Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 142
Filtrar
1.
Int J Mol Sci ; 25(13)2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-39000375

RESUMO

Angiogenesis is critical for rheumatoid arthritis (RA) progression. The effects of tofacitinib, a JAK-STAT inhibitor used for RA treatment, on angiogenesis in RA are unclear. We, therefore, evaluated the levels of angiogenic factors in two systems of a human co-culture of fibroblast (HT1080) and monocytic (U937) cell lines treated with tofacitinib and in serum samples from RA patients before and after six months of tofacitinib treatment. Tofacitinib reduced CD147 levels, matrix metalloproteinase-9 (MMP-9) activity, and angiogenic potential but increased endostatin levels and secreted proteasome 20S activity. In vitro, tofacitinib did not change CD147 mRNA but increased miR-146a-5p expression and reduced STAT3 phosphorylation. We recently showed that CD147 regulates the ability of MMP-9 and secreted proteasome 20S to cleave collagen XVIIIA into endostatin. We show here that tofacitinib-enhanced endostatin levels are mediated by CD147, as CD147-siRNA or an anti-CD147 antibody blocked proteasome 20S activity. The correlation between CD147 and different disease severity scores supported this role. Lastly, tofacitinib reduced endostatin' s degradation by inhibiting cathepsin S activity and recombinant cathepsin S reversed this in both systems. Thus, tofacitinib inhibits angiogenesis by reducing pro-angiogenic factors and enhancing the anti-angiogenic factor endostatin in a dual effect mediated partly through CD147 and partly through cathepsin S.


Assuntos
Artrite Reumatoide , Basigina , Catepsinas , Endostatinas , Piperidinas , Pirimidinas , Humanos , Basigina/metabolismo , Basigina/genética , Piperidinas/farmacologia , Endostatinas/metabolismo , Endostatinas/farmacologia , Pirimidinas/farmacologia , Catepsinas/metabolismo , Artrite Reumatoide/tratamento farmacológico , Artrite Reumatoide/metabolismo , Artrite Reumatoide/patologia , Metaloproteinase 9 da Matriz/metabolismo , Metaloproteinase 9 da Matriz/genética , Fator de Transcrição STAT3/metabolismo , Neovascularização Patológica/metabolismo , Neovascularização Patológica/tratamento farmacológico , Inibidores da Angiogênese/farmacologia , Feminino , Pessoa de Meia-Idade , Masculino , Pirróis/farmacologia , Linhagem Celular
2.
Glia ; 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-39041109

RESUMO

Neuroinflammation plays important roles in retinal ganglion cell (RGC) degeneration in glaucoma. MicroRNA-146 (miR-146) has been shown to regulate inflammatory response in neurodegenerative diseases. In this study, whether and how miR-146 could affect RGC injury in chronic ocular hypertension (COH) experimental glaucoma were investigated. We showed that in the members of miR-146 family only miR-146a-5p expression was upregulated in COH retinas. The upregulation of miR-146a-5p was observed in the activated microglia and Müller cells both in primary cultured conditions and in COH retinas, but mainly occurred in microglia. Overexpression of miR-146a-5p in COH retinas reduced the levels pro-inflammatory cytokines and upregulated the levels of anti-inflammatory cytokines, which were further confirmed in the activated primary cultured microglia. Transfection of miR-146a-5p mimic increased the percentage of anti-inflammatory phenotype in the activated BV2 microglia, while transfection of miR-146a-5p inhibitor resulted in the opposite effects. Transfection of miR-146a-5p mimic/agomir inhibited the levels of interleukin-1 receptor associated kinase (IRAK1) and TNF receptor associated factor 6 (TRAF6) and phosphorylated NF-κB subunit p65. Dual luciferase reporter gene assay confirmed that miR-146a-5p could directly target IRAK1 and TRAF6. Moreover, downregulation of IRAK1 and TRAF6 by siRNA techniques or blocking NF-κB by SN50 in cultured microglia reversed the miR-146a-5p inhibitor-induced changes of inflammatory cytokines. In COH retinas, overexpression of miR-146a-5p reduced RGC apoptosis, increased RGC survival, and partially rescued the amplitudes of photopic negative response. Our results demonstrate that overexpression of miR-146a-5p attenuates RGC injury in glaucoma by reducing neuroinflammation through downregulating IRAK1/TRAF6/NF-κB signaling pathway in microglia.

3.
Mol Ther Nucleic Acids ; 35(3): 102228, 2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-38975000

RESUMO

Duchenne muscular dystrophy (DMD) is a progressive muscle disease caused by the absence of dystrophin protein. One current DMD therapeutic strategy, exon skipping, produces a truncated dystrophin isoform using phosphorodiamidate morpholino oligomers (PMOs). However, the potential of exon skipping therapeutics has not been fully realized as increases in dystrophin protein have been minimal in clinical trials. Here, we investigate how miR-146a-5p, which is highly elevated in dystrophic muscle, impacts dystrophin protein levels. We find inflammation strongly induces miR-146a in dystrophic, but not wild-type myotubes. Bioinformatics analysis reveals that the dystrophin 3' UTR harbors a miR-146a binding site, and subsequent luciferase assays demonstrate miR-146a binding inhibits dystrophin translation. In dystrophin-null mdx52 mice, co-injection of miR-146a reduces dystrophin restoration by an exon 51 skipping PMO. To directly investigate how miR-146a impacts therapeutic dystrophin rescue, we generated mdx52 with body-wide miR-146a deletion (146aX). Administration of an exon skipping PMO via intramuscular or intravenous injection markedly increases dystrophin protein levels in 146aX vs. mdx52 muscles while skipped dystrophin transcript levels are unchanged supporting a post-transcriptional mechanism of action. Together, these data show that miR-146a expression opposes therapeutic dystrophin restoration, suggesting miR-146a inhibition warrants further research as a potential DMD exon skipping co-therapy.

4.
Biosci Rep ; 44(7)2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-38967046

RESUMO

INTRODUCTION: Systemic lupus erythematosus (SLE) is a diverse autoimmune disease that arises from a combination of complex genetic factors and environmental influences. While circRNAs and miRNAs have recently been identified as promising biomarkers for disease diagnosis, their specific expression patterns, and clinical implications in SLE are not yet fully understood. AIM OF THE WORK: The aim of the present study was to determine the role of a panel of noncoding-RNAs specifically circRNAs (circ-TubD1, circ-CDC27, and circ-Med14), along with miRNA (rno-miR-146a-5p) and mRNA (TRAF6), as novel minimally invasive diagnostic biomarkers for experimentally induced SLE. Additionally, the study involved an insilico bioinformatics analysis to explore potential pathways involved in the pathogenesis of SLE, aiming to enhance our understanding of the disease, enable early diagnosis, and facilitate improved treatment strategies. MATERIALS AND METHODS: SLE was induced in rats using single IP injection of incomplete Freund's adjuvant (IFA). The Induction was confirmed by assessing the ANA and anti-ds DNA levels using ELSA technique. qPCR analysis was conducted to assess the expression of selected RNAs in sera collected from a group of 10 rats with induced SLE and a control group of 10 rats. In addition, bioinformatics and functional analysis were used to construct a circRNA-miRNA-mRNA network and to determine the potential function of these differentially expressed circRNAs. RESULTS: SLE rats demonstrated significantly higher expression levels of circ-CDC27, circ-Med14, and rno-miR-146a-5p as well as TRAF6, with lower expression level of circ-TubD1 in sera of SLE rats relative to controls. ROC curve analysis indicated that all the selected non-coding RNAs could serve as potential early diagnostic markers for SLE. In addition, the expression level of circ-TubD1 was negatively correlated with rno-miR-146a-5p, however, rno-miR-146a-5p was positively correlated with TRAF6. Bioinformatic analysis revealed the incorporation of the circRNAs targeted genes in various immune system and neurodegeneration pathways. CONCLUSIONS: Therefore, circRNAs; circ-TubD1, circ-CDC27, and circ-Med14, in addition to the miRNA (rno-miR-146a-5p) and mRNA (TRAF6) may be involved in the development of SLE and may have promising roles for future diagnosis and targeted therapy.


Assuntos
Biomarcadores , Modelos Animais de Doenças , Lúpus Eritematoso Sistêmico , MicroRNAs , RNA Circular , Animais , Lúpus Eritematoso Sistêmico/genética , Lúpus Eritematoso Sistêmico/sangue , Lúpus Eritematoso Sistêmico/diagnóstico , RNA Circular/genética , RNA Circular/sangue , Biomarcadores/sangue , Ratos , MicroRNAs/genética , MicroRNAs/sangue , Fator 6 Associado a Receptor de TNF/genética , Fator 6 Associado a Receptor de TNF/metabolismo , Fator 6 Associado a Receptor de TNF/sangue , Biologia Computacional , Feminino , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Mensageiro/sangue , Masculino
5.
Cell Rep ; 43(7): 114453, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-38985677

RESUMO

Methicillin-resistant Staphylococcus aureus (MRSA) infection, a major cause of hospital- and community-acquired pneumonia, still has a high mortality rate. Extracellular vesicles (EVs), as crucial mediators of intercellular communication, have a significant impact on infectious diseases. However, the role of EVs from alveolar macrophages (AMs) in MRSA pneumonia remains unclear. We report that AMs phagocytose MRSA and release more EVs in mice with MRSA pneumonia. EVs from AMs harboring phagocytosed MRSA exhibit significant proinflammatory effects and induce necroptosis by delivering tumor necrosis factor α (TNF-α) and miR-146a-5p. Mechanically, the upregulated miR-146a-5p in these EVs enhances the phosphorylation of RIPK1, RIPK3, and MLKL by targeting TNF receptor-associated factor 6 (TRAF6), thereby promoting TNF-α-induced necroptosis. The combination of a TNF-α antagonist and an miR-146a-5p antagomir effectively improves the outcomes of mice with MRSA pneumonia. Overall, we reveal the pronecrotic effect of EVs from MRSA-infected AMs and provide a promising target for the prevention and treatment of MRSA pneumonia.


Assuntos
Vesículas Extracelulares , Macrófagos Alveolares , Staphylococcus aureus Resistente à Meticilina , MicroRNAs , Necroptose , Animais , Vesículas Extracelulares/metabolismo , Macrófagos Alveolares/metabolismo , Macrófagos Alveolares/microbiologia , Camundongos , MicroRNAs/metabolismo , MicroRNAs/genética , Fagocitose , Camundongos Endogâmicos C57BL , Fator de Necrose Tumoral alfa/metabolismo , Infecções Estafilocócicas/microbiologia , Infecções Estafilocócicas/imunologia , Infecções Estafilocócicas/patologia , Infecções Estafilocócicas/metabolismo , Masculino , Humanos
6.
J Periodontal Res ; 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38845170

RESUMO

AIMS: The study aimed to investigate the role of miR-146a-5p in osteogenesis of hPDLSCs irradiated with low-energy red LEDs. METHODS: After irradiation with 5 J/cm2 red LED, miR-146a-5p expression was detected by real-time quantitative polymerase chain reaction (RT-qPCR), and osteogenic markers expression was determined by RT-qPCR and Western blotting. Alkaline phosphatase (ALP) activity was assessed by ALP staining, and mineralization was assessed by Alizarin Red staining, respectively. Lentiviral vectors were designed to regulate miR-146a-5p expression. Dual-luciferase reporter assay was performed to confirm the targeted relationship between miR-146a-5p and MAPK1. Short hairpin RNA (shRNA) was used to regulate MAPK1 expression. RESULTS: RT-qPCR and western blotting revealed that 5 J/cm2 irradiation elevated the levels of the osteogenic markers osterix (OSX) and bone sialoprotein (BSP) in hPDLSCs. miR-146a-5p is downregulated in hPDLSCs under the low-energy red LED light irradiation. miR-146a-5p underexpression markedly promoted the osteogenic potential of hPDLSCs. miR-146a-5p targeted MAPK1. 5 J/cm2 red LED irradiation rescued the inhibitory effects of upregulated miR-146a-5p on osteogenic differentiation, and the positive influence of red LED irradiation could be reversed by downregulated MAPK1. CONCLUSION: These findings confirm that miR-146a-5p is involved in the effect of LED irradiation on the osteogenic differentiation of hPDLSCs by targeting MAPK1. Red LED irradiation may be a potential clinical adjunct therapy for periodontal regeneration.

7.
ACS Appl Mater Interfaces ; 16(26): 32992-33004, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38887990

RESUMO

Wound healing is a complex challenge that demands urgent attention in the clinical realm. Efficient angiogenesis is a pivotal factor in promoting wound healing. microRNA-146a (miR-146a) inhibitor has angiogenic potential in the periodontal ligament. However, free microRNAs (miRNAs) are poorly delivered into cells due to their limited tissue specificity and low intracellular delivery efficiency. To address this hurdle, we developed a nanocarrier for targeted delivery of the miR-146a inhibitor into endothelial cells. It is composed of a polyethylenimine (PEI)-modified mesoporous silica nanoparticle (MSN) core and a pentapeptide (YIGSR) layer that recognizes endothelial cells. In vitro, we defined that the miR-146a inhibitor and adiponectin (ADP) can modulate angiogenesis and the remodeling of periodontal tissues by activating the ERK and Akt signaling pathways. Then, we confirm the specificity of YIGSR to endothelial cells, and importantly, the nanocarrier effectively delivers the miR-146a inhibitor into endothelial cells, promoting angiogenesis. In a C57 mouse skin wound model, the miR-146a inhibitor is successfully delivered into endothelial cells at the wound site using the nanocarrier, resulting in the formation of new blood vessels with strong CD31 expression. Additionally, no significant differences are found in the expression levels of inflammatory markers interleukin-6 and tumor necrosis factor-α. This outcome not only brings new strategies for angiogenesis but also exhibits broader implications for bone remodeling and wound healing. The breakthrough holds significance for future research and clinical interventions.


Assuntos
MicroRNAs , Nanopartículas , Neovascularização Fisiológica , Cicatrização , MicroRNAs/metabolismo , MicroRNAs/genética , Animais , Cicatrização/efeitos dos fármacos , Camundongos , Humanos , Neovascularização Fisiológica/efeitos dos fármacos , Nanopartículas/química , Remodelação Óssea/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Células Endoteliais da Veia Umbilical Humana , Dióxido de Silício/química , Portadores de Fármacos/química , Polietilenoimina/química , Angiogênese
8.
J Clin Med ; 13(10)2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38792460

RESUMO

Background/Objectives: The balance between regulatory and Th17 cells plays an important role in maintaining the immune tolerance after kidney transplantation (KTx) which is essential for transplantation success, defined as a long graft survival and an absence of organ rejection. The present study aimed to assess whether the pretransplant characteristics of IL-17A and IL-17F, their receptors, as well as miR-146a-5p, an miRNA associated with IL-17A/F regulation, can predict KTx outcomes. Methods: A group of 108 pre-KTx dialysis patients and 125 healthy controls were investigated for single nucleotide substitutions within genes coding for IL-17A, IL-17F, their IL-17RA/RC receptors, and miR-146a-5p. Genotyping was performed using LightSNiP assays. In addition, IL17-A/F serum concentrations were determined using ELISA while miR-146a-5p expression was analyzed by RT-PCR. Results: The IL-17F (rs763780) G allele prevailed in KTx recipients as compared to healthy individuals (OR = 23.59, p < 0.0001) and was associated with a higher IL-17F serum level (p = 0.0381) prior to transplantation. Higher miR-146a-5p expression before KTx was more frequently detected in recipients with an increased IL-17A serum concentration (p = 0.0177). Moreover, IL-17A (rs2275913) GG homozygosity was found to be associated with an increased incidence of deaths before KTx (OR = 4.17, p = 0.0307). T-cell or acute rejection episodes were more frequently observed among patients with the C allele of miR-146a-5p (rs2910164) (OR = 5.38, p = 0.0531). IL17-RA/-RC genetic variants (p < 0.05) seem to be associated with eGFR values. Conclusions: These results imply that IL-17F (rs763780) polymorphism is associated with the serum level of this cytokine and may be related to the risk of renal disease and transplant rejection together with miR-146a-5p (rs2910164), while the IL-17A (rs2275913) genotype may affect patients' survival before KTx.

9.
Front Immunol ; 15: 1366319, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38799464

RESUMO

Introduction: Inflammatory bowel disease (IBD) is a chronic disease involving multiple genes, and the current available targeted drugs for IBD only deliver moderate efficacy. Whether there is a single gene that systematically regulates IBD is not yet known. MiR-146a plays a pivotal role in repression of innate immunity, but its function in the intestinal inflammation is sort of controversy, and the genetic regulatory networks regulated by miR-146a in IBD has not been revealed. Methods: RT-qPCR was employed to detect the expression of miR-146a in IBD patients and in a mouse IBD model induced by dextran sulfate sodium (DSS), and then we generated a miR-146a knock-out mouse line with C57/Bl6N background. The disease activity index was scored in DSS-treated miR-146a deficiency mice and their wild type (WT) littermates. Bulk RNA-sequencing, RT-qPCR and immunostaining were done to illustrate the downstream genetic regulatory networks of miR-146a in flamed colon. Finally, the modified miR-146a mimics were used to treat DSS-induced IBD in miR-146a knock-out and WT IBD mice. Results: We showed that the expression of miR-146a in the colon was elevated in dextran sulfate sodium (DSS)-induced IBD mice and patients with IBD. DSS induced dramatic body weight loss and more significant rectal bleeding, shorter colon length, and colitis in miR-146a knock-out mice than WT mice. The miR-146a mimics alleviated DSS-induced symptoms in both miR-146a-/- and WT mice. Further RNA sequencing illustrated that the deficiency of miR-146a de-repressed majority of DSS-induced IBD-related genes that cover multiple genetic regulatory networks in IBD, and supplementation with miR-146a mimics inhibited the expression of many IBD-related genes. Quantitative RT-PCR or immunostaining confirmed that Ccl3, Saa3, Csf3, Lcn2, Serpine1, Serpine2, MMP3, MMP8, MMP10, IL1A, IL1B, IL6, CXCL2, CXCL3, S100A8, S100A9, TRAF6, P65, p-P65, and IRAK1 were regulated by miR-146a in DSS induced IBD. Among them, MMP3, MMP10, IL6, IL1B, S100A8, S100A9, SERPINE1, CSF3, and IL1A were involved in the active stage of IBD in humans. Discussion: Our date demonstrated that miR-146a acts as a top regulator in C57/BL6N mice to systematically repress multiple genetic regulatory networks involved in immune response of intestine to environment factors, and combinatory treatment with miR-146a-5p and miR-146a-3p mimics attenuates DSS-induced IBD in mice through down-regulating multiple genetic regulatory networks which were increased in colon tissue from IBD patients. Our findings suggests that miR-146a is a top inhibitor of IBD, and that miR-146a-5p and miR-146a-3p mimics might be potential drug for IBD.


Assuntos
Sulfato de Dextrana , Modelos Animais de Doenças , Redes Reguladoras de Genes , Doenças Inflamatórias Intestinais , Camundongos Endogâmicos C57BL , Camundongos Knockout , MicroRNAs , Animais , MicroRNAs/genética , Camundongos , Doenças Inflamatórias Intestinais/genética , Doenças Inflamatórias Intestinais/imunologia , Humanos , Masculino , Regulação da Expressão Gênica , Colite/genética , Colite/induzido quimicamente , Feminino , Colo/metabolismo , Colo/patologia
10.
bioRxiv ; 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38562689

RESUMO

We previously showed that miR-146a-5p is upregulated in pancreatic islets treated with pro-inflammatory cytokines. Others have reported that miR-146a-5p overexpression is associated with ß cell apoptosis and impaired insulin secretion. However, the molecular mechanisms mediating these effects remain elusive. To investigate the role of miR-146a-5p in ß cell function, we developed stable MIN6 cell lines to either overexpress or inhibit the expression of miR-146a-5p. Monoclonal cell populations were treated with pro-inflammatory cytokines (IL-1ß, IFNγ, and TNFα) to model T1D in vitro. We found that overexpression of miR-146a-5p increased cell death under conditions of inflammatory stress, whereas inhibition of miR-146a-5p reversed these effects. Additionally, inhibition of miR-146a-5p increased mitochondrial DNA copy number, respiration rate, and ATP production. Further, RNA sequencing data showed enrichment of pathways related to insulin secretion, apoptosis, and mitochondrial function when the expression levels of miR-146a-5p were altered. Finally, a temporal increase in miR-146a-5p expression levels and a decrease in mitochondria function markers was observed in islets derived from NOD mice. Collectively, these data suggest that miR-146a-5p may promote ß cell dysfunction and death during inflammatory stress by suppressing mitochondrial function.

11.
J Cardiothorac Surg ; 19(1): 265, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38664788

RESUMO

BACKGROUND: Hypoxia/reoxygenation (H/R) induces cardiomyocyte ferroptosis, a core remodeling event in myocardial ischemia/reperfusion injury. Methyltransferase-like 14 (METTL14) emerges as a writer of N6-methyladenosine (m6A) modification. This study was conducted to decipher the role of METTL14 in H/R-induced cardiomyocyte ferroptosis. METHODS: Mouse cardiomyocytes HL-1 were cultured and underwent H/R treatment. The degree of ferroptosis after H/R treatment was appraised by the cell counting kit-8 assay, assay kits (ROS/GSH/Fe2+), and Western blotting (GPX4/ACSL4). The intracellular expressions of METTL14, pri-miR-146a-5p, miR-146a-5p, or adaptor protein phosphotyrosine interacting with PH domain and leucine zipper 1 (APPL1) were examined by real-time quantitative polymerase chain reaction or Western blotting, with m6A quantification analysis and RNA immunoprecipitation to determine the total m6A level and the expression of pri-miR-146a-5p bound to DiGeorge critical region 8 (DGCR8) and m6A-modified pri-miR-146a-5p. The binding of miR-146a-5p to APPL1 was testified by the dual-luciferase assay. RESULTS: H/R treatment induced cardiomyocyte ferroptosis (increased ROS, Fe2+, and ACSL4 and decreased GSH and GPX4) and upregulated METTL14 expression. METTL14 knockdown attenuated H/R-induced cardiomyocyte ferroptosis. METTL14 induced the recognition of pri-miR-146a-5p by DGCR8 by increasing m6A modification on pri-miR-146a-5p, which promoted the conversion of pri-miR-146a-5p into miR-146a-5p and further repressed APPL1 transcription. miR-146a-5p upregulation or APPL1 downregulation limited the inhibitory effect of METTL14 downregulation on H/R-induced cardiomyocyte ferroptosis. CONCLUSION: METTL14 promoted miR-146a-5p expression through the recognition and processing of pri-miR-146a-5p by DGCR8, which repressed APPL1 transcription and triggered H/R-induced cardiomyocyte ferroptosis.


Assuntos
Adenosina , Adenosina/análogos & derivados , Ferroptose , Metiltransferases , Traumatismo por Reperfusão Miocárdica , Miócitos Cardíacos , Ferroptose/fisiologia , Ferroptose/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Animais , Adenosina/metabolismo , Camundongos , Metiltransferases/metabolismo , Metiltransferases/genética , Traumatismo por Reperfusão Miocárdica/metabolismo , Traumatismo por Reperfusão Miocárdica/genética , MicroRNAs/genética , MicroRNAs/metabolismo
12.
Dev Comp Immunol ; 156: 105159, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38492902

RESUMO

Stress-induced immunosuppression (SIIS) is one of the common problems in intensive poultry production, which brings enormous economic losses to the poultry industry. Accumulating evidence has shown that microRNAs (miRNAs) were important regulators of gene expression in the immune system. However, the miRNA-mediated molecular mechanisms underlying SIIS in chickens are still poorly understood. This study aimed to investigate the biological functions and regulatory mechanism of miRNAs in chicken SIIS. A stress-induced immunosuppression model was successfully established via daily injection of dexamethasone and analyzed miRNA expression in spleen. Seventy-four differentially expressed miRNAs (DEMs) was identified, and 229 target genes of the DEMs were predicted. Functional enrichment analysis the target genes revealed pathways related to immunity, such as MAPK signaling pathway and FoxO signaling pathway. The candidate miRNA, gga-miR-146a-5p, was found to be significantly downregulated in the Dex-induced chicken spleen, and we found that Dex stimulation significantly inhibited the expression of gga-miR-146a-5p in Chicken macrophages (HD11). Flow cytometry, 5-ethynyl-2'-deoxyuridine (EdU), cell counting kit-8 (CCK-8) and other assays indicated that gga-miR-146a-5p can promote the proliferation and inhibit apoptosis of HD11 cells. A dual-luciferase reporter assay suggested that the Interleukin 1 receptor associated kinase 2 (IRAK2) gene, which encoded a transcriptional factor, was a direct target of gga-miR-146a-5p, gga-miR-146a-5p suppressed the post-transcriptional activity of IRAK2. These findings not only improve our understanding of the specific functions of miRNAs in avian stress but also provide potential targets for genetic improvement of stress resistance in poultry.


Assuntos
Galinhas , Dexametasona , Macrófagos , MicroRNAs , Animais , MicroRNAs/genética , MicroRNAs/metabolismo , Galinhas/imunologia , Galinhas/genética , Macrófagos/imunologia , Macrófagos/metabolismo , Dexametasona/farmacologia , Apoptose , Tolerância Imunológica , Regulação da Expressão Gênica , Terapia de Imunossupressão , Proteínas Aviárias/genética , Proteínas Aviárias/metabolismo , Baço/imunologia , Baço/metabolismo , Transdução de Sinais , Estresse Fisiológico/imunologia , Linhagem Celular , Quinases Associadas a Receptores de Interleucina-1/genética , Quinases Associadas a Receptores de Interleucina-1/metabolismo , Proliferação de Células
13.
Biomol Concepts ; 15(1)2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38525814

RESUMO

Triple-negative breast cancer (TNBC) is a highly metastatic subtype of breast cancer. Due to the absence of obvious therapeutic targets, microRNAs (miRNAs) provide possible hope to treat TNBC. Withaferin A (WA), a steroidal lactone, possesses potential anticancer activity with lesser side effects. The present study identifies hub genes (CDKN3, TRAF6, CCND1, JAK1, MET, AXIN2, JAG1, VEGFA, BRCA1, E2F3, WNT1, CDK6, KRAS, MYB, MYCN, TGFßR2, NOTCH1, SIRT1, MYCN, NOTCH2, WNT3A) from the list of predicted targets of the differentially expressed miRNAs (DEMs) in WA-treated MDA-MB-231 cells using in silico protein-protein interaction network analysis. CCND1, CDK6, and TRAF6 hub genes were predicted as targets of miR-34a-5p and miR-146a-5p, respectively. The study found the lower expression of miR-34a-5p and miR-146a-5p in MDA-MB-231 cells, and further, it was observed that WA treatment effectively restored the lost expression of miR-34a-5p and miR-146a-5p in MDA-MB-231 cells. An anti-correlation expression pattern was found among the miR-34a-5p and miR-146a-5p and the respective target hub genes in WA-treated TNBC cells. In conclusion, WA might exert anti-cancer effect in TNBC cells by inducing miR-34a-5p and miR-146a-5p expressions and decreasing CCND1, CDK6, and TARF6 target hub genes in TNBC cells.


Assuntos
MicroRNAs , Neoplasias de Mama Triplo Negativas , Vitanolídeos , Humanos , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/patologia , Células MDA-MB-231 , Proteína Proto-Oncogênica N-Myc/metabolismo , Proteína Proto-Oncogênica N-Myc/uso terapêutico , Fator 6 Associado a Receptor de TNF/metabolismo , Linhagem Celular Tumoral , MicroRNAs/genética , MicroRNAs/metabolismo
14.
BMC Ophthalmol ; 24(1): 144, 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38553670

RESUMO

AIM: To elaborate the underlying mechanisms by which IL-1ß promote progression of Dry eye disease(DED) through effect on pyroptosis and apoptosis of corneal epithelial cells(CECs). METHODS: 400 mOsM solutions were used to establish the DED model (hCECs- DED). RT-qPCR was performed to measure IL-1ß mRNA and miR-146a-5p in CECs. Western blotting was performed to measure STAT3, GSDMD, NLRP3, and Caspase-1 levels. Cell counting kit-8 assay was adopted to check cell viability. Apoptosis was detected by flow cytometry. ELISAs were performed to determine IL-18, IL-33 and LDH. The luciferase test detects targeting relationships. RESULTS: After treatment with 400 mOsM solution, cell viability decreased and apoptosis increased. Compared with hCECs, IL-1ß was increased and miR-146a-5p was decreased in hCECs-DED. At the same time, GSDMD, NLRP3, Caspase-1, IL-18, IL-33 and LDH were significantly higher in hCECs-DED than in hCECs, while IL-1ß silencing reversed this effect. In addition, IL-1ß negatively regulated miR-146a-5p. MiR-146a-5p mimics eliminated the inhibition of hCECs-DED pyroptosis and apoptosis caused by IL-1ß silencing. At the same time, miR-146a-5p reduced STAT3 levels in hCECs. CONCLUSION: Highly expressed IL-1ß promoted pyroptosis and apoptosis of hCECs- DED through downregulated miR-146a-5p and inhibited STAT3.


Assuntos
Síndromes do Olho Seco , MicroRNAs , Humanos , Piroptose , MicroRNAs/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Interleucina-18/genética , Interleucina-18/metabolismo , Interleucina-33/genética , Regulação para Baixo , Apoptose , Síndromes do Olho Seco/genética , Células Epiteliais/metabolismo , Caspases/genética , Fator de Transcrição STAT3/genética
15.
Cells ; 13(5)2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38474419

RESUMO

Non-healing lesions in diabetic foot ulcers are a significant effect of poor angiogenesis. Epigenetic regulators, mainly lncRNA and miRNA, are recognized for their important roles in disease progression. We deciphered the regulation of lncRNA NEAT1 through the miR-146a-5p/mafG axis in the progression of DFU. A lowered expression of lncRNA NEAT1 was associated with dysregulated angiogenesis through the reduced expression of mafG, SDF-1α, and VEGF in chronic ulcer subjects compared to acute DFU. This was validated by silencing NEAT1 by SiRNA in the endothelial cells which resulted in the transcriptional repression of target genes. Our in silico analysis identified miR-146a-5p as a potential target of lncRNA NEAT1. Further, silencing NEAT1 led to an increase in the levels of miR-146a-5p in chronic DFU subjects. This research presents the role of the lncRNA NEAT1/miR-146a-5p/mafG axis in enhancing angiogenesis in DFU.


Assuntos
Pé Diabético , MicroRNAs , Neovascularização Fisiológica , RNA Longo não Codificante , Humanos , Pé Diabético/patologia , Células Endoteliais/metabolismo , MicroRNAs/genética , RNA Longo não Codificante/genética
16.
Front Physiol ; 15: 1291344, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38487265

RESUMO

Introduction: The skin is the largest organ of the human body and fulfills protective, immune, and metabolic functions. Skin function and barrier integrity are actively regulated through circadian rhythm-associated genes and epigenetic mechanisms including DNA methylation/demethylation, histone acetylation/deacetylation, and microRNAs. MicroRNA-146a-5p (miR-146a) has been associated with immune activation and skin inflammation; however, the role of miR-146a in regulating skin aging is an open question. This study investigated the role of miR-146a in fibroblasts obtained from different donors in the context of aging, and a potential association of this miRNA with circadian rhythm. Methods: Normal human dermal fibroblasts (NHDFs) from 19y, 27y, 40y, and 62y old donors were used to analyze for miR-146a expression. Expression of miR-146a was downregulated with the hsa-mirVana miR-146a inhibitor, and upregulated with an extract from Adansonia digitata. Effects on markers of skin aging, including cell proliferation, production of Collagen-1 and inflammatory cytokines were assessed. Results: We show that the expression of miR-146a decreases with age in dermal fibroblasts and inhibition of miR-146a in 19y and 62y old NHDFs induced significant changes in essential clock genes indicating an association with circadian rhythm control. Furthermore, downregulation of miR-146a results in a reduction of cellular proliferation, Collagen-1 production, as well as an increase in DNA damage and pro-inflammatory markers. Activation of miR-146a with the Adansonia digitata extract reduced the deleterious effects seen during miR-146a inhibition and increased miR-146a transport through exosome transfer. Conclusion: miR-146a interacts with multiple biological pathways related to skin aging, including circadian rhythm machinery, cell-to-cell communication, cell damage repair, cell proliferation, and collagen production and represents a promising target to fight skin aging. Adansonia digitata extract can promote miR-146a expression and therefore support skin cells' health.

17.
J Nanobiotechnology ; 22(1): 65, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38365722

RESUMO

BACKGROUNDS: The intestinal development in early life is profoundly influenced by multiple biological components of breast milk, in which milk-derived extracellular vesicles (mEVs) contain a large amount of vertically transmitted signal from the mother. However, little is known about how maternal fiber-rich diet regulates offspring intestinal development by influencing the mEVs. RESULTS: In this study, we found that maternal resistant starch (RS) consumption during late gestation and lactation improved the growth and intestinal health of offspring. The mEVs in breast milk are the primary factor driving these beneficial effects, especially enhancing intestinal cell proliferation and migration. To be specific, administration of mEVs after maternal RS intake enhanced intestinal cell proliferation and migration in vivo (performed in mice model and indicated by intestinal histological observation, EdU assay, and the quantification of cyclin proteins) and in vitro (indicated by CCK8, MTT, EdU, and wound healing experiments). Noteworthily, miR-146a-5p was found to be highly expressed in the mEVs from maternal RS group, which also promotes intestinal cell proliferation in cells and mice models. Mechanically, miR-146a-5p target to silence the expression of ubiquitin ligase 3 gene NEDD4L, thereby inhibiting DVL2 ubiquitination, activating the Wnt pathway, and promoting intestinal development. CONCLUSION: These findings demonstrated the beneficial role of mEVs in the connection between maternal fiber rich diet and offspring intestinal growth. In addition, we identified a novel miRNA-146a-5p-NEDD4L-ß-catenin/Wnt signaling axis in regulating early intestinal development. This work provided a new perspective for studying the influence of maternal diet on offspring development.


Assuntos
Vesículas Extracelulares , MicroRNAs , Animais , Feminino , Humanos , Camundongos , Gravidez , Proliferação de Células , Dieta , Vesículas Extracelulares/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Leite , Sus scrofa
18.
Stem Cell Rev Rep ; 20(4): 1026-1039, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38393667

RESUMO

Chronic trauma in diabetes is a leading cause of disability and mortality. Exosomes show promise in tissue regeneration. This study investigates the role of exosomes derived from adipose stem cells (ADSC-Exos) in angiogenesis. MiRNA-seq analysis revealed significant changes in 47 genes in human umbilical vein endothelial cells (HUVECs) treated with ADSC-Exos, with miR-146a-5p highly expressed. MiR-146a-5p mimics enhanced the pro-angiogenic effects of ADSC-Exos, while inhibitors had the opposite effect. JAZF1 was identified as a direct downstream target of miR-146a-5p through bioinformatics, qRT-PCR, and dual luciferase assay. Overexpress of JAZF1 resulted in decreased proliferation, migration, and angiogenic capacity of HUVECs, and reduced VEGFA expression. This study proposes that ADSC-Exos regulate angiogenesis partly via the miR-146a-5p/JAZF1 axis.


Assuntos
Tecido Adiposo , Proteínas Correpressoras , Exossomos , Células Endoteliais da Veia Umbilical Humana , MicroRNAs , Neovascularização Fisiológica , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Exossomos/metabolismo , Células Endoteliais da Veia Umbilical Humana/metabolismo , Neovascularização Fisiológica/genética , Tecido Adiposo/citologia , Tecido Adiposo/metabolismo , Proteínas Correpressoras/metabolismo , Proteínas Correpressoras/genética , Células-Tronco/metabolismo , Células-Tronco/citologia , Proliferação de Células/genética , Movimento Celular/genética , Neovascularização Patológica/metabolismo , Neovascularização Patológica/genética , Neovascularização Patológica/patologia , Diabetes Mellitus/metabolismo , Diabetes Mellitus/genética , Diabetes Mellitus/patologia , Cicatrização/genética , Angiogênese , Proteínas de Ligação a DNA
19.
Int J Biol Macromol ; 261(Pt 2): 129733, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38307433

RESUMO

The function of miRNAs in intestinal inflammatory injury regulation has been studied extensively. However, the targeted delivery of these functional nucleic acid molecules to specific organs through encapsulation carriers and exerting their functional effects remain critical challenges for further research. Here, we constructed miR-146a-5p overexpression plasmid and validated the anti-inflammatory properties in the cell model. Then, the plasmid was encapsulated by the Pickering double emulsion system to investigate the role of Pickering double emulsion system in LPS-induced acute intestinal inflammatory injury. The results showed that the Pickering double emulsion system could effectively protect the integrity of plasmids in the intestinal tract, alleviate intestinal inflammatory injury, and upregulate the relative abundance of Lactobacillus reuteri. Mechanically, in vivo and in vitro experiments have shown that miR-146a-5p inhibits TLR4/NF-κB pathway to alleviate intestinal inflammation. In addition, miR-146a-5p can also regulate intestinal homeostasis by targeting the RNA polymerase sigma factor RpoD and α-galactosidase A, thereby affecting the growth of Lactobacillus reuteri. Above all, this study reveals a potential mechanism for miR-146a-5p to treat intestinal inflammation and provides a new delivery strategy for miRNAs to regulate intestinal homeostasis.


Assuntos
Microbioma Gastrointestinal , MicroRNAs , Humanos , Emulsões , MicroRNAs/genética , MicroRNAs/metabolismo , NF-kappa B/genética , NF-kappa B/metabolismo , Inflamação/tratamento farmacológico , Inflamação/genética
20.
Int Immunopharmacol ; 128: 111573, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38278065

RESUMO

BACKGROUND: Ectopic endometrial stromal cells (ESCs) and M2 macrophages co-exist in the lesions of endometriosis and participate in the occurrence and progression of endometriosis. However, the interaction between ectopic ESCs and M2-type macrophage polarization is poorly understood. This study aims to investigate the effect of exosomes released from ectopic ESCs on M2 macrophage polarization and the potential mechanism. METHODS: Human THP-1 monocytic cells induced macrophage differentiation (M0) and M2 polarization. Ectopic ESCs and their exosomes were used to stimulate M2 macrophages. M2 macrophage polarization was examined by detecting CD163 and ARG1 expression. Exosomal microRNAs were analyzed by small-RNA sequencing. RESULTS: Our in vitro results suggest that exosomes of ectopic ESCs promoted M2 macrophage polarization. Meanwhile, The miR-146a-5p level was highly increased in ectopic ESCs and their exosomes and promoted the role of exosomes in M2 macrophage polarization. As a target, TRAF6 overexpression inhibits the function of miR-146a-5p mimic on M2 macrophage polarization. In the rat model, exosomes from ectopic ESCs contribute to the development of endometriosis. CONCLUSIONS: It was suggested that exosomes derived from ectopic ESCs promote the M2 macrophage polarization by delivering miR-146a-5p targeting TRAF6 in the pathological process of endometriosis.


Assuntos
Endometriose , Exossomos , MicroRNAs , Animais , Feminino , Humanos , Ratos , Exossomos/metabolismo , Macrófagos/metabolismo , MicroRNAs/genética , Células Estromais/metabolismo , Fator 6 Associado a Receptor de TNF/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...