RESUMO
BACKGROUND: UBE2C was reported to play carcinogenic effects in diverse cancers. However, the role of UBE2C in osteosarcoma was poorly understood, and its functional mechanisms were not fully clarified. METHODS: RT-qPCR was used to assess the expression of UBE2C mRNA and miR-140-3p, and western blot technique was used to examine the UBE2C protein and PI3K/AKT pathway-associated proteins. CCK-8 test was applied to measure cell proliferation, and wound healing assay were used to measure migration. Using animal studies, the function of UBE2C in vivo was evaluated. Dual-luciferase reporter assay was used to confirm the potential interaction among UBE2C and miR-140-3p. RESULTS: In osteosarcoma cells as well as tumor samples, UBE2C was strongly expressed. Osteosarcoma cell proliferation as well as cell migration were inhibited by UBE2C knockdown, and PI3K/AKT signaling activity was diminished. In addition, UBE2C knockdown impeded tumor growth in animal models. UBE2C expression was lessened by miR-140-3p as miR-140-3p targets it. UBE2C is overexpressed which promote osteosarcoma proliferation as well as migration, and strengthened the PI3K/AKT signaling activity, while forced miR-140-3p expression partially abolished these effects. CONCLUSION: UBE2C, targeted by miR-140-3p, drove carcinogenic effects in osteosarcoma through activating the PI3K/AKT pathway.
RESUMO
Hypoxic-ischemic brain damage (HIBD) in neonates is a substantial cause of mortality and neurodevelopmental impairment, with the exact molecular mechanisms still being elucidated. The involvement of HIF-1α, MALAT1, miR-140-5p, TGFBR1, and the NF-κB signaling pathway in such injury cascades is of increasing research interest due to their pivotal roles in cellular and pathological processes. This study aimed to explore how HIF-1α regulates the MALAT1/miR-140-5p/TGFBR1/NF-κB signaling axis to participate in the molecular mechanisms of HIBD in neonatal rats. Utilizing bioinformatic analyses and a suite of experimental approaches, the study delineated interactions and regulatory relationships among the molecules. Knockdown of HIF-1α was shown to mitigate brain tissue damage in a neonatal HIBD rat model through the MALAT1/miR-140-5p/TGFBR1/NF-κB signaling axis, revealing a protective effect achieved by inhibiting hippocampal neuron apoptosis and potentially guiding the way toward therapeutic interventions in HIBD. This study implicates the HIF-1α mediated regulation of the MALAT1/miR-140-5p/TGFBR1/NF-κB signaling axis in the pathological development of HIBD, offering insights into novel potential interventional strategies.
RESUMO
BACKGROUND/AIM: Lung adenocarcinoma (LUAD) or lung squamous cell carcinoma (LUSC) accounts for the majority of non-small cell lung cancer (NSCLC), and overexpression of programmed death ligand 1 (PD-L1) in these cells is known to induce tumor immune evasion or drug resistance. However, detailed studies are needed to determine whether microRNAs (miRNAs) that reduce PD-L1 expression can suppress drug resistance in NSCLC. MATERIALS AND METHODS: Kaplan Meier plotter and Receiver Operating Characteristic plotter were used to determine the effect of specific miRNAs on survival and chemotherapy response in NSCLC patients. Cell viability, colony formation and invasion assays, and qPCR analyses were also performed. RESULTS: The expression of miRNA-140-3p (miR-140-3p) was lower in LUAD patients, compared to the normal group, and low expression of miR-140-3p was associated with poor survival of LUAD patients, but not in LUSC. The miR-140-3p mimic inhibited proliferation, colony formation, and invasion of LUAD cells. Interestingly, the expression of miR-140-3p was significantly lower in the group of LUAD patients who did not respond to docetaxel. In LUAD cells, combined treatment with miR-140-3p and docetaxel significantly reduced cell viability as well as the expression of ABCG2 and MVP, genes associated with drug resistance, compared to either treatment alone. Additionally, combined injection of miR-140-3p mimic and docetaxel significantly inhibited tumor growth compared to treatment with docetaxel alone. CONCLUSION: These results suggest that the high expression of miR-140-3p in LUAD is correlated with good patient prognosis and may contribute to the treatment of LUAD, especially by increasing responsiveness to docetaxel.
Assuntos
Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP , Adenocarcinoma de Pulmão , Antígeno B7-H1 , Docetaxel , Resistencia a Medicamentos Antineoplásicos , Regulação Neoplásica da Expressão Gênica , Neoplasias Pulmonares , MicroRNAs , Proteínas de Neoplasias , Humanos , Docetaxel/farmacologia , MicroRNAs/genética , Adenocarcinoma de Pulmão/genética , Adenocarcinoma de Pulmão/tratamento farmacológico , Adenocarcinoma de Pulmão/patologia , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/patologia , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Antígeno B7-H1/genética , Antígeno B7-H1/metabolismo , Resistencia a Medicamentos Antineoplásicos/genética , Proteínas de Neoplasias/genética , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Linhagem Celular Tumoral , Animais , Camundongos , Proliferação de Células/efeitos dos fármacos , Feminino , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Masculino , Ensaios Antitumorais Modelo de XenoenxertoRESUMO
As a subclass of noncoding RNAs, circular RNA play an important role in tumour development. The aim of this study was to investigate the role of circ_0004674 in osteosarcoma glycolysis and the molecular mechanism of its regulation. We examined the expression of circ_0004674, miR-140-3p, TCF4 and glycolysis-related proteins (including HK2, PKM2, GLUT1 and LDHA) in osteosarcoma cells and tissues by quantitative reverse transcription-polymerase chain reaction and immunoblotting (Western blot analysis). The role of circ_0004674, miR-140-3p and TCF4 in the proliferation, apoptosis, migration and invasion of OS cells was examined using CCK8 assay, Apoptosis assay, Wound healing assay, Transwell migration and Matrigel invasion assay. The interaction of circ_0004674/miR-140-3p and miR-1543/TCF4 was also analysed using a dual luciferase reporter assay. Finally, the glycolytic process was assessed by glucose uptake assays and lactate production measurements. The results showed that the expression of circ_0004674 and TCF4 was significantly higher in MG63 and U2OS cells compared to hFOB1.19 cells, while the expression of miR-140-3p was downregulated. Silencing of circ_0004674 gene significantly inhibited the proliferation, migration and invasion of cancer cells and promoted apoptosis of cancer cells. Experiments such as dual luciferase reporter analysis showed that circ_0004674 regulates the expression of glycolysis-related proteins through the miR-140-3p/TCF4 pathway, and inhibition of this gene attenuated the depletion of glucose content and the production of lactate in cancer cells. Furthermore, inhibition of miR-140-3p or overexpression of TCF could reverse the phenotypic changes in cancer cells induced by circ_0004674 silencing. In summary, this study elucidated the specific function and potential mechanisms of circ_0004674 in osteosarcoma glycolysis. The findings demonstrate that miR-140-3p and TCF4 function respectively as a tumor suppressor gene and an oncogene in osteosarcoma. Notably, they influence glycolysis and associated pathways, regulating osteosarcoma proliferation. Therefore, circ_0004674 promotes osteosarcoma glycolysis and proliferation through the miR-140-3p/TCF4 pathway, enhancing the malignant behaviour of tumours, and it is expected to be a potential molecular target for osteosarcoma treatment.
Assuntos
Proliferação de Células , Glicólise , MicroRNAs , Osteossarcoma , RNA Circular , Fator de Transcrição 4 , Humanos , Osteossarcoma/genética , Osteossarcoma/metabolismo , Osteossarcoma/patologia , MicroRNAs/genética , MicroRNAs/metabolismo , Linhagem Celular Tumoral , RNA Circular/genética , RNA Circular/metabolismo , Fator de Transcrição 4/metabolismo , Fator de Transcrição 4/genética , Neoplasias Ósseas/genética , Neoplasias Ósseas/metabolismo , Neoplasias Ósseas/patologia , Movimento Celular , Regulação Neoplásica da Expressão Gênica , Apoptose/genética , Transdução de SinaisRESUMO
Introduction: High-alkalinity water is a serious health hazard for fish and can cause oxidative stress and metabolic dysregulation in fish livers. However, the molecular mechanism of liver damage caused by high alkalinity in fish is unclear. Methods: In this study, 180 carp were randomly divided into a control (C) group and a high-alkalinity (A25) group and were cultured for 56 days. High-alkalinity-induced liver injury was analysed using histopathological, whole-transcriptome, and metabolomic analyses. Results: Many autophagic bodies and abundant mitochondrial membrane damage were observed in the A25 group. High alkalinity decreased superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GSH-Px) activity and the total antioxidant capacity (T-AOC) and increased the malondialdehyde (MDA) content in liver tissues, causing oxidative stress in the liver. Transcriptome analysis revealed 61 differentially expressed microRNAs (miRNAs) and 4008 differentially expressed mRNAs. Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis revealed that mammalian target of rapamycin (mTOR), forkhead box O (FoxO), mitogen-activated protein kinase (MAPK), and the autophagy signalling pathway were the molecular mechanisms involved. High alkalinity causes oxidative stress and autophagy and results in autophagic damage in the liver. Bioinformatic predictions indicated that Unc-51 Like Kinase 2 (ULK2) was a potential target gene for miR-140-5p, demonstrating that high alkalinity triggered autophagy through the miR-140-5p-ULK2 axis. Metabolomic analysis revealed that the concentrations of cortisol 21-sulfate and beta-aminopropionitrile were significantly increased, while those of creatine and uracil were significantly decreased. Discussion: The effects of high alkalinity on oxidative stress and autophagy injury in the liver were analysed using whole-transcriptome miRNA-mRNA networks and metabolomics approaches. Our study provides new insights into liver injury caused by highly alkaline water.
Assuntos
Autofagia , Fígado , Metaboloma , Estresse Oxidativo , Transcriptoma , Animais , Fígado/metabolismo , Fígado/patologia , Perfilação da Expressão Gênica , Álcalis/toxicidade , Álcalis/efeitos adversos , MicroRNAs/genética , Metabolômica , Doenças dos Peixes/metabolismoRESUMO
STRP1, a polysaccharide active ingredient isolated from the traditional Chinese medicine Sophorae tonkinensis radix, has demonstrated a protective effect against acetaminophen (APAP)-induced liver injury (AILI). The underlying molecular mechanism was investigated in this study. Here, an acute liver damage mouse model was generated by APAP (400 mg/kg) and used to identify the protective effect of STRP1 (200 mg/kg) on mouse livers. In vitro cell experiments were used to further verify the related signaling pathways. Initially, in our study, STRP1 treatment reduced APAP-induced liver injury by decreasing aminotransferase activity and cell apoptosis and increasing cell proliferation. Furthermore, STRP1 treatment significantly increased Nrf2 expression and alleviated oxidative stress caused by reactive oxygen species in AILI. Based on bioinformatics and experimental studies, miR-140-5p was identified and found to be reduced by STRP1, increasing Nrf2 expression. Additionally, Nrf2 played an important role in the protective impact of STRP1-suppressed miR-140-5p expression. Generally, these results showed that STRP1-mediated suppression of miR-140-5p expression mitigates AILI by activating the Nrf2-mediated Nrf2-Keap1 pathway. This study revealed that STRP1 might be a potential treatment agent for AILI.
RESUMO
The prognostic value of microRNA-140-5p (miR-140-5p) expression in cancer patients has been investigated, but with inconsistent results. This meta-analysis aims to determine the prognostic significance of miR-140-5p expression in patients with various malignancies. A comprehensive literature search was conducted using PubMed, Web of Science, ProQuest, Cochrane, and Google Scholar to identify relevant studies published before June 2023. Pooled hazard ratios (HR) and odds ratios (OR) with 95â¯% confidence intervals (CI) were calculated to assess the prognostic importance and clinicopathological features of miR-140-5p in overall survival (OS) and disease-free survival (DFS) of cancer patients, respectively. The CancerMIRNome database and other OS analysis webservers were utilized to explore the prognostic value and expression profile of miR-140-5p. A total of 17 studies were included in the final analysis. The results demonstrated that decreased miR-140-5p expression was significantly associated with inferior OS (pooled HR 0.63; 95â¯% CI, 0.51-0.79; p < 0.001) and DFS (pooled HR 0.40; 95â¯% CI, 0.25-0.64; p < 0.001). Pooled ORs indicated a significant correlation between reduced miR-140-5p expression and positive lymph node metastasis (LNM; OR = 3.42; 95â¯% CI, 2.36-4.94; p < 0.001), advanced tumor stage (OR = 2.80; 95â¯% CI, 2.07-3.78; p < 0.001), and positive distant metastasis (DM; OR = 10.81; 95â¯% CI, 3.31-35.30; p < 0.001). No significant associations were observed between miR-140-5p expression and gender (OR = 0.94; 95â¯% CI, 0.70-1.28; p = 0.70), age (OR = 1.31; 95â¯% CI, 0.99-1.74; p = 0.06), tumor size (OR = 1.55; 95â¯% CI, 0.77-3.10; p = 0.22), and histological grade (OR = 1.20; 95â¯% CI, 0.46-3.10; p = 0.71). Subgroup analyses revealed that decreased miR-140-5p expression was associated with shorter OS in subgroups based on sample size (<100 or >100), tumor origin (GI or non-GI), and cancer type (GC/CRC). Bioinformatic analysis supported the finding that miR-140-5p was downregulated in most tumor tissues, and its reduced expression was linked to poor prognosis in patients with multiple malignancies. The prognostic significance of miR-140-5p in predicting reduced OS and DFS suggests that measuring miR-140-5p expression levels before treatment could serve as a valuable biomarker for identifying cancer patients with an unfavorable prognosis and improving clinical management.
Assuntos
Biomarcadores Tumorais , Biologia Computacional , MicroRNAs , Neoplasias , Humanos , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/análise , Intervalo Livre de Doença , Regulação Neoplásica da Expressão Gênica , MicroRNAs/genética , Neoplasias/patologia , Neoplasias/genética , Neoplasias/mortalidade , PrognósticoRESUMO
BACKGROUND: Excessive vascular smooth muscle cell (VSMC) proliferation and migration are the main contributors to the symptoms of lower-extremity arteriosclerosis obliterans (ASO). Previous studies suggested that microRNAs (miRNAs) regulate VSMC activity. Nevertheless, the molecular mechanisms by which they do so are unclear. OBJECTIVE: The present study aimed to identify the biological processes accounting for the effects of miR-140-3p on VSMCs in ASO. METHODS: The expression levels of miR-140-3p in clinical samples were analyzed by real-time polymerase chain reaction. An ASO cell model was established to investigate the expression of miR-140-3p on VSMCs. The transwell® assays and MTT assays were used to assess migration and proliferation. The interaction between RhoA and miR-140-3p was verified using the Dualluciferase reporter assay. Western blot technique was used to identify RhoA, RhoA-associated protein kinase 1 (ROCK1), and ROCK2. RESULTS: We discovered that miR-140-3p inhibited the proliferation, migration, and invasion but promoted the apoptosis of VSMCs, and RhoA was its downstream target gene. RhoA, ROCK1, and ROCK2 were upregulated in vascular tissues damaged by ASO compared to normal, healthy arteries. MiR-140-3p also decreased RhoA, ROCK1, and ROCK2 mRNA and protein expression. CONCLUSION: Overall, the present work partially elucidated the mechanism by which miR-140-3p regulates VSMC function and offered novel insights into potential therapeutic approaches for patients with lower-extremity arteriosclerosis obliterans.
RESUMO
Introduction: Although LncRNA JPX has been linked to a number of malignancies, it is yet unknown how it relates to endometrial carcinoma (EC). Investigating the expression, functional activities, and underlying molecular processes of lncRNA JPX in EC was the goal of this work. Methods: RT-qPCR was used to examine the differences in lncRNA/microRNA (miRNA, miR)/mRNA expression between normal cervical and EC tissues or cells. Cell Counting Kit-8, flow cytometry, and transwell were used to evaluate the association between lncRNA JPX/miR-140-3p/phosphoinositide-3-kinase catalytic subunit α (PIK3CA) in Ishikawa and JEC cell lines. The impact of JPX on the downstream janus kinase (JAK)2/signal transducer and activator of transcription (STAT)3 signaling pathway was investigated using Western blot analysis. Results: When comparing EC tissues to nearby normal tissues, JPX expression is markedly increased in EC tissues, with greater expression in advanced-stage EC. Furthermore, compared to normal epithelial cells, EC cell lines have higher levels of JPX expression. In Ishikawa and JEC endometrial cancer cell lines, we used siRNA-mediated suppression of JPX to find lower cell viability, increased apoptosis, cell cycle arrest, and reduced migration and invasion. We next verified that miR-140-3p binds to downstream target cells to impede the transcription and translation of PIK3CA, which in turn prevents the growth of Ishikawa and JEC cells. JPX functions as a ceRNA to adsorb miR-140-3p. This procedure required controlling JAK2/STAT3, a downstream signal. Conclusion: JPX enhances the development of Ishikawa and JEC cells and activates downstream JAK2/STAT3 signal transduction via the miR-140-3p/PIK3CA axis, offering a possible therapeutic target for the treatment of EC.
RESUMO
BACKGROUND: Transitioning from a genetic association signal to an effector gene and a targetable molecular mechanism requires the application of functional fine-mapping tools such as reporter assays and genome editing. In this report, we undertook such studies on the osteoarthritis (OA) risk that is marked by single nucleotide polymorphism (SNP) rs34195470 (A > G). The OA risk-conferring G allele of this SNP associates with increased DNA methylation (DNAm) at two CpG dinucleotides within WWP2. This gene encodes a ubiquitin ligase and is the host gene of microRNA-140 (miR-140). WWP2 and miR-140 are both regulators of TGFß signaling. METHODS: Nucleic acids were extracted from adult OA (arthroplasty) and foetal cartilage. Samples were genotyped and DNAm quantified by pyrosequencing at the two CpGs plus 14 flanking CpGs. CpGs were tested for transcriptional regulatory effects using a chondrocyte cell line and reporter gene assay. DNAm was altered using epigenetic editing, with the impact on gene expression determined using RT-qPCR. In silico analysis complemented laboratory experiments. RESULTS: rs34195470 genotype associates with differential methylation at 14 of the 16 CpGs in OA cartilage, forming a methylation quantitative trait locus (mQTL). The mQTL is less pronounced in foetal cartilage (5/16 CpGs). The reporter assay revealed that the CpGs reside within a transcriptional regulator. Epigenetic editing to increase their DNAm resulted in altered expression of the full-length and N-terminal transcript isoforms of WWP2. No changes in expression were observed for the C-terminal isoform of WWP2 or for miR-140. CONCLUSIONS: As far as we are aware, this is the first experimental demonstration of an OA association signal targeting specific transcript isoforms of a gene. The WWP2 isoforms encode proteins with varying substrate specificities for the components of the TGFß signaling pathway. Future analysis should focus on the substrates regulated by the two WWP2 isoforms that are the targets of this genetic risk.
Assuntos
MicroRNAs , Osteoartrite , Adulto , Humanos , Sequência de Bases , Ubiquitina/genética , Ubiquitina/metabolismo , Isoformas de Proteínas/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Metilação de DNA/genética , MicroRNAs/metabolismo , Osteoartrite/genética , Osteoartrite/metabolismo , Fator de Crescimento Transformador beta/metabolismoRESUMO
BACKGROUND: Circular RNAs (circRNAs) are involved in the progression of colon cancer (CC). This study aimed to examine the role of a new circRNA circ_0101050 in CC. METHODS: Dual-luciferase reporter and RNA immunoprecipitation analyses were performed to validate the target relationships among maternal embryonic leucine zipper kinase (MELK), microRNA (miR)-140-3 p, and circ_0101050. Expression levels were calculated using western blotting and/or quantitative reverse transcription-polymerase chain reaction (qRT-PCR). Western blotting was performed to evaluate the relative expression of Bcl-2 and Bax proteins to determine cell death. Cell Counting Kit-8 (CCK-8) and colony formation assays were performed to determine the proliferative potential of CC cells. The migration rate of CC cells was evaluated using wound healing assays. Tumor formation tests were performed to determine the effect of circ_0101050 on tumor development in vivo. RESULTS: Elevated levels of circ_0101050 and MELK were observed in CC. By inhibiting circ 0,101,050 or MELK, CC cell proliferation and migration were inhibited, but CC cell apoptosis was promoted. Silencing circ_0101050 also inhibited CC growth in vivo. We also found that miR-140-3 p was downregulated, which alleviated the repressive effects of circ_0101050 knockdown on proliferating and migrating CC cells, as well as the stimulating effect on apoptosis. In addition, the absence of MELK alleviated the effects of miR-140-3 p downregulation, which enhanced CC cell malignancy. CONCLUSIONS: Circ_0101050 exacerbates malignant phenotypes in CC by targeting the miR-140-3 p/MELK axis. These findings suggested that the circ_0101050/miR-140-3 p/MELK network may be a prospective target for CC treatment.
RESUMO
Subarachnoid hemorrhage (SAH) triggers severe neuroinflammation and cognitive impairment, where microglial M1 polarization exacerbates the injury and M2 polarization mitigates damage. Mesenchymal stem cell-derived extracellular vesicles (MSC-EVs), carrying microRNA (miR)-140-5p, offer therapeutic promise by targeting the cAMP/PKA/CREB pathway and modulating microglial responses, demonstrating a novel approach for addressing SAH-induced brain injury. This research explored the role of miR-140-5p delivered by MSC-EVs in mitigating brain damage following SAH. Serum from SAH patients and healthy individuals was analyzed for miR-140-5p and cAMP levels. The association between miR-140-5p levels, brain injury severity, and patient survival was examined, along with the target relationship between miR-140-5p and histone deacetylases 7 (HDAC7). MSC-EVs were characterized for their ability to cross the blood-brain barrier and modulate the HDAC7/AKAP12/cAMP/PKA/CREB axis, reducing M1 polarization and inflammation. The therapeutic effect of MSC-EV-miR-140-5p was demonstrated in an SAH mouse model, showing reduced neuronal apoptosis and improved neurological function. This study highlights the potential of MSC-EV-miR-140-5p in mitigating SAH-induced neuroinflammation and brain injury, providing a foundation for developing MSC-EV-based treatments for SAH.
Assuntos
Vesículas Extracelulares , Histona Desacetilases , Células-Tronco Mesenquimais , MicroRNAs , Hemorragia Subaracnóidea , Animais , Feminino , Humanos , Masculino , Camundongos , Pessoa de Meia-Idade , Apoptose , Barreira Hematoencefálica/patologia , Barreira Hematoencefálica/metabolismo , Lesões Encefálicas/metabolismo , Lesões Encefálicas/patologia , AMP Cíclico/metabolismo , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Vesículas Extracelulares/metabolismo , Histona Desacetilases/metabolismo , Células-Tronco Mesenquimais/metabolismo , Camundongos Endogâmicos C57BL , MicroRNAs/genética , MicroRNAs/metabolismo , Hemorragia Subaracnóidea/metabolismo , Hemorragia Subaracnóidea/complicações , Hemorragia Subaracnóidea/patologiaRESUMO
PURPOSE: The present study aims to determine the molecular mechanism mediated by RAD51 antisense RNA 1 (RAD51-AS1) in ovarian cancer (OvCA). METHODS: The data associated with RAD51-AS1 in OvCA were obtained from the Cancer Genome Atlas (TCGA) and the Gene Expression Omnibus (GEO) database. Relative expression of RAD51-AS1 was detected. Determination of cell proliferation, metastasis, and invasion was performed by cell counting, colony formation, would-healing, and transwell invasion assays. Protein levels were detected by western blotting. The molecular mechanism mediated by RAD51-AS1 was predicted by bioinformatics analysis and verified by dual-luciferase reporter assays. Subcutaneous tumorigenesis models were used to confirm the function of RAD51-AS1 in vivo. RESULTS: Data from TCGA and GEO showed that RAD51-AS1 was associated with poor prognosis in OvCA patients and DNA repair, cell cycle, focal adhesion, and apoptosis in SKOV3.ip cells. High levels of RAD51-AS1 were detected in OvCA cells. Overexpressing RAD51-AS1 enhanced the proliferative, invading, and migratory capabilities of OvCA cells in vitro while silencing RAD51-AS1 exhibited the opposite effects. Mechanically, RAD51-AS1 elevated eukaryotic initiation factor 5A2 (EIF5A2) expression as a sponge for microRNA (miR)-140-3p. Finally, the role of RAD51-AS1 was verified by subcutaneous tumorigenesis models. CONCLUSION: RAD51-AS1 promoted OvCA progression by the regulation of the miR-140-3p/EIF5A2 axis, which illustrated the potential therapeutic target for OvCA.
Assuntos
MicroRNAs , Neoplasias Ovarianas , RNA Longo não Codificante , Feminino , Humanos , Carcinogênese/genética , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Transformação Celular Neoplásica/genética , Regulação Neoplásica da Expressão Gênica , MicroRNAs/genética , MicroRNAs/metabolismo , Neoplasias Ovarianas/genética , Rad51 Recombinase/genética , RNA Longo não Codificante/genéticaRESUMO
During growth phase, antlers exhibit a very rapid rate of chondrogenesis. The antler is formed from its growth center reserve mesenchyme (RM) cells, which have been found to be the derivatives of paired related homeobox 1 (Prrx1)-positive periosteal cells. However, the underlying mechanism that drives rapid chondrogenesis is not known. Herein, the miRNA expression profiles and chromatin states of three tissue layers (RM, precartilage, and cartilage) at different stages of differentiation within the antler growth center were analyzed by RNA-sequencing and ATAC-sequencing. We found that miR-140-3p was the miRNA that exhibited the greatest degree of upregulation in the rapidly growing antler, increasing from the RM to the cartilage layer. We also showed that Prrx1 was a key upstream regulator of miR-140-3p, which firmly confirmed by Prrx1 CUT&Tag sequencing of RM cells. Through multiple approaches (three-dimensional chondrogenic culture and xenogeneic antler model), we demonstrated that Prrx1 and miR-140-3p functioned as reciprocal negative feedback in the antler growth center, and downregulating PRRX1/upregulating miR-140-3p promoted rapid chondrogenesis of RM cells and xenogeneic antler. Thus, we conclude that the reciprocal negative feedback between Prrx1 and miR-140-3p is essential for balancing mesenchymal proliferation and chondrogenic differentiation in the regenerating antler. We further propose that the mechanism underlying chondrogenesis in the regenerating antler would provide a reference for helping understand the regulation of human cartilage regeneration and repair.
Assuntos
Chifres de Veado , Proteínas de Homeodomínio , MicroRNAs , Animais , Cartilagem/metabolismo , Diferenciação Celular/genética , Condrogênese/genética , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismoRESUMO
Tetramethylpyrazine (TMP) is one of the active ingredients of Chuan Xiong that has been reported to have effects on numerous diseases, including diabetic nephropathy (DN). Whereas, related molecular mechanisms are not fully elucidated. We aimed to explore circACTR2's role in TMP-mediated protective effects on DN. In vitro DN condition was established in human kidney cells (HK-2) by treating high glucose (HG). CCK-8 assay and flow cytometry assay were used to observe cell viability and survival. Oxidative stress was determined by the associated markers using kits. The release of inflammatory factors was detected using ELISA kits. Quantitative real-time PCR (qPCR) and western blot were utilized for expression analysis of cricACTR2, miR-140-5p, and GLI pathogenesis-related 2 (GLIPR2). The binding between miR-140-5p and circACTR2 or GLIPR2 was confirmed by dual-luciferase, RIP, and pull-down studies. HG largely induced HK-2 cell apoptosis, oxidative stress, and inflammation, which were alleviated by TMP. CircACTR2's expression was enhanced in HG-treated HK-2 cells but attenuated in HG + TMP-treated HK-2 cells. CircACTR2 overexpression attenuated the functional effects of TMP and thus restored HG-induced cell apoptosis, oxidative stress, and inflammation. CircACTR2 bound to miR-140-5p to enhance the expression of GLIPR2. MiR-140-5p restoration or GLIPR2 inhibition reversed the role of circACTR2 overexpression. CircACTR2 attenuated the protective effects of TMP on HG-induced HK-2 cell damages by regulating the miR-140-5p/GLIPR2 network, indicating that circACTR2 was involved in the functional network of TMP in DN.
Assuntos
Pirazinas , Humanos , Pirazinas/farmacologia , MicroRNAs/metabolismo , Estresse Oxidativo/efeitos dos fármacos , RNA Circular/metabolismo , Rim/metabolismo , Rim/efeitos dos fármacos , Rim/patologia , Linhagem Celular , Apoptose/efeitos dos fármacos , Nefropatias Diabéticas/metabolismo , Nefropatias Diabéticas/tratamento farmacológico , Nefropatias Diabéticas/patologiaRESUMO
Background: The low osteogenic differentiation potential and attenuated anti-inflammatory effect of adipose-derived stem cells (ADSCs) from animals with type 2 diabetes mellitus (T2DM) limits osseointegration of the implant. However, the underlying mechanisms are not fully understood. Methods: Western blotting and qRT-PCR analyses were performed to investigate the effects of PTEN on the osteogenic capacity of ADSCs of T2DM rats (TADSCs). We conducted animal experiments in T2DM-Sprague Dawley (SD) rats to evaluate the osteogenic capacity of modified TADSC sheets in vivo. New bone formation was assessed by micro-CT and histological analyses. Results: In this study, adipose-derived stem cells of T2DM rats exhibited an impaired osteogenic capacity. RNA-seq analysis showed that PTEN mRNA expression was upregulated in TADSCs, which attenuated the osteogenic capacity of TADSCs by inhibiting the AKT/mTOR/HIF-1α signaling pathway. miR-140-3p, which inhibits PTEN, was suppressed in TADSCs. Overexpression or inhibition of PTEN could correspondingly reduce or enhance the osteogenic ability of TADSCs by regulating the AKT/mTOR/HIF-1α signaling pathway. TADSCs transfected with PTEN siRNA resulted in higher and lower expressions of genes encoded in M2 macrophages (Arg1) and M1 macrophages (iNOS), respectively. In the T2DM rat model, PTEN inhibition in TADSC sheets promoted macrophage polarization toward the M2 phenotype, attenuated inflammation, and enhanced osseointegration around implants. Conclusion: Upregulation of PTEN, which was partially due to the inhibition of miR-140-3p, is important for the attenuated osteogenesis by TADSCs owing to the inhibition of the AKT/mTOR/HIF-1α signaling pathway. Inhibition of PTEN significantly improves the anti-inflammatory effect and osteogenic capacity of TADSCs, thus promoting peri-implant bone formation in T2DM rats. Our findings offer a potential therapeutic approach for modifying stem cells derived from patients with T2DM to enhance osseointegration.
RESUMO
Muscle satellite cells (SCs) play a crucial role in the regeneration and repair of skeletal muscle injuries. Previous studies have shown that myogenic exosomes can enhance satellite cell proliferation, while the expression of miR-140-5p is significantly reduced during the repair process of mouse skeletal muscle injuries induced by BaCl2. This study aims to investigate the potential of myogenic exosomes carrying miR-140-5p inhibitors to activate SCs and influence the regeneration of injured muscles. Myogenic progenitor cell exosomes (MPC-Exo) and contained miR-140-5p mimics/inhibitors myogenic exosomes (MPC-Exo140+ and MPC-Exo140-) were employed to treat SCs and use the model. The results demonstrate that miR-140-5p regulates SC proliferation by targeting Pax7. Upon the addition of MPC-Exo and MPC-Exo140-, Pax7 expression in SCs significantly increased, leading to the transition of the cell cycle from G1 to S phase and an enhancement in cell proliferation. Furthermore, the therapeutic effect of MPC-Exo140- was validated in animal model, where the expression of muscle growth-related genes substantially increased in the gastrocnemius muscle. Our research demonstrates that MPC-Exo140- can effectively activate dormant muscle satellite cells, initiating their proliferation and differentiation processes, ultimately leading to the formation of new skeletal muscle cells and promoting skeletal muscle repair and remodeling.
Assuntos
Exossomos , MicroRNAs , Células Satélites de Músculo Esquelético , Animais , Camundongos , Proliferação de Células/genética , Exossomos/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Músculo Esquelético/fisiologia , Regeneração/fisiologia , Células Satélites de Músculo Esquelético/metabolismoRESUMO
Background: Although many circulating miRNAs (c-miRNAs) are associated with coronary artery disease (CAD), they are far from being the biomarker for CAD diagnosis or risk prediction. Therefore, novel c-miRNAs discovery and validation are still required, especially evaluating their prediction capacity. Objectives: Identify novel CAD-related c-miRNAs and evaluate its risk prediction capacity for CAD. Methods: miRNAs associated with CAD were preliminarily investigated in three paired samples representing pre-CAD stage and CAD stage of three female individuals using the Applied Biosystems miRNA TaqMan® Low-Density Array (TLDA). Then, the candidate miRNAs were further verified in an independent case-control study including 129 CAD patients and 76 controls, and their potential practical value in prediction for CAD was evaluated using a machine learning (ML) algorithm. The accuracy of classification and prediction was assessed with the area under the receiver operating characteristic curve (AUC). Results: TLDA analysis shows that miR-140-3p decreased significantly in CAD-stage (FC = -3.01, P = 0.007). Further study shows that miR-140-3p was significantly lower in CAD group [1.26 (0.68, 2.01)] than in control group [2.07 (1.19, 3.21)] (P < 0.001) and independently associated with CAD (P < 0.001). The addition of miR-140-3p to the variables including smoking history, HDL-c, and APOA1 improved the accuracy of classification by logistic regression and of prediction for CAD by ML models. The ML models built with miR-140-3p and HDL-c, respectively, had a similar prediction accuracy. The feature importance of miR-140-3p and HDL-c in the ML models was also similar. Decision curve analysis showed that miR-140-3p and HDL-c had almost identical net benefits. Conclusion: Reduced levels of miR-140-3p is linked to CAD, and it is possible to use the plasma level of miR-140-3p as a means of evaluating the risk of CAD.
RESUMO
Goose down feather has become one of the most important economical products in the goose breeding industry and it provides several essential physiological roles in birds. Therefore, understanding and regulating the development of skin and feather follicles during embryogenesis is critical for avian biology and the poultry industry. MicroRNAs are known to play an important role in controlling gene expression during skin and feather follicle development. In this study, bioinformatics analysis was conducted to select miR-140-y as a potential miRNA involved in skin and feather follicle development and to predict TCF4 as its target gene. This gene was expressed at significant levels during embryonic feather follicle development, as identified by qPCR and Western blot. The targeting relationship was confirmed by a dual-luciferase assay in 293T cells. Then, the miR-140-y/TCF4 function in dermal fibroblast cells was explored. The results showed that miR-140-y could suppress the proliferation of goose embryonic dermal fibroblast cells (GEDFs) by suppressing the activity of some Wingless-types (Wnt) pathway related genes and proliferation marker genes, while miR-140-y inhibition led to the opposite effect. Similarly, the inhibition of the TCF4 gene results in blocking the proliferation of GEDFs by reducing the activity of some Wnt pathway-related genes. Finally, the co-transfection of miR-140-y inhibitor and siRNA-TCF4 results in a rescue of the TCF4 function and an increase of the Wnt signaling pathway and GEDFs proliferation. In conclusion, these results demonstrated that the miR-140-y-TCF4 axis influences the activity of the Wnt signaling pathway and works as a dynamic regulator during skin and feather follicle development.
Assuntos
MicroRNAs , Via de Sinalização Wnt , Animais , Gansos/genética , Gansos/metabolismo , Galinhas/genética , Plumas , Hungria , MicroRNAs/genética , MicroRNAs/metabolismo , Desenvolvimento Embrionário , Proliferação de Células/genéticaRESUMO
PURPOSE: This study aims to investigate the expression patterns and clinical significance of miR-140-3p and homeobox A9 (HOXA9) in colorectal cancer (CRC) selected by bioinformatic study, while elucidating their potential interplay. METHODS: The microRNA expression profiles of paired colorectal cancer and matched normal tissues were retrieved from the Gene Expression Omnibus Database. Differentially expressed microRNAs and microRNA candidates were filtered and subjected to further analysis. Clinicopathological data, along with paraffin-embedded samples of colorectal tumor tissues were collected to facilitate comprehensive analysis. Expression levels of miR-140-3p and HOXA9 were quantified using qRT-PCR and immunohistochemistry. Survival rates were determined using the Kaplan-Meier method, and the COX regression model was utilized to identify independent prognostic factors that impact the overall prognosis. RESULTS: MiR-140-3p was significantly downregulated in colorectal tumors compared to normal tissue, and HOXA9 was identified as a previously unreported potential downstream target. HOXA9 expression was elevated in tumors compared to normal tissues. Reduced miR-140-3p expression was associated with lymph node metastasis, while high HOXA9 expression correlated with both lymph node metastasis and lympho-vascular invasion. Patients with low miR-140-3p and high HOXA9 expression had a poorer prognosis. HOXA9 was identified as an independent risk factor for CRC patient survival. CONCLUSION: The miR-140-3p-HOXA9 signaling disruption is closely linked to lymph node metastasis and unfavorable prognosis in CRC. This axis shows promise as a clinical biomarker for predicting the CRC patient survival and a potential therapeutic target.