receptores Nicotínicos/genética , Receptores Nicotínicos/metabolismo
17.
Drug Alcohol Depend ; 226: 108870, 2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-34216863

RESUMO

BACKGROUND: Establishing preclinical models of the development of nicotine withdrawal following acute nicotine exposure could inform tobacco addiction-related research, treatment, and policy. To this end, this lab has previously reported that rats exhibit withdrawal-like elevations in intracranial self-stimulation (ICSS) thresholds (anhedonia-like behavior) following acute nicotine exposure. The goal of this study was to provide further pharmacological characterization of ICSS as a measure of spontaneous and antagonist-precipitated withdrawal from acute nicotine. METHODS AND RESULTS: Rats exhibited a small increase in ICSS thresholds over time following a single nicotine injection (1.0 mg/kg, s.c.), suggesting a modest spontaneous withdrawal effect (Experiment 1). In Experiment 2, the antidepressant bupropion (5.0 mg/kg, i.p.), which is used to treat tobacco addiction and attenuates nicotine withdrawal in both humans and rodents, blocked elevations in ICSS thresholds induced by a single injection of nicotine (0.5 mg/kg, s.c.) followed ≈ 2 h later by the non-selective, non-competitive nicotinic acetylcholine receptor (nAChR) antagonist mecamylamine (3.0 mg/kg, s.c.). In Experiment 3a, s.c. administration of the competitive, relatively selective α4ß2 nAChR antagonist dihydro-beta-erythroidine (DHßE) (5.6 mg/kg, but not 3.0 mg/kg) following each of 5 daily injections of nicotine (0.5 mg/kg, s.c.) elevated ICSS thresholds. Mecamylamine (3.0 mg/kg, s.c.) also elevated ICSS thresholds when administered following all 5 daily nicotine injections (0.5 mg/kg, s.c., Experiment 3b). CONCLUSIONS: These findings provide further characterization of elevations in ICSS thresholds as a measure of withdrawal from acute nicotine exposure. Further use of these models may be useful for understanding the early development of nicotine withdrawal.


Assuntos
Nicotina , Síndrome de Abstinência a Substâncias , Animais , Mecamilamina/farmacologia , Antagonistas Nicotínicos/farmacologia , Ratos , Autoestimulação , Síndrome de Abstinência a Substâncias/tratamento farmacológico
18.
Pharmacol Biochem Behav ; 205: 173185, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33831460

RESUMO

Relief from increases in anxiety during nicotine withdrawal contributes to tobacco addiction. While a variety of anxiogenic stimuli elicit avoidance of the center of an open field (thigmotaxis) in rodents, effects of nicotine withdrawal on thigmotaxis have not been studied extensively. The goal of this study was to evaluate determinants of increases in thigmotaxis during mecamylamine-precipitated nicotine withdrawal in rats. We evaluated several variables implicated in severity of other measures of precipitated nicotine withdrawal: mecamylamine dose, duration of nicotine infusion, number of withdrawal episodes, and age. In Experiment 1, mecamylamine elicited increases in thigmotaxis in adult rats receiving a chronic nicotine infusion (3.2 mg/kg/day for >7 days) at only the highest mecamylamine dose tested (4.0 mg/kg). In Experiment 2, repeated administration of 4.0 mg/kg mecamylamine throughout the course of a 2-week chronic nicotine infusion (3.2 mg/kg/day) did not affect thigmotaxis when administered following 2 days of the infusion, but elicited significant increases in thigmotaxis at longer infusion durations. In Experiment 3, adolescents tested under the same protocol used in adults in Experiment 2 did not exhibit increased thigmotaxis at any point during the 2-week nicotine infusion, even though we used higher nicotine doses (4.7 or 6.4 mg/kg/day) to account for the faster metabolism of nicotine in adolescents compared to adults. Our findings provide the first systematic characterization of determinants of increases in thigmotaxis during precipitated nicotine withdrawal in rats. Further use of this model may be useful for characterizing the mechanisms underlying the anxiogenic component of nicotine withdrawal.


Assuntos
Mecamilamina/farmacologia , Nicotina/efeitos adversos , Antagonistas Nicotínicos/farmacologia , Síndrome de Abstinência a Substâncias/tratamento farmacológico , Resposta Táctica/efeitos dos fármacos , Fatores Etários , Animais , Aprendizagem da Esquiva/efeitos dos fármacos , Relação Dose-Resposta a Droga , Locomoção/efeitos dos fármacos , Masculino , Mecamilamina/administração & dosagem , Nicotina/farmacologia , Agonistas Nicotínicos/efeitos adversos , Antagonistas Nicotínicos/administração & dosagem , Ratos , Ratos Wistar , Síndrome de Abstinência a Substâncias/metabolismo , Fatores de Tempo
19.
J Psychopharmacol ; 35(10): 1169-1187, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33888006

RESUMO

BACKGROUND: Animal models are critical to improve our understanding of the neuronal mechanisms underlying nicotine withdrawal. Nicotine dependence in rodents can be established by repeated nicotine injections, chronic nicotine infusion via osmotic minipumps, oral nicotine intake, tobacco smoke exposure, nicotine vapor exposure, and e-cigarette aerosol exposure. The time course of nicotine withdrawal symptoms associated with these methods has not been reviewed in the literature. AIM: The goal of this review is to discuss nicotine withdrawal symptoms associated with the cessation of nicotine, tobacco smoke, nicotine vapor, and e-cigarette aerosol exposure in rats and mice. Furthermore, age and sex differences in nicotine withdrawal symptoms are reviewed. RESULTS: Cessation of nicotine, tobacco smoke, nicotine vapor, and e-cigarette aerosol exposure leads to nicotine withdrawal symptoms such as somatic withdrawal signs, changes in locomotor activity, anxiety- and depressive-like behavior, learning and memory deficits, attention deficits, hyperalgesia, and dysphoria. These withdrawal symptoms are most pronounced within the first week after cessation of nicotine exposure. Anxiety- and depressive-like behavior, and deficits in learning and memory may persist for several months. Adolescent (4-6 weeks old) rats and mice display fewer nicotine withdrawal symptoms than adults (>8 weeks old). In adult rats and mice, females show fewer nicotine withdrawal symptoms than males. The smoking cessation drugs bupropion and varenicline reduce nicotine withdrawal symptoms in rodents. CONCLUSION: The nicotine withdrawal symptoms that are observed in rodents are similar to those observed in humans. Tobacco smoke and e-cigarette aerosol contain chemicals and added flavors that enhance the reinforcing properties of nicotine. Therefore, more valid animal models of tobacco and e-cigarette use need to be developed by using tobacco smoke and e-cigarette aerosol exposure methods to induce dependence.


Assuntos
Abandono do Hábito de Fumar/métodos , Síndrome de Abstinência a Substâncias/fisiopatologia , Tabagismo/fisiopatologia , Animais , Modelos Animais de Doenças , Sistemas Eletrônicos de Liberação de Nicotina , Humanos , Camundongos , Nicotina/administração & dosagem , Nicotina/efeitos adversos , Ratos , Fatores Sexuais , Agentes de Cessação do Hábito de Fumar/administração & dosagem , Síndrome de Abstinência a Substâncias/terapia , Tabagismo/terapia
20.
Psychopharmacology (Berl) ; 238(2): 589-597, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33216167

RESUMO

RATIONALE: Previous neuroimaging studies of cognition involving nicotinic acetylcholine receptor (nAChR) agonist administration have repeatedly found enhanced task-induced deactivation of regions of the default mode network (DMN), a group of brain systems that is more active at rest and mediates task-independent thought processes. This effect may be related to pro-cognitive nAChR agonist effects OBJECTIVES: The present study sought to test whether nAChR modulation of the DMN is bi-directional, i.e., whether a nAChR antagonist would reduce task-induced deactivation. METHODS: Eighteen healthy non-smokers underwent functional magnetic resonance imaging while performing a letter N-back task. Scans were performed after nicotine administration (7 mg/24 h, transdermally), after administration of the nAChR antagonist mecamylamine (7.5 mg, p.o.), and after double placebo, in counterbalanced sequence. Blood-oxygen-level-dependent (BOLD) signal was analyzed within ventromedial prefrontal cortex (vmPFC) and posterior cingulate cortex (PCC) regions of interest-central hubs of the DMN in which consistent nAChR agonist-induced changes had previously been identified. RESULTS: Nicotine enhanced hit rate in both the 0-back and 2-back condition, while mecamylamine slowed reaction time in the 2-back condition. Mecamylamine reduced task-induced deactivation of vmPFC and PCC. Nicotine had no significant effects on the BOLD signal. CONCLUSIONS: The finding that nAChR tone reduction by mecamylamine weakened task-induced DMN deactivation indicates that a constant tone of nAChR activation helps regulate DMN activity in healthy individuals. This suggests that low nAChR tone may play a causal role in DMN dysregulation seen in conditions such as mild cognitive impairment or Alzheimer's disease.


Assuntos
Encéfalo/efeitos dos fármacos , Cognição/efeitos dos fármacos , Rede de Modo Padrão/efeitos dos fármacos , Imageamento por Ressonância Magnética , Antagonistas Nicotínicos/farmacologia , Receptores Nicotínicos/metabolismo , Adulto , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Disfunção Cognitiva/metabolismo , Rede de Modo Padrão/diagnóstico por imagem , Rede de Modo Padrão/metabolismo , Feminino , Giro do Cíngulo/efeitos dos fármacos , Giro do Cíngulo/metabolismo , Humanos , Masculino , Mecamilamina/farmacologia , Pessoa de Meia-Idade , Nicotina/farmacologia , Agonistas Nicotínicos/farmacologia , Córtex Pré-Frontal/efeitos dos fármacos , Córtex Pré-Frontal/metabolismo , Tempo de Reação/efeitos dos fármacos , Análise e Desempenho de Tarefas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...