Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 293
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Adv Exp Med Biol ; 1463: 271-275, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39400835

RESUMO

The "oxygen paradox" embodies the delicate interplay between two opposing biological processes involving oxygen (O2). O2 is indispensable for aerobic metabolism, fuelling oxidative phosphorylation in mitochondria. However, excess O2 can generate reactive species that harm cells. Thus, maintaining O2 balance is paramount, requiring the prioritisation of its benefits while minimising potential harm. Previous research hypothesised that caveolae, specialised cholesterol-rich membrane structures with a curved morphology, regulate cellular O2 levels. Their role in absorbing and controlling O2 release to mitochondria remains unclear. To address this gap, we aim to explore how the structural features of caveolae, particularly membrane curvature, influence local O2 levels. Using coarse-grained (CG) molecular dynamics simulations, we simulate a caveola-like curved membrane and select a CG bead as the O2 model. Comparing a flat bilayer and a liposome of 10 nm diameter, composed of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC), allows us to study changes in the O2 free energy profile. Our findings reveal that curvature has a contrasting effect on the free energy of the outer and inner layers. These findings show the membrane curvature's impact on O2 partitioning in the membrane and O2 permeation barriers, paving the way towards our understanding of the role of caveolae curvature in O2 homeostasis.


Assuntos
Cavéolas , Simulação de Dinâmica Molecular , Oxigênio , Cavéolas/metabolismo , Oxigênio/metabolismo , Bicamadas Lipídicas/metabolismo , Bicamadas Lipídicas/química , Fosfatidilcolinas/química , Fosfatidilcolinas/metabolismo , Humanos , Lipossomos/metabolismo , Lipossomos/química
2.
J Cell Sci ; 2024 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-39324332

RESUMO

In biology, shape and function are related. Therefore, it is important to understand how membrane shape is generated, stabilised and sensed by proteins and how this relates to organelle function. Here we present an assay that can detect curvature preference and membrane remodelling using free-floating liposomes using protein concentrations in a physiologically relevant ranges. The assay reproduced known curvature preferences of BAR domains and allowed the discovery of high curvature preference for the PH domain of AKT and the FYVE domain of HRS. In addition, our method reproduced the membrane vesiculation activity of the ENTH domain of Epsin1 and showed similar activity for the ANTH domains of PiCALM and Hip1R. Finally, we found that the curvature sensitivity of the N-BAR domain of Endophilin inversely correlates to membrane charge and that deletion of its N-terminal amphipathic helix increased its curvature specificity. Thus, our method is a generally applicable qualitative method for assessing membrane curvature sensing and remodelling by proteins.

3.
Elife ; 132024 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-39150863

RESUMO

The M2 proton channel aids in the exit of mature influenza viral particles from the host plasma membrane through its ability to stabilize regions of high negative Gaussian curvature (NGC) that occur at the neck of budding virions. The channels are homo-tetramers that contain a cytoplasm-facing amphipathic helix (AH) that is necessary and sufficient for NGC generation; however, constructs containing the transmembrane spanning helix, which facilitates tetramerization, exhibit enhanced curvature generation. Here, we used all-atom molecular dynamics (MD) simulations to explore the conformational dynamics of M2 channels in lipid bilayers revealing that the AH is dynamic, quickly breaking the fourfold symmetry observed in most structures. Next, we carried out MD simulations with the protein restrained in four- and twofold symmetric conformations to determine the impact on the membrane shape. While each pattern was distinct, all configurations induced pronounced curvature in the outer leaflet, while conversely, the inner leaflets showed minimal curvature and significant lipid tilt around the AHs. The MD-generated profiles at the protein-membrane interface were then extracted and used as boundary conditions in a continuum elastic membrane model to calculate the membrane-bending energy of each conformation embedded in different membrane surfaces characteristic of a budding virus. The calculations show that all three M2 conformations are stabilized in inward-budding, concave spherical caps and destabilized in outward-budding, convex spherical caps, the latter reminiscent of a budding virus. One of the C2-broken symmetry conformations is stabilized by 4 kT in NGC surfaces with the minimum energy conformation occurring at a curvature corresponding to 33 nm radii. In total, our work provides atomistic insight into the curvature sensing capabilities of M2 channels and how enrichment in the nascent viral particle depends on protein shape and membrane geometry.


Assuntos
Membrana Celular , Vírus da Influenza A , Bicamadas Lipídicas , Simulação de Dinâmica Molecular , Proteínas da Matriz Viral , Proteínas da Matriz Viral/química , Proteínas da Matriz Viral/metabolismo , Membrana Celular/metabolismo , Membrana Celular/química , Vírus da Influenza A/química , Vírus da Influenza A/metabolismo , Bicamadas Lipídicas/metabolismo , Bicamadas Lipídicas/química , Conformação Proteica , Proteínas Viroporinas
4.
J Cell Sci ; 137(14)2024 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-39051897

RESUMO

Membrane remodeling is a fundamental cellular process that is crucial for physiological functions such as signaling, membrane fusion and cell migration. Tetraspanins (TSPANs) are transmembrane proteins of central importance to membrane remodeling events. During these events, TSPANs are known to interact with themselves and other proteins and lipids; however, their mechanism of action in controlling membrane dynamics is not fully understood. Since these proteins span the membrane, membrane properties such as rigidity, curvature and tension can influence their behavior. In this Review, we summarize recent studies that explore the roles of TSPANs in membrane remodeling processes and highlight the unique structural features of TSPANs that mediate their interactions and localization. Further, we emphasize the influence of membrane curvature on TSPAN distribution and membrane domain formation and describe how these behaviors affect cellular functions. This Review provides a comprehensive perspective on the multifaceted function of TSPANs in membrane remodeling processes and can help readers to understand the intricate molecular mechanisms that govern cellular membrane dynamics.


Assuntos
Membrana Celular , Tetraspaninas , Humanos , Tetraspaninas/metabolismo , Membrana Celular/metabolismo , Animais , Proteínas de Membrana/metabolismo
5.
Biochim Biophys Acta Biomembr ; 1866(7): 184366, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38960300

RESUMO

Ginsenoside Rh2 (Rh2) is a ginseng saponin comprising a triterpene core and one unit of glucose and has attracted much attention due to its diverse biological activities. In the present study, we used small-angle X-ray diffraction, solid-state NMR, fluorescence microscopy, and MD simulations to investigate the molecular interaction of Rh2 with membrane lipids in the liquid-disordered (Ld) phase mainly composed of palmitoyloleoylphosphatidylcholine compared with those in liquid-ordered (Lo) phase mainly composed of sphingomyelin and cholesterol. The electron density profiles determined by X-ray diffraction patterns indicated that Rh2 tends to be present in the shallow interior of the bilayer in the Ld phase, while Rh2 accumulation was significantly smaller in the Lo phase. Order parameters at intermediate depths in the bilayer leaflet obtained from 2H NMR spectra and MD simulations indicated that Rh2 reduces the order of the acyl chains of lipids in the Ld phase. The dihydroxy group and glucose moiety at both ends of the hydrophobic triterpene core of Rh2 cause tilting of the molecular axis relative to the membrane normal, which may enhance membrane permeability by loosening the packing of lipid acyl chains. These features of Rh2 are distinct from steroidal saponins such as digitonin and dioscin, which exert strong membrane-disrupting activity.


Assuntos
Lipídeos de Membrana , Ginsenosídeos/química , Lipídeos de Membrana/química , Elétrons , Espectroscopia de Ressonância Magnética , Difração de Raios X , Microscopia de Fluorescência , Bicamadas Lipídicas/química , Lipossomos/química
6.
bioRxiv ; 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-39026726

RESUMO

Cells generate a wide range of actin-based membrane protrusions for various cell behaviors. These protrusions are organized by different actin nucleation promoting factors. For example, N-WASP controls finger-like filopodia, whereas the WAVE complex controls sheet-like lamellipodia. These different membrane morphologies likely reflect different patterns of nucleator self-organization. N-WASP phase separation has been successfully studied through biochemical reconstitutions, but how the WAVE complex self-organizes to instruct lamellipodia is unknown. Because WAVE complex self-organization has proven refractory to cell-free studies, we leverage in vivo biochemical approaches to investigate WAVE complex organization within its native cellular context. With single molecule tracking and molecular counting, we show that the WAVE complex forms highly regular multilayered linear arrays at the plasma membrane that are reminiscent of a microtubule-like organization. Similar to the organization of microtubule protofilaments in a curved array, membrane curvature is both necessary and sufficient for formation of these WAVE complex linear arrays, though actin polymerization is not. This dependency on negative membrane curvature could explain both the templating of lamellipodia and their emergent behaviors, including barrier avoidance. Our data uncover the key biophysical properties of mesoscale WAVE complex patterning and highlight an integral relationship between NPF self-organization and cell morphogenesis.

7.
Methods Enzymol ; 701: 287-307, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39025574

RESUMO

Most biological membranes are curved, and both lipids and proteins play a role in generating curvature. For any given membrane shape and composition, it is not trivial to determine whether lipids are laterally distributed in a homogeneous or inhomogeneous way, and whether the inter-leaflet distribution is symmetric or not. Here we present a simple computational tool that allows to predict the preference of any lipid type for membranes with positive vs. negative curvature, for any given value of curvature. The tool is based on molecular dynamics simulations of tubular membranes with hydrophilic pores. The pores allow spontaneous, barrierless flip-flop of most lipids, while also preventing differences in pressure between the inner and outer water compartments and minimizing membrane asymmetric stresses. Specifically, we provide scripts to build and analyze the simulations. We test the tool by performing simulations on simple binary lipid mixtures, and we show that, as expected, lipids with negative intrinsic curvature distribute to the tubule inner leaflet, the more so when the radius of the tubular membrane is small. Compared to other existing computational methods, relying on membrane buckles and tethers, our method is based on spontaneous inter-leaflet transport of lipids, and therefore allows to explore lipid distribution in asymmetric membranes. The method can easily be adapted to work with any molecular dynamics code and any force field.


Assuntos
Lipídeos de Membrana , Simulação de Dinâmica Molecular , Lipídeos de Membrana/química , Lipídeos de Membrana/metabolismo , Bicamadas Lipídicas/química , Bicamadas Lipídicas/metabolismo , Membrana Celular/metabolismo , Membrana Celular/química , Interações Hidrofóbicas e Hidrofílicas
8.
Methods Enzymol ; 701: 579-601, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39025583

RESUMO

We describe methods to analyze lipid distributions and curvature in membranes with complex lipid mixtures and embedded membrane proteins. We discuss issues involved in these analyses, available tools to calculate curvature preferences of lipids and proteins, and focus on tools developed in our group for visual analysis of lipid-protein interactions and the analysis of membrane curvature.


Assuntos
Bicamadas Lipídicas , Lipídeos de Membrana , Proteínas de Membrana , Simulação de Dinâmica Molecular , Bicamadas Lipídicas/química , Bicamadas Lipídicas/metabolismo , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Lipídeos de Membrana/química , Lipídeos de Membrana/metabolismo , Membrana Celular/química , Membrana Celular/metabolismo , Lipídeos/química
9.
Methods Enzymol ; 700: 385-411, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38971608

RESUMO

Plasma membranes are flexible and can exhibit numerous shapes below the optical diffraction limit. The shape of cell periphery can either induce or be a product of local protein density changes, encoding numerous cellular functions. However, quantifying membrane curvature and the ensuing sorting of proteins in live cells remains technically demanding. Here, we demonstrate the use of simple widefield fluorescence microscopy to study the geometrical properties (i.e., radius, length, and number) of thin membrane protrusions. Importantly, the quantification of protrusion radius establishes a platform for studying the curvature preferences of membrane proteins.


Assuntos
Proteínas de Membrana , Microscopia de Fluorescência , Transporte Proteico , Microscopia de Fluorescência/métodos , Humanos , Proteínas de Membrana/metabolismo , Proteínas de Membrana/análise , Membrana Celular/metabolismo , Membrana Celular/química , Extensões da Superfície Celular/metabolismo , Extensões da Superfície Celular/ultraestrutura , Animais
10.
Colloids Surf B Biointerfaces ; 241: 113995, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38870647

RESUMO

The interaction between nucleotide molecules and lipid molecules plays important roles in cell activities, but the molecular mechanism is very elusive. In the present study, a small but noticeable interaction between the negatively charged phosphatidylethanolamine (PE) and Guanosine monophosphate (GMP) molecules was observed from the PE monolayer at the air/water interface. As shown by the sum frequency generation (SFG) spectra and Pi-A isotherm of the PE monolayer, the interaction between the PE and GMP molecules imposes very small changes to the PE molecules. However, the Brewster angle microscopy (BAM) technique revealed that the assembly conformations of PE molecules are significantly changed by the adsorption of GMP molecules. By comparing the SFG spectra of PE monolayers after the adsorption of GMP, guanosine and guanine, it is also shown that the hydrogen bonding effect plays an important role in the nucleotide-PE interactions. These results provide fundamental insight into the structure changes during the nucleotide-lipid interaction, which may shed light on the molecular mechanism of viral infection, DNA drug delivery, and cell membrane curvature control in the brain or neurons.


Assuntos
Guanosina Monofosfato , Fosfatidiletanolaminas , Fosfatidiletanolaminas/química , Guanosina Monofosfato/química , Guanosina Monofosfato/metabolismo , Adsorção , Propriedades de Superfície , Microscopia , Ligação de Hidrogênio , Água/química
11.
Bioessays ; 46(8): e2400051, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38922978

RESUMO

The transient cellular organelles known as migrasomes, which form during cell migration along retraction fibers, have emerged as a crutial factor in various fundamental cellular processes and pathologies. These membrane vesicles originate from local membrane swellings, encapsulate specific cytoplasmic content, and are eventually released to the extracellular environment or taken up by recipient cells. Migrasome biogenesis entails a sequential membrane remodeling process involving a complex interplay between various molecular factors such as tetraspanin proteins, and mechanical properties like membrane tension and bending rigidity. In this review, we summarize recent studies exploring the mechanism of migrasome formation. We emphasize how physical forces, together with molecular factors, shape migrasome biogenesis, and detail the involvement of migrasomes in various cellular processes and pathologies. A comprehensive understanding of the exact mechanism underlying migrasome formation and the identification of key molecules involved hold promise for advancing their therapeutic and diagnostic applications.


Assuntos
Movimento Celular , Organelas , Humanos , Organelas/metabolismo , Animais , Membrana Celular/metabolismo
12.
ACS Infect Dis ; 10(8): 2870-2885, 2024 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-38917054

RESUMO

Human immunodeficiency virus (HIV) assembly at an infected cell's plasma membrane requires membrane deformation to organize the near-spherical shape of an immature virus. While the cellular expression of HIV Gag is sufficient to initiate budding of virus-like particles, how Gag generates membrane curvature is not fully understood. Using highly curved lipid nanotubes, we have investigated the physicochemical basis of the membrane activity of recombinant nonmyristoylated Gag-Δp6. Gag protein, upon adsorption onto the membrane, resulted in the shape changes of both charged and uncharged nanotubes. This shape change was more pronounced in the presence of charged lipids, especially phosphatidylinositol bisphosphate (PI(4,5)P2). We found that Gag modified the interfacial tension of phospholipid bilayer membranes, as judged by comparison with the effects of amphipathic peptides and nonionic detergent. Bioinformatic analysis demonstrated that a region of the capsid and SP1 domains junction of Gag is structurally similar to the amphipathic peptide magainin-1. This region accounts for integral changes in the physical properties of the membrane upon Gag adsorption, as we showed with the synthetic CA-SP1 junction peptide. Phenomenologically, membrane-adsorbed Gag could diminish the energetic cost of increasing the membrane area in a way similar to foam formation. We propose that Gag acts as a surface-active substance at the HIV budding site that softens the membrane at the place of Gag adsorption, lowering the energy for membrane bending. Finally, our experimental data and theoretical considerations give a lipid-centric view and common mechanism by which proteins could bend membranes, despite not having intrinsic curvature in their molecular surfaces or assemblies.


Assuntos
Membrana Celular , HIV-1 , Montagem de Vírus , Produtos do Gene gag do Vírus da Imunodeficiência Humana , HIV-1/fisiologia , HIV-1/química , Produtos do Gene gag do Vírus da Imunodeficiência Humana/química , Produtos do Gene gag do Vírus da Imunodeficiência Humana/metabolismo , Membrana Celular/química , Humanos , Bicamadas Lipídicas/química , Tensoativos/química , Tensoativos/farmacologia , Nanotubos/química
13.
Trends Microbiol ; 32(7): 624-627, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38777700

RESUMO

Many factors contribute to bacterial membrane stabilization, including steric effects between lipids, membrane spontaneous curvature, and the difference in the number of neighboring molecules. This forum provides an overview of the physicochemical properties associated with membrane curvature and how this parameter can be tuned to design more effective antimicrobial peptides.


Assuntos
Peptídeos Antimicrobianos , Bactérias , Membrana Celular , Membrana Celular/efeitos dos fármacos , Membrana Celular/química , Membrana Celular/metabolismo , Bactérias/efeitos dos fármacos , Bactérias/metabolismo , Peptídeos Antimicrobianos/química , Peptídeos Antimicrobianos/farmacologia , Peptídeos Catiônicos Antimicrobianos/farmacologia , Peptídeos Catiônicos Antimicrobianos/química , Antibacterianos/farmacologia , Antibacterianos/química , Lipídeos de Membrana/química , Lipídeos de Membrana/metabolismo
14.
J Biol Chem ; 300(6): 107387, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38763336

RESUMO

The cryo-EM resolution revolution has heralded a new era in our understanding of eukaryotic lipid flippases with a rapidly growing number of high-resolution structures. Flippases belong to the P4 family of ATPases (type IV P-type ATPases) that largely follow the reaction cycle proposed for the more extensively studied cation-transporting P-type ATPases. However, unlike the canonical P-type ATPases, no flippase cargos are transported in the phosphorylation half-reaction. Instead of being released into the intracellular or extracellular milieu, lipid cargos are transported to their destination at the inner leaflet of the membrane. Recent flippase structures have revealed multiple conformational states during the lipid transport cycle. Nonetheless, critical conformational states capturing the lipid cargo "in transit" are still missing. In this review, we highlight the amazing structural advances of these lipid transporters, discuss various perspectives on catalytic and regulatory mechanisms in the literature, and shed light on future directions in further deciphering the detailed molecular mechanisms of lipid flipping.


Assuntos
Adenosina Trifosfatases , Humanos , Animais , Adenosina Trifosfatases/metabolismo , Adenosina Trifosfatases/química , Microscopia Crioeletrônica , Transporte Biológico , Proteínas de Transferência de Fosfolipídeos/metabolismo , Proteínas de Transferência de Fosfolipídeos/química , Proteínas de Transferência de Fosfolipídeos/genética , Metabolismo dos Lipídeos , Conformação Proteica
15.
Biophys Chem ; 310: 107248, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38653174

RESUMO

Understanding oligomerization and aggregation of the amyloid-ß protein is important to elucidate the pathological mechanisms of Alzheimer's disease, and lipid membranes play critical roles in this process. In addition to studies reported by other groups, our group has also reported that the negatively-charged lipid bilayers with a high positive curvature induced α-helix-to-ß-sheet conformational transitions of amyloid-ß-(1-40) upon increase in protein density on the membrane surface and promoted amyloid fibril formation of the protein. Herein, we investigated detailed mechanisms of the conformational transition and oligomer formation of the amyloid-ß protein on the membrane surface. Changes in the fractions of the three protein conformers (free monomer, membrane-bound α-helix-rich conformation, and ß-sheet-rich conformation) were determined from the fluorescent spectral changes of the tryptophan probe in the protein. The helix-to-sheet structural transition on the surface was described by a thermodynamic model of octamer formation driven by entropic forces including hydrophobic interactions. These findings provide useful information for understanding the self-assembly of amyloidogenic proteins on lipid membrane surfaces.


Assuntos
Peptídeos beta-Amiloides , Fosfolipídeos , Termodinâmica , Peptídeos beta-Amiloides/química , Peptídeos beta-Amiloides/metabolismo , Fosfolipídeos/química , Bicamadas Lipídicas/química , Bicamadas Lipídicas/metabolismo , Ânions/química , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/metabolismo , Conformação Proteica em Folha beta , Estrutura Secundária de Proteína , Humanos , Multimerização Proteica
16.
Trends Biochem Sci ; 49(5): 401-416, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38508884

RESUMO

Biological membranes are integral cellular structures that can be curved into various geometries. These curved structures are abundant in cells as they are essential for various physiological processes. However, curved membranes are inherently unstable, especially on nanometer length scales. To stabilize curved membranes, cells can utilize proteins that sense and generate membrane curvature. In this review, we summarize recent research that has advanced our understanding of interactions between proteins and curved membrane surfaces, as well as work that has expanded our ability to study curvature sensing and generation. Additionally, we look at specific examples of cellular processes that require membrane curvature, such as neurotransmission, clathrin-mediated endocytosis (CME), and organelle biogenesis.


Assuntos
Membrana Celular , Membrana Celular/metabolismo , Humanos , Endocitose/fisiologia , Animais , Proteínas de Membrana/metabolismo , Proteínas de Membrana/química , Clatrina/metabolismo
17.
Cytoskeleton (Hoboken) ; 81(4-5): 238-248, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38226738

RESUMO

Cellular response to the topography of their environment, known as contact guidance, is a crucial aspect to many biological processes yet remains poorly understood. A prevailing model to describe cellular contact guidance involves the lateral confinement of focal adhesions (FA) by topography as an underlying mechanism governing how cells can respond to topographical cues. However, it is not clear how this model is consistent with the well-documented depth-dependent contact guidance responses in the literature. To investigate this model, we fabricated a set of contact guidance chips with lateral dimensions capable of confining focal adhesions and relaxing that confinement at various depths. We find at the shallowest depth of 330 nm, the model of focal adhesion confinement is consistent with our observations. However, the cellular response at depths of 725 and 1000 nm is inadequately explained by this model. Instead, we observe a distinct reorganization of F-actin at greater depths in which topographically induced cell membrane deformation alters the structure of the cytoskeleton. These results are consistent with an alternative curvature-hypothesis to explain cellular response to topographical cues. Together, these results indicate a confluence of two molecular mechanisms operating at increased induced membrane curvature that govern how cells sense and respond to topography.


Assuntos
Adesões Focais , Adesões Focais/metabolismo , Actinas/metabolismo , Humanos , Animais , Citoesqueleto/metabolismo
18.
Autophagy ; 20(3): 709-711, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38032155

RESUMO

During autophagosome formation, ATG3, an E2-like enzyme, catalyzes the transfer of LC3-family proteins (including Atg8 in yeast and LC3- and GABARAP-subfamily members in more complex eukaryotes) from the covalent conjugated ATG3-LC3 intermediate to PE lipids in targeted membranes. A recent study has shown that the catalytically important regions of human ATG3 (hereafter referred to as ATG3), including residues 262 to 277 and 291 to 300, in cooperation with its N-terminal curvature-sensing amphipathic helix (NAH), directly interact with the membrane. These membrane interactions are functionally necessary for in vitro conjugation and in vivo cellular assays. They provide a molecular mechanism for how the membrane curvature-sensitive interaction of the NAH of ATG3 is closely coupled to its conjugase activity. Together, the data are consistent with a model in which the highly curved phagophore rims facilitate the recruitment of the ATG3-LC3 complex and promote the conjugation of LC3 to PE lipids. Mechanistically, the highly curved membranes of the phagophore rims act in much the same manner as classical E3 enzymes in the sumo/ubiquitin system, bringing substrates into proximity and rearranging the catalytic center of ATG3. Future studies will investigate how this multifaceted membrane interaction of ATG3 works with the putative E3 complex, ATG12-ATG5-ATG16L1, to promote LC3-PE conjugation.


Assuntos
Autofagia , Fosfatidiletanolaminas , Humanos , Proteínas Relacionadas à Autofagia , Proteínas , Autofagossomos , Proteínas Associadas aos Microtúbulos , Enzimas de Conjugação de Ubiquitina
19.
Curr Top Med Chem ; 24(1): 31-44, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37929725

RESUMO

Bacterial proteins targeting the appropriate subcellular sites are the base for their proper function. Several studies have shown that the anionic phospholipid cardiolipin (CL), a conical lipid preferring negative membrane curvature, modulates the lipid bilayers' structure, which impacts the activity of their resident proteins. Due to the favor of negative membrane curvature, CL is not randomly distributed in the bacterial plasma membrane. In contrast, it gathers in particular parts of the cell membrane to form microdomains, in which many functional membrane proteins are accumulated and carry out diverse physiological processes of bacteria, such as cell division, metabolism, infection, and antibiotic residence. In addition, CL has a unique structure that carries two negative charges, which makes it play a pivotal role in protein assembly, interaction, and location. These characteristics of CL make it closely related to many crucial physiological functions of bacteria. Here, we have reviewed the mechanism of protein dynamics mediated by CL initiated on the bacterial membrane. Furthermore, we studied the effect of CL on bacterial infection and antibiotic residence. Finally, the CL-targeting therapeutic agents for antibacterial therapy are also examined.


Assuntos
Cardiolipinas , Proteínas de Membrana , Cardiolipinas/análise , Cardiolipinas/química , Cardiolipinas/metabolismo , Membrana Celular/química , Proteínas de Membrana/metabolismo , Bactérias/metabolismo , Antibacterianos/farmacologia , Antibacterianos/metabolismo
20.
Virulence ; 15(1): 2299183, 2024 12.
Artigo em Inglês | MEDLINE | ID: mdl-38156783

RESUMO

The cell membrane forms a fundamental part of all living cells and participates in a variety of physiological processes, such as material exchange, stress response, cell recognition, signal transduction, cellular immunity, apoptosis, and pathogenicity. Here, we review the mechanisms and functions of the membrane structure (lipid components of the membrane and the biosynthesis of unsaturated fatty acids), membrane proteins (transmembrane proteins and proteins contributing to membrane curvature), transcriptional regulation, and cell wall components that influence the virulence and pathogenicity of filamentous fungi.


Assuntos
Parede Celular , Fungos , Virulência , Fungos/fisiologia , Membrana Celular/metabolismo , Parede Celular/metabolismo , Homeostase , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...