Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 580
Filtrar
1.
Small ; : e2405748, 2024 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-39248683

RESUMO

Pt-based alloy with high mass activity and durability is highly desired for proton exchange membrane fuel cells, yet a great challenge remains due to the high mass transport resistance near catalysts with lowering Pt loading. Herein, an extensible approach employing atomic layer deposition to accurately introduce a gas-phase metal precursor into platinum nanoparticles (NPs) pre-filled mesoporous channels is reported, achieved by controlling both the deposition site and quantity. Following the spatially confined alloying treatment, the prepared PtSn alloy catalyst within mesopores demonstrates a small size and homogeneous distribution (2.10 ± 0.53 nm). The membrane electrode assembly with mesoporous carbon-supported PtSn alloy catalyst achieves a high initial mass activity of 0.85 A mg Pt - 1 ${\mathrm{mg}}_{\mathrm{Pt}}^{-1}$ at 0.9 V, which is attributed to the smallest local oxygen transport resistance (3.68 S m-1) ever reported. The mass activity of the catalyst only decreases by 11% after 30000 cycles of accelerated durability test, representing superior full-cell durability among the reported Pt-based alloy catalysts. The enhanced activity and durability are attributed to the decreased adsorption energy of oxygen intermediates on Pt surface and the strong electronic interaction between Pt and Sn inhibiting Pt dissolution.

2.
Molecules ; 29(15)2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-39125110

RESUMO

Increased environmental pollution and the shortage of the current fossil fuel energy supply has increased the demand for eco-friendly energy sources. Hydrogen energy has become a potential solution due to its availability and green combustion byproduct. Hydrogen feedstock materials like sodium borohydride (NaBH4) are promising sources of hydrogen; however, the rate at which the hydrogen is released during its reaction with water is slow and requires a stable catalyst. In this study, gold nanoparticles were deposited onto mesoporous carbon to form a nano-composite catalyst (AuNP-MCM), which was then characterized via transmission electron microscopy (TEM), powder X-ray diffraction (P-XRD), and scanning electron microscopy/energy dispersive X-ray spectroscopy (SEM/EDS). The composite's catalytic ability in a hydrogen evolution reaction was tested under varying conditions, including NaBH4 concentration, pH, and temperature, and it showed an activation of energy of 30.0 kJ mol-1. It was determined that the optimal reaction conditions include high NaBH4 concentrations, lower pH, and higher temperatures. This catalyst, with its stability and competitively low activation energy, makes it a promising material for hydrogen generation.

3.
Adv Sci (Weinh) ; : e2403802, 2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39140249

RESUMO

Exploring new carbon-based electrode materials is quite necessary for enhancing capacitive deionization (CDI). Here, hollow mesoporous carbon spheres (HMCSs)/metal-organic frameworks (MOFs) derived carbon materials (NC(M)/HMCSs and NC(M)@HMCSs) are successfully prepared by interface-coating and space-encapsulating design, respectively. The obtained NC(M)/HMCSs and NC(M)@HMCSs possess a hierarchical hollow nanoarchitecture with abundant nitrogen doping, high specific surface area, and abundant meso-/microporous pores. These merits are conducive to rapid ion diffusion and charge transfer during the adsorption process. Compared to NC(M)/HMCSs, NC(M)@HMCSs exhibit superior electrochemical performance due to their better utilization of the internal space of hollow carbon, forming an interconnected 3D framework. In addition, the introduction of Ni ions is more conducive to the synergistic effect between ZIF(M)-derived carbon and N-doped carbon shell compared with other ions (Mn, Co, Cu ions). The resultant Ni-1-800-based CDI device exhibits excellent salt adsorption capacity (SAC, 37.82 mg g-1) and good recyclability. This will provide a new direction for the MOF nanoparticle-driven assembly strategy and the application of hierarchical hollow carbon nanoarchitecture to CDI.

4.
ACS Nano ; 18(32): 21459-21471, 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39088247

RESUMO

Hard carbon is considered as the most promising anode material for potassium-ion energy storage devices. Substantial progress has been made in exploring advanced hard carbons to solve the issues of sluggish kinetics and large volume changes caused by the large radius of K+. However, the relationship between their complicated microstructures and the K+ charge storage behavior is still not fully explored. Herein, a series of two-dimensional mesoporous carbon microcoins (2D-MCMs) with tunable microstructures in heteroatom content and graphitization degree are synthesized by a facile hard-template method and follow a temperature-controllable annealing process. It is found that high heteroatom content makes for surface-driven K+ storage behavior, which increases the capacity-contribution ratio from a high potential region, while a high graphitization degree makes for K+ intercalation behavior, which increases the capacity-contribution ratio from a low potential region. Electrochemical results from a three-electrode Swagelok cell demonstrate that a 2D-MCM anode with more capacity contribution from a low working region allows the porous carbon cathode to be operated in a much wider electrochemical window, thus storing more charge. As a result, potassium-ion capacitors based on the optimized 2D-MCM anode deliver a high energy density of 113 Wh kg-1 and an exhilarating power density of 51,000 W kg-1.

5.
Artigo em Inglês | MEDLINE | ID: mdl-39161048

RESUMO

In recent years, significant attention has been directed toward advancing compact, point-of-care testing (POCT) devices to better deliver patient care and alleviate the burden on the medical care system. Common POCTs, such as blood oxygen sensors, leverage electrochemical sensing in their design. However, conventional electrochemical devices typically use Ag/AgCl reference electrodes, which are likely to release trace amounts of silver ions that contaminate the working electrode, causing rapid deterioration of the devices. This study proposes an effective reference electrode using graphene-coated porous silica spheres (G/PSS) with embedded Prussian blue (PB), denoted PB/G/PSS, designed specifically for small oxygen sensors. PB is a redox species that is an improvement over Ag/AgCl since it is significantly less water-soluble than AgCl. Since PB is an insulator, we dispersed PB in G/PSS, well-conductive mesoporous matrices, to ensure contact between PB clusters and the electrolytes. Moreover, the monodispersed, spherically shaped PB/G/PSS is an advantageous medium for fabricating POCT devices by screen printing. In this study, the open-circuit potential of the PB/G/PSS electrode remained stable within 30 mV for 31 days. The small oxygen sensor assembled through screen printing using PB/G/PSS demonstrated stable operation for several days or more. In contrast, a similar sensor with Ag/AgCl reference electrode rapidly deteriorated within a day. This PB/G/PSS reference electrode with improved stability is expected to be an excellent alternative to the Ag/AgCl system for small electrochemical-based POCT devices.

6.
Nano Lett ; 24(29): 8902-8910, 2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-39008627

RESUMO

Ion transportation at the interface significantly influences the electrochemical performance of the lithium ion battery, especially at high rates and low temperatures. Here, we develop a controlled self-assembly strategy for constructing a mesoporous carbon nanolayer with a uniform pore size and varied thicknesses on the two-dimensional monolayer MXene substrate. On the basis of the excellent electron conductivity of MXene, the mesoporous carbon layer is found with a voltage-driven ion accumulation effect, acting as an "ionic pump". The thicker mesoporous layer (∼2.28 nm) has the ability to accommodate a substantial quantity of ions, demonstrating enhanced ionic conductivity, remarkable cycling stability (192.8 mAh/g after 9400 cycles at 5.0 A/g), and outstanding rate capability at ambient and sub-zero temperatures (∼601 mAh/g at 0 °C and 0.05 A/g). This work provides valuable insights and guidance for the further development of high-performance electrode materials at high rates or low temperatures.

7.
J Colloid Interface Sci ; 676: 485-495, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-39047376

RESUMO

This work describes the application of Cu single-atom catalysts (SACs) for photocatalytic oxidative dehydrogenation of N-heterocyclic amines to the respective N-heteroaromatics through environmentally benign and sustainable pathways. The mesoporous graphitic carbon nitride (mpg-C3N4), prepared by the one-step pyrolysis method, possesses a lightweight material with a high surface area (95 m2 g-1) and an average pore diameter (3.6 nm). A simple microwave-assisted preparation method was employed to decorate Cu single-atom over mpg-C3N4 support. The Cu single-atom decorated on mpg-C3N4 support (Cu@mpg-C3N4) is characterized by various characterization techniques, including XRD, UV-visible spectrophotometry, HRTEM, HAADF-STEM with elemental mapping, AC-STEM, ICP-OES, XANES, EXAFS, and BET surface area. These characterization studies confirmed that the Cu@mpg-C3N4 catalyst exhibited high surface area, mesoporous nature, medium band gap, and low metal loading. The as-synthesized and well-characterized Cu@mpg-C3N4 single-atom photocatalyst is then evaluated for its efficacy in converting N-heterocycles into corresponding N-heteroaromatic compounds with excellent conversion and selectivity (>99 %). This transformation is achieved using water as a green solvent and a 30 W white light as a visible light source, demonstrating the catalyst's potential for sustainable and environmentally benign reactions.

8.
ACS Appl Mater Interfaces ; 16(32): 42080-42092, 2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39078413

RESUMO

As an atom-economical reaction, the direct generation of dimethyl carbonate (DMC) and ethylene glycol (EG) via the transesterification of CH3OH and ethylene carbonate (EC) has several promising applications, but the exploration of carriers with high specific surface areas and novel heterogeneous catalysts with more basic sites remains a long-standing research challenge. For this purpose, herein, a nitrogen-doped mesoporous carbon (NMC, 439 m2/g) based K-O2 Lewis base catalyst (K-O2/NMC) with well-dispersed strongly basic sites (2.23 mmol/g, 84.5%) was designed and synthesized. The compositions and structures of NMC and K-O2/NMC were comprehensively investigated via Fourier transform infrared spectroscopy, X-ray diffraction, X-ray photoelectron spectroscopy, scanning electron microscopy, transmission electron microscopy, N2 adsorption-desorption, CO2 temperature-programmed desorption, and contact angle measurements. The optimal structural configuration and electron cloud distribution of the K-O2/NMC catalyst were simulated using first-principles calculations. The electron transfer predominantly manifested as a flow from K-O to C-O/C-N, and the interatomic interactions between each atom were enhanced and exhibited a tendency for a more stable state after redistribution. Furthermore, the adsorption energies (Eads) of CH3OH at K-O-O and K-O-N sites were -1.4185 eV and -1.3377 eV, respectively, and the O atom in CH3OH exhibited a stronger adsorption tendency for the K atom at the K-O-O site. Under the optimal conditions, the EC conversion, DMC/EG selectivity, and turnover number/frequency were 80.9%, 98.6%/99.4%, and 40.5/60.8 h-1, respectively, with a reaction rate constant (k) of 0.1005 mol/(L·min). Results showed that the heterogeneous K-O2/NMC catalyst prepared herein greatly reduced the reaction cost while guaranteeing the catalytic effect, and the whole system required a lower reaction temperature (65 °C), a shorter reaction time (40 min), and a lower catalyst amount (2.0 wt % of EC). Therefore, K-O2/NMC can be used as a catalyst in different transesterification reactions.

9.
Nanomaterials (Basel) ; 14(12)2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38921900

RESUMO

A composite material of tungsten carbide and mesoporous carbon was synthesized by the sol-gel polycondensation of resorcinol and formaldehyde, using cetyltrimethylammonium bromide as a surfactant and Ludox HS-40 as a porogen, and served as a support for Pd-based electrodes. Phosphorus-modified Pd particles were deposited onto the support using an NH3-mediated polyol reduction method facilitated by sodium hypophosphite. Remarkably small Pd nanoparticles with a diameter of ca. 4 nm were formed by the phosphorus modification. Owing to the high dispersion of Pd and its strong interaction with tungsten carbide, the Pd nanoparticles embedded in the tungsten carbide/mesoporous carbon composite exhibited a hydrogen oxidation activity approximately twice as high as that of the commercial Pt/C catalyst under the anode reaction conditions of proton exchange membrane fuel cells.

10.
J Colloid Interface Sci ; 672: 107-116, 2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-38833730

RESUMO

Developing sustainable metal-free carbon-based electrocatalysts is essential for the deployment of metal-air batteries such as zinc-air batteries (ZABs), among which doping of heteroatoms has attracted tremendous interest over the past decade. However, the effect of the heteroatom covalent bonds in carbon matrix on catalysis was neglected in most studies. Here, an efficient metal-free oxygen reduction reaction (ORR) catalyst is demonstrated by the N-P bonds anchored carbon (termed N,P-C-1000). The N,P-C-1000 catalyst exhibits superior specific surface area of 1362 m2 g-1 and ORR activity with a half-wave potential of 0.83 V, close to that of 20 wt% Pt/C. Theoretical computations reveal that the p-band center for C-2p orbit in N,P-C-1000 has higher interaction strength with the intermediates, thus reducing the overall reaction energy barrier. The N,P-C-1000 assembled primary ZAB can attain a large peak power density of 121.9 mW cm-2 and a steady discharge platform of ∼1.20 V throughout 120 h. Besides, when served as the cathodic catalyst in a solid-state ZAB, the battery shows flexibility, conspicuous open circuit potential (1.423 V), and high peak power density (85.8 mW cm-2). Our findings offer a strategy to tune the intrinsic structure of carbon-based catalysts for improved electrocatalytic performance and shed light on future catalysts design for energy storage technologies beyond batteries.

11.
Mikrochim Acta ; 191(7): 428, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38940957

RESUMO

A novel nitrogen-doped ordered mesoporous carbon (OMC) pore-embedded growth Pt-Ru-Fe nanoparticles (Pt1-Ru7.5-Fex@N-OMCs) composite was designed and synthesized for the first time. SBA-15 was used as a template, and dopamine was used as a carbon and nitrogen source and metal linking reagent. The oxidative self-polymerization reaction of dopamine was utilized to polymerize dopamine into two-dimensional ordered SBA-15 template pores. Iron porphyrin was introduced as an iron source at the same time as polymerization of dopamine, which was introduced inside and outside the pores using dopamine-metal linkage. Carbonization of polydopamine, nitrogen doping and iron nanoparticle formation were achieved by one-step calcination. Then the templates were etched to form Fex@N-OMCs, and finally the Pt1-Ru7.5-Fex@N-OMCs composites were stabilized by the successful introduction of platinum-ruthenium nanoparticles through the substitution reaction. The composite uniformly embeds the transition metal nanoparticles inside the OMC pores with high specific surface area, which limits the size of the metal nanoparticles inside the pores. At the same time, the metal nanoparticles are also loaded onto the surface of the OMCs, realizing the uniform loading of metal nanoparticles both inside and outside the pores. This enhances the active sites of the composite, promotes the mass transfer process inside and outside the pores, and greatly enhances the electrocatalytic performance of the catalyst. The material shows high electrocatalytic performance for adrenaline, which is characterized by a wide linear range, high sensitivity and low detection limit, and can realize the detection of actual samples.

12.
Pharmaceuticals (Basel) ; 17(6)2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38931400

RESUMO

This study assessed the effectiveness of a trastuzumab-targeted 177Lu-labeled mesoporous Carbon@Silica nanostructure (DOTA@TRA/MC@Si) for HER2-positive breast cancer treatment, focusing on its uptake, internalization, and efflux in breast cancer cells. The synthesized PEI-MC@Si nanocomposite was reacted with DOTA-NHS-ester, confirmed by the Arsenazo(III) assay. Following this, TRA was conjugated to the DOTA@PEI-MC@Si for targeting. DOTA@PEI-MC@Si and DOTA@TRA/MC@Si nanocomposites were labeled with 177Lu, and their efficacy was evaluated through in vitro radiolabeling experiments. According to the results, the DOTA@TRA/MC@Si nanocomposite was successfully labeled with 177Lu, yielding a radiochemical yield of 93.0 ± 2.4%. In vitro studies revealed a higher uptake of the [177Lu]Lu-DOTA@TRA/MC@Si nanocomposite in HER2-positive SK-BR-3 cells (44.0 ± 4.6% after 24 h) compared to MDA-MB-231 cells (21.0 ± 2.3%). The IC50 values for TRA-dependent uptake in the SK-BR-3 and BT-474 cells were 0.9 µM and 1.3 µM, respectively, indicating affinity toward HER-2 receptor-expressing cells. The lipophilic distribution coefficients of the radiolabeled nanocomposites were determined to be 1.7 ± 0.3 for [177Lu]Lu-DOTA@TRA/MC@Si and 1.5 ± 0.2 for [177Lu]Lu-DOTA@PEI-MC@Si, suggesting sufficient passive transport through the cell membrane and increased accumulation in target tissues. The [177Lu]Lu-DOTA@TRA/MC@Si nanocomposite showed an uptake into HER2-positive cell lines, marking a valuable step toward the development of a nanoparticle-based therapeutic agent for an improved treatment strategy for HER2-positive breast cancer.

13.
ChemSusChem ; : e202400596, 2024 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-38797710

RESUMO

Over the last years, solid-state electrolytes made of an ionic liquid (IL) confined in a solid (inorganic or polymer) matrix, also known as ionogels, have been proposed to solve the leakage problems occurring at high temperatures in classical electrical double-layer capacitors (EDLCs) with an organic electrolyte, and thereof improve the safety. However, making ionogel-based EDLCs perform with reasonable power at low temperature is still a major challenge due to the high melting point of the confined IL. To overcome these limitations, the present contribution discloses ionogel films prepared in a totally oxygen/moisture-free atmosphere by encapsulating 70 wt % of an equimolar mixture of 1-ethyl-3-methylimidazolium bis(fluorosulfonyl)imide and 1-ethyl-3-methylimidazolium tetrafluoroborate - [EMIm][BF4]0.5[FSI]0.5 - into a poly(vinylidene fluoride-co-hexafluoropropylene) (PVdF-HFP) network. The further called "binary ionogel" films demonstrated a high flexibility and a good ionic conductivity of 5.8 mS cm-1 at 20 °C. Contrary to the ionogels prepared from either [EMIm][FSI] or [EMIm][BF4], displaying melting at Tm=-16 °C and -7 °C, respectively, the crystallization of confined [EMIm][BF4]0.5[FSI]0.5 is quenched in the binary ionogel, which shows only a glass transition at -101 °C. This quenching enables an increased ionicity and ionic diffusion at the interface with the PVdF host network, leading the binary ionogel membrane to display higher ionic conductivity below -20 °C than the parent binary [EMIm][BF4]0.5[FSI]0.5 liquid. Laminate EDLCs were built with a 100 µm thick binary ionogel separator and electrodes made from a hierarchical micro-/mesoporous MgO-templated carbon containing a reasonable proportion of mesopores to enhance the mass transport of ions, especially at low temperature where the ionic diffusion noticeably decreases. The EDLCs operated up to 3.0 V with ideal EDL characteristics from -40 °C to room temperature. Their output specific energy under a discharge power of 1 kW kg-1 is ca. 4 times larger than with a cell implementing the same carbon electrodes together with the binary [EMIm][BF4]0.5[FSI]0.5 liquid. Hence, this binary ionogel electrolyte concept paves the road for developing safe and flexible solid-state energy storage devices operating at subambient temperatures in extreme environments.

14.
Artigo em Inglês | MEDLINE | ID: mdl-38597319

RESUMO

A rechargeable aqueous hybrid ion alkaline battery, using a proton and a potassium ion as charge carriers for the anode and cathode, respectively, is proposed in this study by using well-developed potassium nickel hexacyanoferrate as the cathode material and mesoporous carbon sheets as the anode material, respectively. The constructed battery operates in a concentrated KOH solution, in which the energy storage mechanism for potassium nickel hexacyanoferrate involves the redox reaction of Fe2+/Fe3+ associated with potassium ion insertion/extraction and the redox reaction of Ni(OH)2/NiOOH. The mechanism for the carbon anode is electrochemical hydrogen storage. The cathode made of potassium nickel hexacyanoferrate exhibits both an ultrahigh capacity of 232.7 mAh g-1 under 100 mA g-1 and a consistent performance of 214 mAh g-1 at 2000 mA g-1 (with a capacity retention of 92.8% after 200 cycles). The mesoporous carbon sheet anode exhibits a capacity of 87.6 mAh·g-1 at 100 mA g-1 with a good rate and cyclic performance. The full cell provides an operational voltage of 1.55 V, a capacity of 93.6 mAh g-1 at 100 mA g-1, and 82.4% capacity retention after 1000 cycles at 2000 mA g-1 along with a low self-discharge rate. The investigation and discussion about the energy storage mechanisms for both electrode materials are also provided.

15.
Mikrochim Acta ; 191(4): 228, 2024 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-38558104

RESUMO

A cutting-edge electrochemical method is presented for precise quantification of amitraz (AMZ), a commonly used acaricide in veterinary medicine and agriculture. Leveraging a lab-made screen-printed carbon electrode modified with a synergistic blend of perylene tetracarboxylic acid (PTCA), mesoporous carbon (MC), and Nafion, the sensor's sensitivity was significantly improved. Fine-tuning of PTCA, MC, and Nafion ratios, alongside optimization of the pH of the supporting electrolyte and accumulation time, resulted in remarkable sensitivity enhancements. The sensor exhibited a linear response within the concentration range 0.01 to 0.70 µg mL-1, boasting an exceptionally low limit of detection of 0.002 µg mL-1 and a limit of quantification of 0.10 µg mL-1, surpassing maximum residue levels permitted in honey, tomato, and longan samples. Validation with real samples demonstrated high recoveries ranging from 80.8 to 104.8%, with a relative standard deviation below 10%, affirming the method's robustness and precision. The modified PTCA/MC/Nafion@SPCE-based electrochemical sensor not only offers superior sensitivity but also simplicity and cost-effectiveness, making it a pivotal tool for accurate AMZ detection in food samples. Furthermore, beyond the scope of this study, the sensor presents promising prospects for wider application across various electrochemical analytical fields, thereby significantly contributing to food safety and advancing agricultural practices.


Assuntos
Carbono , Polímeros de Fluorcarboneto , Perileno , Toluidinas , Carbono/química , Perileno/química , Eletrodos
16.
Molecules ; 29(7)2024 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-38611716

RESUMO

Selective oxidation, which is crucial in diverse chemical industries, transforms harmful chemicals into valuable compounds. Heterogeneous sonocatalysis, an emerging sustainable approach, urges in-depth exploration. In this work, we investigated N-doped or non-doped carbonaceous materials as alternatives to scarce, economically sensitive metal-based catalysts. Having synthesized diverse carbons using a hard-template technique, we subjected them to sonication at frequencies of 22, 100, 500, and 800 kHz with a 50% amplitude. Sonochemical reaction catalytic tests considerably increased the catalytic activity of C-meso (non-doped mesoporous carbon material). The scavenger test showed a radical formation when this catalyst was used. N-doped carbons did not show adequate and consistent sonoactivity for the selective oxidation of 4-Hydroxy-3,5 dimethoxybenzyl alcohol in comparison with control conditions without sonication, which might be associated with an acid-base interaction between the catalysts and the substrate and sonoactivity prohibition by piridinic nitrogen in N-doped catalysts.

17.
Int J Biol Macromol ; 267(Pt 1): 131471, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38599419

RESUMO

The conversion of glucose into fructose can transform cellulose into high-value chemicals. This study introduces an innovative synthesis method for creating an MgO-based ordered mesoporous carbon (MgO@OMC) catalyst, aimed at the efficient isomerization of glucose into fructose. Throughout the synthesis process, lignin serves as the exclusive carbon precursor, while Mg2+ functions as both a crosslinking agent and a metallic active center. This enables a one-step synthesis of MgO@OMC via a solvent-induced evaporation self-assembly (EISA) method. The synthesized MgO@OMCs exhibit an impeccable 2D hexagonal ordered mesoporous structure, in addition to a substantial specific surface area (378.2 m2/g) and small MgO nanoparticles (1.52 nm). Furthermore, this catalyst was shown active, selective, and reusable in the isomerization of glucose to fructose. It yields 41 % fructose with a selectivity of up to 89.3 % at a significant glucose loading of 7 wt% in aqueous solution over MgO0.5@OMC-600. This performance closely rivals the current maximum glucose isomerization yield achieved with solid base catalysts. Additionally, the catalyst retains a fructose selectivity above 60 % even after 4 cycles, a feature attributable to its extended ordered mesoporous structure and the spatial confinement effect of the OMCs, bestowing it with high catalytic efficiency.


Assuntos
Carbono , Frutose , Glucose , Lignina , Óxido de Magnésio , Frutose/química , Lignina/química , Glucose/química , Carbono/química , Porosidade , Óxido de Magnésio/química , Catálise , Isomerismo
18.
Heliyon ; 10(5): e26690, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38455557

RESUMO

One of the most promising solutions to the current energy crisis is an efficient catalytic transformation of abundant low-cost renewable raw biomass into high-quality biofuel. Herein, a highly effective catalyst was constructed systematically for the selective synthesis of 2,5-dimethylfuran (DMF) biofuel from biomass-derived 5-hydroxymethylfurfural (HMF) via green catalytic transfer hydrogenolysis (CTH) using a nitrogen-doped ordered mesoporous carbon (N-CMK-1) decorated ruthenium (Ru)-based catalyst in i-propanol as hydrogen source. The structures and properties of different catalysts were characterized by different characterization techniques such as FTIR, XRD, N2-sorption, CO2-sorption, TGA, TEM, ICP-AES, CHNO analysis, and acid-base back titration. A complete HMF conversion with a high DMF yield of 88% was achieved under optimized reaction conditions. Regarding substrate conversion and product yield, the influence of reaction temperature, time, and hydrogen donors was thoroughly investigated. The nitrogen-promoted carbon support enhanced the dispersion of Ru due to the formation of appropriate basic site density which could efficiently promote the activation of alcohol hydroxyl in i-propanol and subsequent release of active hydrogen species. In the meantime, highly dispersed surface Ru nanoparticles (NPs) were beneficial for hydrogen transfer and activation of both carbonyl and hydroxyl groups in HMF. Moreover, Arrhenius kinetic analysis was studied by identifying 5-methyl furfural (5-MF) and 2,5-bishydroxymethylfuran (BHMF) as two key intermediates that dominate a distinct reaction pathway during hydrogenolysis of HMF to DMF via CTH. Furthermore, high stability without obvious loss of activity after three consecutive cycles was observed in a fabricated N-CMK-1 decorated Ru-based catalyst as a result of superior metal-support interaction and the mesoporous framework nature of the catalyst. These findings would not only offer a robust catalyst synthetic approach but also open a new avenue for the exploitation of biomass to specialty chemicals and advanced biofuels.

19.
Huan Jing Ke Xue ; 45(2): 885-897, 2024 Feb 08.
Artigo em Chinês | MEDLINE | ID: mdl-38471927

RESUMO

Using coconut shell and boric acid as raw materials, a new boron-doped coconut shell mesoporous carbon material (B-CSC) was prepared using a simple one-step pyrolysis method for efficient adsorption and removal of tetracycline pollutants in water. The effects of pyrolysis temperature and boron-carbon mass ratio on the adsorption performance under key preparation conditions were systematically studied, and their microstructure and physicochemical properties were characterized using a specific surface area and pore size analyzer (BET), field emission scanning electron microscopy (SEM), X-ray photon spectroscopy (XPS), Raman spectrometer (Raman), and Zeta potentiometer (Zeta). The effects of initial pH, different metal cations, and different background water quality conditions on the adsorption effect were systematically investigated. Combined with material characterization and correlation analysis, the enhanced adsorption mechanism was discussed and analyzed in depth. The results showed that one-step pyrolysis could incorporate boron into the surface and crystal lattice of coconut shell charcoal, resulting in a larger specific surface area and pore volume, and the main forms of boron introduced were H3BO3, B2O3, B, and B4C. The adsorption capacity of B-CSC to tetracycline reached 297.65 mg·g-1, which was 8.9 times that of the original coconut shell mesoporous carbon (CSC). At the same time, the adsorption capacity of B-CSC for rhodamine B (RhB), bisphenol A(BPA), and methylene blue (MB), common pollutants in aquatic environments, was as high as 372.65, 255.24, and 147.82 mg·g-1, respectively. The adsorption process of B-CSC to tetracycline was dominated by physicochemical interaction, mainly involving liquid film diffusion, surface adsorption, mesoporous and microporous diffusion, and active site adsorption, and H3BO3 was the main adsorption site. The adsorption strengthening mechanism mainly reduced the chemical inertness of the carbon network and enhanced its π-π interaction and hydrogen bonding with tetracycline molecules.

20.
Materials (Basel) ; 17(6)2024 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-38541529

RESUMO

This study presents the results of applying the methods of synthesizing mesoporous carbon and mesoporous polymer materials with an extended porous mesostructure as adsorbents for cationic dye molecules. Both types of adsorbents are synthetic materials. The aim of the presented research was the preparation, characterisation, and utilisation of obtained mesoporous adsorbents. The physicochemical properties, morphology, and porous structure characteristics of the obtained materials were determined using low-temperature nitrogen sorption isotherms, X-ray diffraction (XRD), small angle X-ray scattering (SAXS), and potentiometric titration measurements. The morphology and microstructure were imaged using scanning electron microscopy (SEM). The chemical characterisation of the surface chemistry of the adsorbents, which provides information about the surface-active groups, the elemental composition, and the electronic state of the elements, was carried out using X-ray photoelectron spectroscopy (XPS). The adsorption properties of the mesoporous materials were determined using equilibrium and kinetic adsorption experiments for three selected cationic dyes (derivatives of thiazine (methylene blue) and triarylmethane (malachite green and crystal violet)). The adsorption capacity was analysed to the nanostructural and surface properties of used materials. The Generalized Langmuir equation was applied for the analysis of adsorption isotherm data. The adsorption study showed that the carbon materials have a higher sorption capacity for both methylene blue and crystal violet, e.g., 0.88-1.01 mmol/g and 0.33-0.44 mmol/g, respectively, compared to the polymer materials (e.g., 0.038-0.044 mmol/g and 0.038-0.050 mmol/g, respectively). The kinetics of dyes adsorption was closely correlated with the structural properties of the adsorbents. The kinetic data were analysed using various equations: first-order (FOE), second-order (SOE), mixed 1,2-order (MOE), multi-exponential (m-exp), and fractal-like MOE (f-MOE).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...