Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.919
Filtrar
1.
Int J Nanomedicine ; 19: 8949-8970, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39246424

RESUMO

Introduction: RNA interference (RNAi) stands as a widely employed gene interference technology, with small interfering RNA (siRNA) emerging as a promising tool for cancer treatment. However, the inherent limitations of siRNA, such as easy degradation and low bioavailability, hamper its efficacy in cancer therapy. To address these challenges, this study focused on the development of a nanocarrier system (HLM-N@DOX/R) capable of delivering both siRNA and doxorubicin for the treatment of breast cancer. Methods: The study involved a comprehensive investigation into various characteristics of the nanocarrier, including shape, diameter, Fourier transform infrared (FT-IR) spectroscopy, X-ray photoelectron spectroscopy (XPS), encapsulation efficiency, and drug loading. Subsequently, in vitro and in vivo studies were conducted on cytotoxicity, cellular uptake, cellular immunofluorescence, lysosome escape, and mouse tumor models to evaluate the efficacy of the nanocarrier in reversing tumor multidrug resistance and anti-tumor effects. Results: The results showed that HLM-N@DOX/R had a high encapsulation efficiency and drug loading capacity, and exhibited pH/redox dual responsive drug release characteristics. In vitro and in vivo studies showed that HLM-N@DOX/R inhibited the expression of P-gp by 80%, inhibited MDR tumor growth by 71% and eliminated P protein mediated multidrug resistance. Conclusion: In summary, HLM-N holds tremendous potential as an effective and targeted co-delivery system for DOX and P-gp siRNA, offering a promising strategy for overcoming MDR in breast cancer.


Assuntos
Neoplasias da Mama , Doxorrubicina , Resistência a Múltiplos Medicamentos , Resistencia a Medicamentos Antineoplásicos , Lipossomos , RNA Interferente Pequeno , Animais , Doxorrubicina/farmacologia , Doxorrubicina/química , Doxorrubicina/farmacocinética , Doxorrubicina/administração & dosagem , Feminino , Lipossomos/química , Camundongos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Humanos , RNA Interferente Pequeno/administração & dosagem , RNA Interferente Pequeno/química , RNA Interferente Pequeno/farmacocinética , Resistência a Múltiplos Medicamentos/efeitos dos fármacos , Neoplasias da Mama/tratamento farmacológico , Linhagem Celular Tumoral , Células MCF-7 , Camundongos Endogâmicos BALB C , Portadores de Fármacos/química , Portadores de Fármacos/farmacocinética , Nanopartículas/química , Liberação Controlada de Fármacos , Antibióticos Antineoplásicos/farmacologia , Antibióticos Antineoplásicos/química , Antibióticos Antineoplásicos/administração & dosagem , Antibióticos Antineoplásicos/farmacocinética , Ensaios Antitumorais Modelo de Xenoenxerto
2.
Artigo em Inglês | MEDLINE | ID: mdl-39222168

RESUMO

A recombinant esterase, BaCEm, derived from Bacillus aryabhattai and heterologously expressed in Escherichia coli, was successfully immobilized on polyethyleneimine-impregnated mesoporous silica SBA-15. This immobilization utilized glutaraldehyde as a crosslinker. Optimal conditions were established with a PEI/SBA-15 ratio of 25% (w/w), a pH of 7.5, and a glutaraldehyde concentration of 0.5% (w/w), resulting in a loading capacity of 76.4 mg/g, a recovery activity of 43.5%, and a specific activity of 7917 U/g for BaCEm. The immobilized BaCEm demonstrated high enantioselectivity, with an "E" value of 203.92, in the resolution assay of (R,S)-ethyl indoline-2-carboxylate. Notably, the immobilized enzyme, compared to its free counterpart, exhibited enhanced thermostability, maintaining 95.4% of its activity after 3 h at 30 °C. It also showed significant tolerance to organic solvents, retaining 48.4% and 28.7% residual activity in 10% v/v acetonitrile and acetone, respectively. Moreover, its storage stability was confirmed, with 68.5% residual activity preserved after 30 days at 4 °C. Remarkably, the immobilized BaCEm retained 58.1% of its activity after 10 reuse cycles, underscoring the potential of polyethyleneimine-impregnated mesoporous silica SBA-15 as an effective support for enzyme immobilization, promising for industrial applications.

3.
Adv Sci (Weinh) ; : e2404396, 2024 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-39248388

RESUMO

Temporomandibular joint osteoarthritis (TMJOA) is a commonly encountered degenerative joint disease in oral and maxillofacial surgery. Recent studies have shown that the excessive unbalanced activation of Wnt/ß-catenin signaling is connected with the pathogenesis of TMJOA and due to the inability to inhibit the over-activated Wnt pathway, while Wnt16-deficient mice has a more severe Knee OA. However, the efficacy of direct intra-TMJ injection of Wnt16 for the relief of TMJOA is still not directly confirmed. Moreover, small-molecule drugs such as Wnt16 usually exhibit short-lived efficacy and poor treatment adherence. Therefore, in order to obtain a stable release of Wnt16 both in the short and long term, this study fabricates a double-layer slow-release Wnt16 carrier based on mesoporous silica nanospheres (MSNs) encased within hyaluronic acid (HA) hydrogels. The biofunctional hydrogel HA/Wnt16@MSN is analyzed both in vitro and in vivo to evaluate the treatment of TMJOA. As a result, it shows superior pro-cartilage matrix restoration and inhibition of osteoclastogenesis ability, and effectively inhibits the over-activation of the Wnt/ß-catenin pathway. Taken together, biofunctional hydrogel HA/Wnt16@MSN is a promising candidate for the treatment of TMJOA.

4.
Biomater Adv ; 165: 213998, 2024 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-39236581

RESUMO

This review discusses the relationship between inflammation and cancer initiation and progression, which has prompted research into anti-inflammatory approaches for cancer prevention and treatment. Specifically, it focuses on the use of inflammation-reducing agents to enhance the effectiveness of tumor treatment methods. These agents are combined with platinum(II)-based antitumor drugs to create multifunctional platinum(IV) prodrugs, allowing for simultaneous delivery to tumor cells in a specific ratio. Once inside the cells and subjected to intracellular reduction, both components can act in parallel through distinct pathways. Motivated by the objective of reducing the systemic toxicity associated with contemporary chemotherapy, and with the aim of leveraging the passive enhanced permeability and retention effect exhibited by nanostructured materials to improve their accumulation within tumor tissues, the platinum(IV) complexes have been efficiently loaded into mesoporous silica SBA-15 material. The resulting nanostructured materials are capable of providing controlled release of the conjugates when subjected to simulated plasma conditions. This feature suggests the potential for extended circulation within the body in vivo, with minimal premature release of the drug before reaching the intended target site. The primary emphasis of this review is on research that integrates these two approaches to develop chemotherapeutic treatments that are both more efficient and less harmful.

5.
Int J Nanomedicine ; 19: 8797-8813, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39220198

RESUMO

Aging is an inevitable process in the human body, and cellular senescence refers to irreversible cell cycle arrest caused by external aging-promoting mechanisms. Moreover, as age increases, the accumulation of senescent cells limits both the health of the body and lifespan and even accelerates the occurrence and progression of age-related diseases. Therefore, it is crucial to delay the periodic irreversible arrest and continuous accumulation of senescent cells to address the issue of aging. The fundamental solution is targeted therapy focused on eliminating senescent cells or reducing the senescence-associated secretory phenotype. Over the past few decades, the remarkable development of nanomaterials has revolutionized clinical drug delivery pathways. Their unique optical, magnetic, and electrical properties effectively compensate for the shortcomings of traditional drugs, such as low stability and short half-life, thereby maximizing the bioavailability and minimizing the toxicity of drug delivery. This article provides an overview of how nanomedicine systems control drug release and achieve effective diagnosis. By presenting and analyzing recent advances in nanotherapy for targeting senescent cells, the underlying mechanisms of nanomedicine for senolytic and senomorphic therapy are clarified, providing great potential for targeting senescent cells.


Assuntos
Senescência Celular , Nanomedicina , Humanos , Senescência Celular/efeitos dos fármacos , Animais , Sistemas de Liberação de Medicamentos/métodos , Envelhecimento/efeitos dos fármacos , Envelhecimento/fisiologia , Nanopartículas/química
6.
Mikrochim Acta ; 191(10): 577, 2024 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-39240334

RESUMO

Multi-aptamer recognition of breast cancer cells (MCF-7) is utilized to achieve high specificity. The method comprises two parts, aptamer-functionalized mesoporous silica nanoparticles (MSNs) loaded with dissimilar dyes (thymolphthalein or curcumin) as signal transducers and aptamer-modified magnetic beads (MBs) as capture agents, which worked together to detect MCF-7 cells sensitively and accurately. The results indicated that the aptasensor has a linear detection range of 100 to 4000 cells and a detection threshold of 10 cells/mL. The method had been successfully employed to detect breast cancer cells in real blood samples to distinguish between breast cancer patients and healthy individuals. In conclusion, the development of the multi-aptamer-based colorimetric sensor offered a novel method for the highly selective detection of MCF-7 cells, contributing to the accurate identification of breast cancer.


Assuntos
Aptâmeros de Nucleotídeos , Neoplasias da Mama , Nanopartículas , Dióxido de Silício , Humanos , Dióxido de Silício/química , Aptâmeros de Nucleotídeos/química , Neoplasias da Mama/sangue , Células MCF-7 , Nanopartículas/química , Porosidade , Feminino , Curcumina/química , Corantes/química , Colorimetria/métodos , Técnicas Biossensoriais/métodos , Limite de Detecção
7.
Colloids Surf B Biointerfaces ; 245: 114195, 2024 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-39232478

RESUMO

Photodynamic therapy (PDT) is an emerging clinical modality for diverse disease conditions, including cancer. This technique involves, the generation of cytotoxic reactive oxygen species by a photosensitizer in the presence of light and oxygen. Methylene blue (MB) is a cationic dye with an ability to act as photosensitizing and bioimaging agent. The direct utilization of MB as photosensitizer for biological applications has often been impeded by its poor photostability and unwanted tissue interactions. Nanocarriers such as mesoporous silica nanoparticles (MSNs) provide an effective means of overcoming these limitations. However, the mere physical adsorption of the dye within the MSN can result in leakage, compromising the effectiveness of PDT. Therefore, in this work, we report the conjugation of MB into MSNs using novel MB-silane derivatives, namely MBS1 and MBS2, to create dye-doped and amine-functionalized MSNs (MBS1-AMSN and MBS2-AMSN). The PDT efficacy and bioimaging capability of these nanoparticles were compared with those of MSNs in which MB was non-covalently encapsulated (MB@AMSN). The synthesized nanoparticles, ultra-small in size (≤ 35 ± 4 nm) with monodispersity, exhibited enhanced fluorescence quantum yields. MBS1-AMSN demonstrated 70-fold increase, while MBS2-AMSN showed 33-fold improvement in fluorescence quantum yields compared to MB@AMSN at the same concentration. Covalent conjugation resulted in a 2-fold enhancement in the singlet oxygen quantum yield of the dye in MBS1-AMSN and 1.2-fold improvement in MBS2-AMSN, compared to non-covalent encapsulation. Assessment on RAW 264.7 macrophages revealed superior fluorescence in cell imaging for MBS1-AMSN, establishing it as a more efficient PDT agent compared to MBS2-AMSN and MB@AMSN. These findings suggest that MBS1-AMSN holds significant potential as a theranostic nanoplatform for image-guided PDT.

8.
Int J Nanomedicine ; 19: 7673-7689, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39099793

RESUMO

Purpose: In this study, wound dressings were designed using zinc-modified marine collagen porous scaffold as host for wild bilberry (WB) leaves extract immobilized in functionalized mesoporous silica nanoparticles (MSN). These new composites were developed as an alternative to conventional wound dressings. In addition to the antibacterial activity of classic antibiotics, a polyphenolic extract could act as an antioxidant and/or an anti-inflammatory agent as well. Methods: Wild bilberry leaves extract was prepared by ultrasound-assisted extraction in ethanol and its properties were evaluated by UV-Vis spectroscopy (radical scavenging activity, total amount of polyphenols, flavonoids, anthocyanins, and condensed tannins). The extract components were identified by HPLC, and the antidiabetic properties of the extract were evaluated via α-glucosidase inhibitory activity. Spherical MSN were modified with propionic acid or proline moieties by post-synthesis method and used as carriers for the WB leaves extract. The textural and structural features of functionalized MSN were assessed by nitrogen adsorption/desorption isotherms, small-angle XRD, SEM, TEM, and FTIR spectroscopy. The composite porous scaffolds were prepared by freeze drying of the zinc-modified collagen suspension containing WB extract loaded silica nanoparticles. Results: The properties of the new composites demonstrated enhanced properties in terms of thermal stability of the zinc-collagen scaffold, without altering the protein conformation, and stimulation of NCTC fibroblasts mobility. The results of the scratch assay showed contributions of both zinc ions from collagen and the polyphenolic extract incorporated in functionalized silica in the wound healing process. The extract encapsulated in functionalized MSN proved enhanced biological activities compared to the extract alone: better inhibition of P. aeruginosa and S. aureus strains, higher biocompatibility on HaCaT keratinocytes, and anti-inflammatory potential demonstrated by reduced IL-1ß and TNF-α levels. Conclusion: The experimental data shows that the novel composites can be used for the development of effective wound dressings.


Assuntos
Bandagens , Colágeno , Nanopartículas , Extratos Vegetais , Folhas de Planta , Dióxido de Silício , Cicatrização , Zinco , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Folhas de Planta/química , Dióxido de Silício/química , Dióxido de Silício/farmacologia , Colágeno/química , Colágeno/farmacologia , Zinco/química , Zinco/farmacologia , Nanopartículas/química , Cicatrização/efeitos dos fármacos , Antibacterianos/farmacologia , Antibacterianos/química , Humanos , Alicerces Teciduais/química , Animais , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/química , Linhagem Celular , Porosidade , Fibroblastos/efeitos dos fármacos , Antioxidantes/farmacologia , Antioxidantes/química
9.
Nanomedicine (Lond) ; 19(15): 1331-1346, 2024 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-39105754

RESUMO

Mesoporous silica nanoparticles (MSNPs) are inorganic nanoparticles that have been comprehensively investigated and are intended to deliver therapeutic agents. MSNPs have revolutionized the therapy for various conditions, especially cancer and infectious diseases. In this article, the viability of MSNPs' administration for lung cancer therapy has been reviewed. However, certain challenges lay ahead in the successful translation such as toxicology, immunology, large-scale production, and regulatory matters have made it extremely difficult to translate such discoveries from the bench to the bedside. This review highlights recent developments, characteristics, mechanism of action and customization for targeted delivery. This review also covers the most recent data that sheds light on MSNPs' extraordinary therapeutic potential in fighting lung cancer as well as future hurdles.


[Box: see text].


Assuntos
Neoplasias Pulmonares , Nanopartículas , Dióxido de Silício , Dióxido de Silício/química , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Nanopartículas/química , Porosidade , Portadores de Fármacos/química , Animais , Antineoplásicos/administração & dosagem , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Antineoplásicos/química , Sistemas de Liberação de Medicamentos/métodos
10.
Materials (Basel) ; 17(15)2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-39124540

RESUMO

Mesoporous silica nanoparticles (MSNs) are promising drug carriers for cancer therapy. Their functionalization with ligands for specific tissue/cell targeting and stimuli-responsive cap materials for sealing drugs within the pores of MSNs is extensively studied for biomedical and pharmaceutical applications. The objective of the present work was to establish MSNs as ideal nanocarriers of anticancer drugs such as 5-FU and silymarin by exploiting characteristics such as their large surface area, pore size, and biocompatibility. Furthermore, coating with various biopolymeric materials such as carboxymethyl chitosan-dopamine and hyaluronic acid-folic acid on their surface would allow them to play the role of ligands in the process of active targeting to tumor cells in which there is an overexpression of specific receptors for them. From the results obtained, it emerged, in fact, that these hybrid nanoparticles not only inhibit the growth of glioblastoma and breast cancer cells, but also act as pH-responsive release systems potentially useful as release vectors in tumor environments.

11.
Molecules ; 29(15)2024 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-39124948

RESUMO

Mesoporous silica SBA-15 has emerged as a promising adsorbent and separation material due to its unique structural and physicochemical properties. To further enhance its performance, various surface modification strategies, including metal oxide and noble metal incorporation for improved catalytic activity and stability, organic functionalization with amino and thiol groups for enhanced adsorption capacity and selectivity, and inorganic-organic composite modification for synergistic effects, have been extensively explored. This review provides a comprehensive overview of the recent advances in the surface modification of SBA-15 for adsorption and separation applications. The synthesis methods, structural properties, and advantages of SBA-15 are discussed, followed by a detailed analysis of the different modification strategies and their structure-performance relationships. The adsorption and separation performance of functionalized SBA-15 materials in the removal of organic pollutants, heavy metal ions, gases, and biomolecules, as well as in chromatographic and solid-liquid separation, is critically evaluated. Despite the significant progress, challenges and opportunities for future research are identified, including the development of low-cost and sustainable synthesis routes, rational design of SBA-15-based materials with tailored properties, and integration into practical applications. This review aims to guide future research efforts in developing advanced SBA-15-based materials for sustainable environmental and industrial applications, with an emphasis on green and scalable modification strategies.

12.
Molecules ; 29(15)2024 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-39124946

RESUMO

The high silicon content in rice plant waste, specifically rice husks, makes this waste by-product attractive for the extraction and valorization of silicon oxide, which is widely used as an inert support in catalysis, drug delivery and molecular sieving. The procedures currently used for the treatment of plant biomass make extensive use of mineral acids (HCl, H2SO4, HNO3), which, besides them being potential environmental pollutants, reduce the yield and worsen the chemical-physical properties of the product. In this study, an evaluation of the easy treatment of rice husks by benchmarking different, more eco-friendly carboxylic acids in order to obtain a mesoporous SiO2 with an alveolar structure and a relatively high surface area and pore volume (300-420 m2/g, 0.37-0.46 cm3/g) is presented. The obtained mesoporous silicas are characterized by worm-like pores with a narrow size distribution and a maximum in the range of 3.4-3.5 nm. The mesoporous structure of the obtained materials was also confirmed by TEM. The complete removal of the organic part of the rice husks in the final materials was evidenced by thermogravimetric analysis. The high purity of the obtained mesoporous silica was detected using ICP analysis (98.8 wt. %). The structure peculiarities of the obtained mesoporous silicas were also characterized by solid-state NMR and ATR-FTIR spectroscopies. The morphology of the mesoporous silica was investigated by SEM.


Assuntos
Oryza , Dióxido de Silício , Oryza/química , Dióxido de Silício/química , Porosidade , Espectroscopia de Infravermelho com Transformada de Fourier , Termogravimetria
13.
Molecules ; 29(15)2024 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-39124951

RESUMO

The development of targeted drug delivery systems has been a pivotal area in nanomedicine, addressing challenges like low drug loading capacity, uncontrolled release, and systemic toxicity. This study aims to develop and evaluate dual-functionalized mesoporous silica nanoparticles (MSN) for targeted delivery of celecoxib, enhancing drug loading, achieving controlled release, and reducing systemic toxicity through amine grafting and imidazolyl polyethyleneimine (PEI) gatekeepers. MSN were synthesized using the sol-gel method and functionalized with (3-aminopropyl) triethoxysilane (APTES) to create amine-grafted MSN (MSN-NH2). Celecoxib was loaded into MSN-NH2, followed by conjugation of imidazole-functionalized PEI (IP) gatekeepers synthesized via carbodiimide coupling. Characterization was conducted using Fourier-transform infrared spectroscopy (FTIR) and proton nuclear magnetic resonance (1H-NMR). Drug loading capacity, entrapment efficiency, and in vitro drug release at pH 5.5 and 7.4 were evaluated. Cytotoxicity was assessed using the MTT assay on RAW 264.7 macrophages. The synthesized IP was confirmed by FTIR and 1H-NMR. Amine-grafted MSN demonstrated a celecoxib loading capacity of 12.91 ± 2.02%, 2.1 times higher than non-functionalized MSN. In vitro release studies showed pH-responsive behavior with significantly higher celecoxib release from MSN-NH2-celecoxib-IP at pH 5.5 compared to pH 7.4, achieving a 33% increase in release rate within 2 h. Cytotoxicity tests indicated significantly higher cell viability for IP-treated cells compared to PEI-treated cells, confirming reduced toxicity. The dual-functionalization of MSN with amine grafting and imidazolyl PEI gatekeepers enhances celecoxib loading and provides controlled pH-responsive drug release while reducing systemic toxicity. These findings highlight the potential of this advanced drug delivery system for targeted anti-inflammatory and anticancer therapies.


Assuntos
Aminas , Celecoxib , Preparações de Ação Retardada , Liberação Controlada de Fármacos , Nanopartículas , Polietilenoimina , Dióxido de Silício , Celecoxib/química , Celecoxib/farmacologia , Dióxido de Silício/química , Camundongos , Nanopartículas/química , Animais , Polietilenoimina/química , Células RAW 264.7 , Aminas/química , Preparações de Ação Retardada/farmacologia , Preparações de Ação Retardada/química , Portadores de Fármacos/química , Porosidade , Sobrevivência Celular/efeitos dos fármacos , Sistemas de Liberação de Medicamentos , Espectroscopia de Infravermelho com Transformada de Fourier , Imidazóis/química , Concentração de Íons de Hidrogênio
14.
Biomed Mater ; 19(5)2024 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-39094621

RESUMO

The role of blood clots in tissue repair has been identified for a long time; however, its participation in the integration between implants and host tissues has attracted attention only in recent years. In this work, a mesoporous silica thin film (MSTF) with either vertical or parallel orientation was deposited on titania nanotubes surface, resulting in superhydrophilic nanoporous surfaces. A proteomic analysis of blood plasma adsorption revealed that the MSTF coating could significantly increase the abundance of acidic proteins and the adsorption of coagulation factors (XII and XI), with the help of cations (Na+, Ca2+) binding. As a result, both the activation of platelets and the formation of blood clots were significantly enhanced on the MSTF surface with more condensed fibrin networks. The two classical growth factors of platelets-derived growth factors-AB and transformed growth factors-ßwere enriched in blood clots from the MSTF surface, which accounted for robust osteogenesis bothin vitroandin vivo. This study demonstrates that MSTF may be a promising coating to enhance osteogenesis by modulating blood clot formation.


Assuntos
Coagulação Sanguínea , Materiais Revestidos Biocompatíveis , Osteogênese , Dióxido de Silício , Titânio , Adsorção , Dióxido de Silício/química , Coagulação Sanguínea/efeitos dos fármacos , Materiais Revestidos Biocompatíveis/química , Materiais Revestidos Biocompatíveis/farmacologia , Animais , Osteogênese/efeitos dos fármacos , Titânio/química , Porosidade , Propriedades de Superfície , Humanos , Plaquetas/metabolismo , Proteômica/métodos , Proteínas Sanguíneas/química , Proteínas Sanguíneas/metabolismo , Nanotubos/química , Camundongos , Masculino , Teste de Materiais , Fatores de Coagulação Sanguínea/metabolismo , Fatores de Coagulação Sanguínea/química
15.
Colloids Surf B Biointerfaces ; 243: 114132, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39094209

RESUMO

Severe bleeding and bacterial infections pose significant challenges to the global public health. Effective hemostatic materials have the potential to be used for rapid control of bleeding at the wound site. In this study, mesoporous silica nanoparticles (MSN) were doped with zinc ions (MSN@Zn) and subsequently functionalized with carboxyl (-COOH) groups through post-grafting, resulting in (MSN@Zn-COOH). The results demonstrated the successful functionalization of carboxyl groups on the surface of MSN@Zn mesoporous materials with minimal impact on the morphology. The released zinc ions showed potent antibacterial activity (above ∼80 %) against Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus). In vitro and in vivo assessments of MSN@Zn-COOH revealed excellent hemostatic effects and favorable blood compatibility. Hemolysis percentages associated with MSN@Zn-COOH exhibited noteworthy reductions in comparison to MSN. Furthermore, a decrease in APTT (a test evaluating the intrinsic coagulation pathway) of modified MSN@Zn indicated enhanced hemostasis, supported by their negative zeta potential (∼ -14 to -43 mV). Importantly, all samples showed no cytotoxicity. This work underscores the potential of MSN@Zn-COOH, with its combined hemostatic performance and antibacterial activity, for emergency clinical applications.

16.
J Pharm Sci ; 2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-39094942

RESUMO

Candesartan cilexetil (CC) is one of well-tolerated antihypertensive drugs, while its poor solubility and low bioavailability limit its use. Herein, two mesoporous silica (Syloid XDP 3150 and Syloid AL-1 FP) and the corresponding amino-modified products (N-XDP 3150 and N-AL-1 FP) have been selected as the carriers of Candesartan cilexetil to prepare solid dispersion through solvent immersion, and characterized through using powder X-ray diffraction analysis, infrared spectroscopy, differential scanning calorimetry, scanning electron microscopy, and solid-state nuclear magnetic resonance spectroscopy, etc. The state of CC changed from crystalline to amorphous after loading onto the silica carriers, in which no interactions between CC and silica existed. Then, the dissolution behaviors in vitro were studied through using flow-through cell dissolution method. CC-XDP 3150 sample exhibited the most extensive dissolution, and the cumulative release of CC from it was 1.88-fold larger than that of CC. Moreover, the pharmacokinetic results in rats revealed that the relative bioavailability of CC-XDP 3150 and CC-N-XDP 3150 solid dispersions were estimated to be 326 % % and 238 % % in comparison with CC, respectively. Clearly, pore size, pore volume, and surface properties of silica carrier have remarkable effect on loading, dissolution and bioavailability of CC. In brief, this work will provide valuable information in construction of mesoporous silica-based delivery system toward poorly water-soluble drugs.

17.
Sci Rep ; 14(1): 18014, 2024 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-39097612

RESUMO

Cerium oxide nanoparticles are known for their antibacterial effects resulting from Ce3+ to Ce4+ conversion. Application of such cerium oxide nanoparticles in dentistry has been previously considered but limited due to deterioration of mechanical properties. Hence, this study aimed to examine mesoporous silica (MCM-41) coated with cerium oxide nanoparticles and evaluate the antibacterial effects and mechanical properties when applied to dental composite resin. Cerium oxide nanoparticles were coated on the MCM-41 surface using the sol-gel method by adding cerium oxide nanoparticle precursor to the MCM-41 dispersion. The samples were tested for antibacterial activity against Streptococcus mutans via CFU and MTT assays. The mechanical properties were assessed by flexural strength and depth of cure according to ISO 4049. Data were analyzed using a t-test, one-way ANOVA, and Tukey's post-hoc test (p = 0.05). The experimental group showed significantly increased antibacterial properties compared to the control groups (p < 0.005). The flexural strength exhibited a decreasing trend as the amount of cerium oxide nanoparticle-coated MCM-41 increased. However, the flexural strength and depth of cure values of the silane group met the ISO 4049 standard. Antibacterial properties increased with increasing amounts of cerium oxide nanoparticles. Although the mechanical properties decreased, silane treatment overcame this drawback. Hence, the cerium oxide nanoparticles coated on MCM-41 may be used for dental resin composite.


Assuntos
Antibacterianos , Cério , Resinas Compostas , Nanopartículas , Dióxido de Silício , Streptococcus mutans , Cério/química , Cério/farmacologia , Dióxido de Silício/química , Antibacterianos/farmacologia , Antibacterianos/química , Resinas Compostas/química , Resinas Compostas/farmacologia , Streptococcus mutans/efeitos dos fármacos , Nanopartículas/química , Resinas Acrílicas/química , Teste de Materiais , Poliuretanos/química , Poliuretanos/farmacologia , Resistência à Flexão , Porosidade
18.
Pest Manag Sci ; 2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-39118395

RESUMO

BACKGROUND: Poplar in China has long been plagued by the fall webworm Hyphantria cunea. Enhancing plant immunity using chemical elicitors is an environmentally friendly approach to pest control. The phytohormone methyl jasmonate (MeJA) can stimulate the chemical defenses of poplars against herbivores but has been shown to have limited efficacy in practice. Here, we studied the effects of a MeJA and mesoporous silica nanoparticle (MSN) complex (MeJA@MSN) regarding the induction of poplar resistance to H. cunea, which may provide strategies for the effective use of MeJA. RESULTS: The silicon-based phytohormone complex (MeJA@MSNs) exhibited excellent biological and physiochemical properties, such as excellent biocompatibility and plant tissue transportability. The changes in metabolites in poplar leaves induced by MeJA, MSNs, and MeJA@MSNs were investigated by metabolic analysis. MeJA@MSNs led to highly potent induced resistance along with elevated salicylaldehyde content, which increased with the dose administered. The salicylaldehyde metabolite showed a strong antifeedant effect on H. cunea larvae at a dosage of 1 µg, with the 50% lethal dose being 20.4 µg/mg. Furthermore, transcriptional analysis showed that MeJA@MSNs upregulated key genes in biosynthetic pathways more than MeJA and MSNs. CONCLUSION: Our results show that MeJA and MSNs interact positively in poplar, leading to salicylaldehyde accumulation and increased induced resistance to H. cunea, providing new insights into the underlying resistance mechanisms induced by MeJA@MSNs. © 2024 Society of Chemical Industry.

19.
Pharm Dev Technol ; : 1-11, 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-39138563

RESUMO

Chemotherapeutic drug delivery systems are commonly limited by their short half-lives, poor bioavailability, and unsuccessful targetability. Herein, pH-responsive hybrid NPs consist of benzimidazole-coated mesoporous silica nanoparticles (BZ-MSN) loaded with naturally occurring flavonoid quercetin (QUE-BZ-MSN). The NPs were further capped with beta-cyclodextrin (BCD) to obtain our desired BCD-QUE-BZMSN, with a zeta potential around 7.05 ± 2.37 mV and diameter about 115.2 ± 19.02 nm. The abundance of BZ onto the nanoparticles facilitates targeted quercetin chemotherapy against model lung and liver cancer cell lines. FTIR, EDX, and NMR analyses revealed evidence of possible surface functionalizations. Powder XRD analysis showed that our designed BCD-QUE-BZMSN formulation is amorphous in nature. The UV and SEM showed that our designed BCD-QUE-BZMSN has high drug entrapment efficiency and a nearly spherical morphology. In vitro, drug release assessments show controlled pH-dependent release profiles that could enhance the targeted chemotherapeutic response against mildly acidic regions in cancer cell lines. The obtained BCD-QUE-BZMSN nanovalve achieved significantly higher cytotoxic efficacy as compared to QUE alone, which was evaluated by in vitro cellular uptake against liver and lung cancer cell lines, and the cellular morphological ablation was further confirmed via inverted microscopy. The outcomes of the study imply that our designed BCD-QUE-BZMSN nanovalve is a potential carrier for cancer chemotherapeutics.

20.
J Biomater Appl ; : 8853282241274517, 2024 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-39193668

RESUMO

Since conventional antibiotics are almost ineffective on methicillin-resistant Staphylococcus aureus (MRSA) strains, designing their antibacterial alternatives is necessary. Besides, the use of vancomycin is applied for specific detection of the bacteria. Silver-incorporated vancomycin-modified mesoporous silica nanoparticles (MSNs@Van@Ag NPs) were designed for detection and treatment of MRSA bacteria. Mesoporous silica nanoparticles (MSNs) were synthesized through the template method, modified with vancomycin, and finally incorporated with silver nanoparticles (Ag NPs). The MSNs@Van@Ag NPs with a homogenously spherical shape, average size of 50-100 nm, surface area of 955.8 m2/g, and thermal stability up to 200°C were successfully characterized. The amount of Ag incorporated into the MSNs@Van@Ag was calculated at 3.9 ppm and the release amount of Ag was received at 2.92 ppm (75%) after 100 h. The in vitro antibacterial susceptibility test showed the MIC of 100 µg mL-1 for MSNs@Van and 50 µg mL-1 for MSNs@Van@Ag, showing in vitro enhanced effect of Ag and vancomycin in the bactericidal process. An in vivo acute pneumonia model was performed and biochemical assays and pathological studies confirmed the nanomedicine's short-term safety for in vivo application. Cytokine assay using ELISA showed that MSN@Van@Ag causes a reduction of pro-inflammatory cytokines and bacterial proliferation leading to alleviation of inflammatory response.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...