Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Mol Biotechnol ; 66(5): 1154-1164, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38253901

RESUMO

To explore the potential mechanism of microRNA (miR)-181b-5p promoting the progression of thyroid cancer (TC) by targeting programmed cell death 4 (PDCD4). Analysis of miR-181b-5p and PDCD4 expression in TC was performed. The impact of miR-181b-5p and PDCD4 on proliferation, migration, invasion, and apoptosis of TC cells was examined. The binding relationship between miR-181b-5p and PDCD4 was predicted and verified. miR-181b-5p was up-regulated in TC, while PDCD4 was down-regulated. Down-regulating miR-181b-5p or up-regulating PDCD4 inhibited the proliferation, migration, and invasion of TC cells, and promoted cell apoptosis. PDCD4 was the downstream target of miR-181b-5p, and down-regulation of PDCD4 counteracted the inhibitory effect of down-regulation of miR-181b-5p on the proliferation, migration, and invasion of TC cells and the promoting effect on apoptosis. miR-181b-5p inhibits the proliferation, migration, and invasion of TC cells and promotes cell apoptosis by targeting PDCD4.


Assuntos
Proteínas Reguladoras de Apoptose , Apoptose , Movimento Celular , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , MicroRNAs , Proteínas de Ligação a RNA , Neoplasias da Glândula Tireoide , MicroRNAs/genética , MicroRNAs/metabolismo , Humanos , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Neoplasias da Glândula Tireoide/genética , Neoplasias da Glândula Tireoide/patologia , Neoplasias da Glândula Tireoide/metabolismo , Proteínas Reguladoras de Apoptose/genética , Proteínas Reguladoras de Apoptose/metabolismo , Proliferação de Células/genética , Linhagem Celular Tumoral , Movimento Celular/genética , Apoptose/genética , Invasividade Neoplásica/genética , Masculino , Pessoa de Meia-Idade , Regulação para Baixo , Feminino
2.
Int Immunopharmacol ; 127: 111451, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38154211

RESUMO

OBJECTIVE: This study aimed to investigate the role and underlying mechanisms of microRNA (miRNA)-181b in the inflammatory response in pulpitis. METHODS: Quantitative reverse-transcription polymerase chain reaction (qRT-PCR), fluorescence in situ hybridization (FISH), and immunofluorescence techniques were used to determine the miRNA-181b and urokinase-type plasminogen activator (PLAU) expression levels in inflamed human dental pulp tissues (HDPTs) and lipopolysaccharide (LPS)-stimulated human dental pulp cells (hDPCs). The targets of miRNA-181b were identified and confirmed using a bioinformatics analysis, RNA sequencing, and dual-luciferase gene reporter assays. The effect of miRNA-181b or PLAU on proinflammatory cytokine expression in hDPCs was examined using qRT-PCR and western blotting. RNA sequencing was conducted to examine the signaling pathways implicated in miRNA-181b-mediated pulpitis. Western blotting and qRT-PCR were used to determine the miRNA-181b /PLAU/AKT/NF-κB signaling axis in pulpitis. A rat pulpitis model was created to observe the histopathological changes in the dental pulp tissue after the topical application of miRNA-181b agomir. RESULTS: A significant decrease in miRNA-181b and an increase in PLAU were observed in HDPTs compared to the healthy controls, and these two factors showed a negative correlation. MiRNA-181b directly targeted PLAU. The miRNA-181b inhibitor resulted in a significant upregulation of IL-1ß, IL-6 and TNF-α, whereas the knockdown of PLAU reversed this proinflammatory effect. Conversely, PLAU overexpression prevented the anti-inflammatory effects of the miRNA-181b mimics. Mechanistically, miRNA-181b inhibited the AKT/NF-κB pathway by targeting PLAU. In vivo application of the miRNA-181b agomir to inflamed pulp tissue alleviated inflammation. CONCLUSION: MiRNA-181b targets PLAU, negatively regulating pro-inflammatory cytokine expression via the AKT/NF-κB signaling pathway.


Assuntos
MicroRNAs , Pulpite , Ratos , Humanos , Animais , NF-kappa B/metabolismo , Lipopolissacarídeos , Proteínas Proto-Oncogênicas c-akt/genética , Ativadores de Plasminogênio/genética , Hibridização in Situ Fluorescente , MicroRNAs/genética , MicroRNAs/metabolismo , Citocinas/genética
3.
J Am Heart Assoc ; 12(14): e028421, 2023 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-37421280

RESUMO

Background The identification of large-artery stiffness as a major, independent risk factor for cardiovascular disease-associated morbidity and death has focused attention on identifying therapeutic strategies to combat this disorder. Genetic manipulations that delete or inactivate the translin/trax microRNA-degrading enzyme confer protection against aortic stiffness induced by chronic ingestion of high-salt water (4%NaCl in drinking water for 3 weeks) or associated with aging. Therefore, there is heightened interest in identifying interventions capable of inhibiting translin/trax RNase activity, as these may have therapeutic efficacy in large-artery stiffness. Methods and Results Activation of neuronal adenosine A2A receptors (A2ARs) triggers dissociation of trax from its C-terminus. As A2ARs are expressed by vascular smooth muscle cells (VSMCs), we investigated whether stimulation of A2AR on vascular smooth muscle cells promotes the association of translin with trax and, thereby increases translin/trax complex activity. We found that treatment of A7r5 cells with the A2AR agonist CGS21680 leads to increased association of trax with translin. Furthermore, this treatment decreases levels of pre-microRNA-181b, a target of translin/trax, and those of its downstream product, mature microRNA-181b. To check whether A2AR activation might contribute to high-salt water-induced aortic stiffening, we assessed the impact of daily treatment with the selective A2AR antagonist SCH58261 in this paradigm. We found that this treatment blocked aortic stiffening induced by high-salt water. Further, we confirmed that the age-associated decline in aortic pre-microRNA-181b/microRNA-181b levels observed in mice also occurs in humans. Conclusions These findings suggest that further studies are warranted to evaluate whether blockade of A2ARs may have therapeutic potential in treating large-artery stiffness.


Assuntos
MicroRNAs , Receptor A2A de Adenosina , Humanos , Camundongos , Animais , Receptor A2A de Adenosina/genética , Proteínas de Ligação a DNA/genética , Proteínas de Transporte/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Aorta/metabolismo , Adenosina , Água/metabolismo
4.
Neural Regen Res ; 17(12): 2717-2724, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35662219

RESUMO

Exosomes derived from bone marrow mesenchymal stem cells can inhibit neuroinflammation through regulating microglial phenotypes and promoting nerve injury repair. However, the underlying molecular mechanism remains unclear. In this study, we investigated the mechanism by which exosomes derived from bone marrow mesenchymal stem cells inhibit neuroinflammation. Our in vitro co-culture experiments showed that bone marrow mesenchymal stem cells and their exosomes promoted the polarization of activated BV2 microglia to their anti-inflammatory phenotype, inhibited the expression of proinflammatory cytokines, and increased the expression of anti-inflammatory cytokines. Our in vivo experiments showed that tail vein injection of exosomes reduced cell apoptosis in cortical tissue of mouse models of traumatic brain injury, inhibited neuroinflammation, and promoted the transformation of microglia to the anti-inflammatory phenotype. We screened some microRNAs related to neuroinflammation using microRNA sequencing and found that microRNA-181b seemed to be actively involved in the process. Finally, we regulated the expression of miR181b in the brain tissue of mouse models of traumatic brain injury using lentiviral transfection. We found that miR181b overexpression effectively reduced apoptosis and neuroinflamatory response after traumatic brain injury and promoted the transformation of microglia to the anti-inflammatory phenotype. The interleukin 10/STAT3 pathway was activated during this process. These findings suggest that the inhibitory effects of exosomes derived from bone marrow mesenchymal stem cells on neuroinflamation after traumatic brain injury may be realized by the action of miR181b on the interleukin 10/STAT3 pathway.

5.
Atherosclerosis ; 350: 9-18, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35462240

RESUMO

BACKGROUND AND AIMS: Chronic vascular endothelial inflammation predisposes to atherosclerosis; however, the cell-autonomous roles for endothelial-expressing microRNAs (miRNAs) are poorly understood in this process. MiR-181b is expressed in several cellular constituents relevant to lesion formation. The aim of this study is to examine the role of genetic deficiency of the miR-181b locus in endothelial cells during atherogenesis. METHODS AND RESULTS: Using a proprotein convertase subtilisin/kexin type 9 (PCSK9)-induced atherosclerosis mouse model, we demonstrated that endothelial cell (EC)-specific deletion of miR-181a2b2 significantly promoted atherosclerotic lesion formation, cell adhesion molecule expression, and the influx of lesional macrophages in the vessel wall. Yet, endothelium deletion of miR-181a2b2 did not affect body weight, lipid metabolism, anti-inflammatory Ly6Clow or the pro-inflammatory Ly6Cinterm and Ly6Chigh fractions in circulating peripheral blood mononuclear cells (PBMCs), and pro-inflammatory or anti-inflammatory mediators in both bone marrow (BM) and PBMCs. Mechanistically, bulk RNA-seq and gene set enrichment analysis of ECs enriched from the aortic arch intima, as well as single cell RNA-seq from atherosclerotic lesions, revealed that endothelial miR-181a2b2 serves as a critical regulatory hub in controlling endothelial inflammation, cell adhesion, cell cycle, and immune response during atherosclerosis. CONCLUSIONS: Our study establishes that deficiency of a miRNA specifically in the vascular endothelium is sufficient to profoundly impact atherogenesis. Endothelial miR-181a2b2 deficiency regulates multiple key pathways related to endothelial inflammation, cell adhesion, cell cycle, and immune response involved in the development of atherosclerosis.


Assuntos
Aterosclerose , MicroRNAs , Animais , Aterosclerose/patologia , Células Endoteliais/metabolismo , Inflamação/metabolismo , Leucócitos Mononucleares/metabolismo , Camundongos , MicroRNAs/genética , MicroRNAs/metabolismo , Pró-Proteína Convertase 9/metabolismo
6.
Int J Mol Med ; 49(4)2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35179216

RESUMO

TGF­ß1 is a pleiotropic cytokine that can either promote or inhibit cancer development and progression. It was previously found that TGF­ß1 can regulate the expression of several microRNAs (miR or miRNA) involved in the progression of renal cell carcinoma (RCC). Therefore, the present study aimed to analyze the effects of TGF­ß1 on the global RCC miRNome. It was found that TGF­ß1 can regulate a complex network consisting of miRNAs and mRNAs involved in RCC transformation. In particular, TGF­ß1 was revealed to regulate the proliferation of RCC cells while concomitantly modifying the expression of oncogenic regulators, including avian erythroblastosis virus E26 (V­Ets) oncogene homolog­1 (ETS1). In addition, TGF­ß1 was demonstrated to regulate the expression of a number of miRNAs including miR­30c­5p, miR­155­5p, miR­181a­5p and miR­181b­5p. By contrast, TGF­ß1 reciprocally modified the expression of genes encoding TGF­ß1 receptors and SMADs, indicating a novel regulatory feedback mechanism mediated through the miRNAs. These data suggested that ETS1 served different roles in different subtypes of RCC tumors, specifically by functioning as an oncogene in clear cell RCC while as a tumor suppressor in papillary RCC.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , MicroRNAs , Carcinoma de Células Renais/patologia , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Renais/patologia , MicroRNAs/metabolismo , Fator de Crescimento Transformador beta1/genética , Fator de Crescimento Transformador beta1/metabolismo
7.
Int Immunopharmacol ; 101(Pt B): 108151, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34836796

RESUMO

OBJECTIVE: This study aimed to probe the function of microRNA-181b-5p (miR-181b-5p)/protein inhibitor of activated STAT1 (PIAS1)/protein arginine methyltransferase 1 (PRMT1) axis in the progression of alcoholic fatty liver disease (AFLD). METHODS: A rat model of AFLD was established and treated with altered miR-181b-5p, PIAS1 or PRMT1 expression constructs to identify their effects on liver function, serum inflammation, liver tissue oxidative stress, hepatocyte apoptosis and pathological changes of liver tissue in rats using a series of assays. miR-181b-5p, PIAS1 and PRMT1 levels were detected, and the targeting relationship between miR-181b-5p and PIAS1 was confirmed. RESULTS: MiR-181b-5p and PRMT1 were elevated while PIAS1 was reduced in AFLD rat liver tissues, miR-181b-5p inhibition, PIAS1 overexpression or PRMT1 inhibition improved liver function, attenuated inflammation, oxidative stress, pathological changes and hepatocyte apoptosis in AFLD rat liver tissues. The impacts of miR-181b-5p inhibition on AFLD rats were reversed by PIAS1 silencing. PIAS1 was confirmed as a target gene of miR-181b-5p, and miR-181b-5p regulated PRMT1 expression through binding to PIAS1. CONCLUSION: Inhibiting miR-181b-5p can promote the expression of PIAS1, thereby inhibiting PRMT1 and ultimately improving AFLD.


Assuntos
Fígado Gorduroso Alcoólico/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , MicroRNAs/metabolismo , Proteínas Inibidoras de STAT Ativados/metabolismo , Proteína-Arginina N-Metiltransferases/metabolismo , Animais , Antagomirs/farmacologia , Etanol/toxicidade , Regulação da Expressão Gênica/fisiologia , Inativação Gênica , Masculino , MicroRNAs/genética , Estresse Oxidativo , Proteínas Inibidoras de STAT Ativados/genética , Proteína-Arginina N-Metiltransferases/genética , Ratos , Ratos Wistar , Regulação para Cima
8.
Neuroimmunomodulation ; 28(4): 255-265, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34496364

RESUMO

INTRODUCTION: Long noncoding RNA small nuclear host gene 1 (SNHG1) was involved in neuroinflammation in microglial BV-2 cells; however, its interaction with microRNA (miR)-181b in lipopolysaccharide (LPS)-induced BV-2 cells remained poor. METHODS: BV-2 cells were treated with LPS and then were subjected to observation on morphology and immunofluorescence staining. After transfection, levels of inflammatory cytokines interleukin-1ß (IL-1ß), IL-6, and tumor necrosis factor-α (TNF-α) were determined with enzyme-linked immunosorbent assay (ELISA). The potential binding sites between SNHG1 and miR-181b were confirmed using dual-luciferase reporter assay. Quantitative real-time polymerase chain reaction and Western blot were applied for detecting the mRNA and protein expressions of proinflammatory cytokines, ionized calcium-binding adapter molecule 1 (Iba1), cyclooxygenase-2 (COX-2), and inducible nitric oxide synthase (iNOS). RESULTS: LPS led to the morphological changes and activation of BV-2 cells. The transfection of SNHG1 overexpression vector further promoted LPS-induced SNHG1 upregulation, inflammatory cytokines (IL-1ß, IL-6, and TNF-α) generation and Iba-1, COX-2, and iNOS expressions, whereas silencing SNHG1 did the opposite. miR-181b functions as a downstream miRNA of SNHG1. In LPS-treated cells, the inhibition of miR-181b induced by SNHG1 promoted inflammation response and the expressions of Iba-1, COX-2, and iNOS. CONCLUSION: SNHG1 was involved in LPS-induced microglial activation and inflammation response via targeting miR-181b, providing another evidence of the roles of SNHG1 implicated in neuroinflammation of microglia.


Assuntos
MicroRNAs , RNA Longo não Codificante , Humanos , Inflamação/induzido quimicamente , Inflamação/genética , Lipopolissacarídeos/toxicidade , MicroRNAs/genética , Microglia , RNA Longo não Codificante/genética
9.
Inflammation ; 44(4): 1263-1273, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34076811

RESUMO

MicroRNAs (miRNAs) are short endogenous noncoding RNAs regulating protein translation. However, the specific mechanism by which miR-181b influences sepsis via high-mobility group box-1 protein (HMGB1) still remains unknown. Thus, the aim of this study is to investigate the mechanism of miR-181b in regulating inflammatory response in sepsis-induced myocardial injury through targeting high-mobility group box-1 protein (HMGB1). Through cecal ligation and puncture (CLP), the rat model of sepsis was established. Then, the effect of altered expression of miR-181b and HMGB1 on cardiomyocytes was investigated. The positive expression rate of HMGB1, concentration of inflammatory factors, and serum myocardial enzyme of myocardial tissues were determined. Besides, the binding site between miR-181b and HMGB1 was determined by bioinformatics information and dual-luciferase reporter gene assay. The expression of related genes in cells of each group was determined by RT-qPCR and western blot analysis, and the apoptosis rate of transfected cells in each group was determined by TUNEL assay. HMGB1 expression and inflammatory factors were significantly increased in myocardial tissue of rats with sepsis. Cell morphology and the infiltration of inflammatory cells were significantly improved by overexpression of miR-181b. miR-181b directly targeted HMGB1, and downregulation of HMGB1 reduced inflammatory factors and myocardial injury and inhibited cardiomyocyte apoptosis in sepsis. This present study suggests that miR-181b decreased inflammatory factors and reduced myocardial injury in sepsis through downregulation of HMGB1. Thus, a better understanding of this process may aid in the development of novel therapeutic agents in sepsis.


Assuntos
Regulação para Baixo/fisiologia , Proteína HMGB1/biossíntese , Mediadores da Inflamação/metabolismo , MicroRNAs/biossíntese , Miócitos Cardíacos/metabolismo , Sepse/metabolismo , Animais , Proteína HMGB1/antagonistas & inibidores , Mediadores da Inflamação/antagonistas & inibidores , Masculino , Isquemia Miocárdica/metabolismo , Isquemia Miocárdica/patologia , Miocárdio/metabolismo , Miocárdio/patologia , Miócitos Cardíacos/patologia , Ratos , Ratos Sprague-Dawley , Sepse/patologia
10.
Exp Ther Med ; 21(5): 497, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33791006

RESUMO

Spinal cord injury (SCI) is a traumatic central nervous system disorder that leads to permanent functional loss, and unavailable treatment of this disease results in poor quality of life. However, the specific role of long non-coding RNA small nucleolar RNA host gene 14 (lncRNA SNHG14) in SCI has not been fully studied. The aim of the current study was to investigate the role of SNHG14 and its regulatory mechanism in lipopolysaccharide (LPS)-induced PC-12 cells. LPS was used to stimulate PC-12 cells to simulate inflammatory injury following SCI in vitro. Cell viability and apoptosis were respectively assessed by Cell Counting Kit-8 assay and TUNEL assay. Western blotting was performed to detect the expressions of apoptosis-related proteins. The mRNA levels of SNHG14 and microRNA (miR)-181b-5p were detected by reverse transcription-quantitative PCR. The target of SNGH14 was predicted by bioinformatics analysis and subsequently validated by a luciferase reporter assay. ELISA was then used to detect the levels of inflammatory factors. The results indicated that LPS induced inflammation, decreased cell viability and increased the apoptosis of PC-12 cells. Interference of SNHG14 alleviated this type of injury of PC-12 cells. Bioinformatics prediction and luciferase reporter assay demonstrated that miR-181b-5p could directly bind to SNHG14. Moreover, mechanistic investigations revealed that the miR-181b-5p inhibitor could reverse the inhibitory effects of SNHG14 silencing on cell viability, inflammation and apoptosis of PC-12 cells. To conclude, the present results showed that SNHG14 knockdown alleviated PC-12 cell inflammation and apoptosis induced by LPS via regulating miR-181b-5p, which might provide a novel insight into the treatment of SCI.

11.
Ann Transl Med ; 8(21): 1458, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33313203

RESUMO

BACKGROUND: Blood-brain barrier (BBB) impairment plays a significant role in the pathogenesis of sepsis-associated encephalopathy (SAE). However, the molecular mechanisms are poorly understood. In the present study, we aimed to investigate the regulatory relationship between the Janus kinase/signal transducers and activators of transcription (JAK/STAT) signaling pathway, microRNA (miR)-181b and its target genes in sepsis in vivo and in vitro. METHODS: Four rat models (sham, sepsis, sepsis plus STAT3 inhibitor (Stattic), and sepsis plus miR-181b inhibitor [sepsis + anta-miR-181b]) were established. For the in vitro experiments, rat brain microvascular endothelial cells (rBMECs) and rat brain astrocytes (rAstrocytes) were cultured with 10% serum harvested from sham, sepsis, and sepsis + anta-miR-181b rats. Chromatin immunoprecipitation-quantitative polymerase chain reaction (ChIP-QPCR) analysis was carried out to detect the binding and enrichment of the JAK/STAT3 signal core transcription complex in the miR-181b promoter region. Dual-luciferase reporter gene assay was conducted to test miR-181b and its target genes. The cell adhesion rate of rBMECs was also measured. RESULTS: During our investigations, the expression levels of miR-181b, p-JAK2, p-STAT3, and C/EBPß were found to be significantly increased in the septic rats compared with the sham rats. STAT3 inhibitor halted BBB damage by downregulating the expression of miR-181b. In addition, miR-181b targeted sphingosine-1-phosphate receptor 1 (S1PR1) and neurocalcin delta (NCALD). The up-regulated miR-181b significantly decreased the cell adhesion rate of rBMECs. The administration of miR-181b inhibitor reduced damage to the BBB through increasing the expression of S1PR1 and NCALD, which again proved that miR-181b negatively regulates SIPR1 and NCALD to induce BBB damage. CONCLUSIONS: Our study demonstrated that JAK2/STAT3 signaling pathway induced expression of miR-181b, which promoted BBB impairment in rats with sepsis by downregulating S1PR1 and decreasing BBB cell adhesion. These findings strongly suggest JAK2/STAT3/miR-181b axis as therapeutic target in protecting against sepsis-induced BBB damage.

12.
Mol Cell Biochem ; 464(1-2): 193-203, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31853799

RESUMO

Nuclear-enriched abundant transcript 1 (NEAT1), a vital long noncoding RNA (lncRNA), exhibits the functions in disparate cancers. Nevertheless, the influences of NEAT1 in congenital heart disease (CHD) remain unreported. The research delves into whether NEAT1 affects H9c2 cells apoptosis and autophagy under the hypoxia condition. Overexpressed NEAT1 vector was transfected into H9c2 cells; then, functions of NEAT1 in cell viability, apoptosis, autophagy, PI3K/AKT/mTOR and JAK1/STAT3 pathways were detected in H9c2 cells under hypoxia condition. Expression of NEAT1 and miR-181b in hypoxia and blood samples from CHD was evaluated. After miR-181b inhibitor transfection, functions of miR-181b repression in the above-mentioned cell behavior and PI3K/AKT/mTOR and JAK1/STAT3 pathways were reassessed. Overexpressed NEAT1 clearly allayed hypoxia-triggered H9c2 cells apoptosis and autophagy. The decreased NEAT1 and miR-181b were showcased in hypoxia and blood samples from CHD; meanwhile, elevated miR-181b evoked by overexpressed NEAT1 was observed in hypoxia-managed H9c2 cells. More importantly, miR-181b inhibition obviously overturned the influences of NEAT1 in hypoxia-affected H9c2 cells apoptosis and autophagy. Besides, overexpressed NEAT1 facilitated PI3K/AKT/mTOR and JAK1/STAT3 activations via enhancing miR-181b. The research exposed that NEAT1 eased hypoxia-triggered H9c2 cells apoptosis and autophagy by expediting PI3K/AKT/mTOR and JAK1/STAT3 pathways via elevating miR-181b.


Assuntos
Apoptose , Morte Celular Autofágica , MicroRNAs/metabolismo , RNA Longo não Codificante/metabolismo , Transdução de Sinais , Hipóxia Celular , Linhagem Celular , Humanos , Janus Quinase 1/genética , Janus Quinase 1/metabolismo , MicroRNAs/genética , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , RNA Longo não Codificante/genética , Fator de Transcrição STAT3/genética , Fator de Transcrição STAT3/metabolismo , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo
13.
J Cell Physiol ; 234(10): 18963-18969, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30937907

RESUMO

This study aimed to study the roleof microRNA (miR)-181b and its target TIMP3 in the development of diabetic nephropathy (DMN) via inhibiting the apoptosis of mesangial cells. Real-time polymerase chain reaction (RT-PCR) was adopted to compare the miR-181b expression between subjects with diabetic nephropathy (DN) and normal control. In addition, luciferase assays were utilized to explore the regulatory relationship between TIMP3 and miR-181b. Real-time PCR and densitometry analysis were conducted to measure the levels of TIMP3 mRNA/protein in DMN or in cells treated by miR-181b inhibitors, miR-181b mimics, and TIMP3 siRNA. And the 3-(4,5-dimethythiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay was adopted to study the effect of miR-181b on cell survival and apoptosis. miR-181b expression was much higher in the DN group, and the results of computational analysis identified TIMP3 as a miR-181b target. The luciferase activity of cells transfected with wild-type TIMP3 and mutant2 TIMP3 was significantly reduced, whereas the luciferase activity of cells transfected with mutant1 TIMP3 was evidently higher. Furthermore, a negative regulatory relationship was established between TIMP3 and miR-181b expression with a correlation efficient of -0.5351. The levels of TIMP3 mRNA/protein expression were apparently increased in the DN group. In addition, the treatment of cells with miR-181b mimics and TIMP3 siRNA remarkably lowered the levels of TIMP3 mRNA/protein, whereas the transfection of cells with miR-181b inhibitors notably elevated the expression of TIMP3 mRNA/protein. miR-181b promoted the survival of cells and inhibited their apoptosis. The miR-181b expression was related to the development of DMN and could be used as a prognosis biomarker of DMN in the patients with DM.


Assuntos
Diabetes Mellitus/patologia , Nefropatias Diabéticas/patologia , Células Mesangiais/metabolismo , MicroRNAs/genética , Inibidor Tecidual de Metaloproteinase-3/metabolismo , Apoptose/genética , Movimento Celular/fisiologia , Proliferação de Células/fisiologia , Sobrevivência Celular/fisiologia , Células Cultivadas , Feminino , Humanos , Masculino , Interferência de RNA , RNA Interferente Pequeno/genética , Inibidor Tecidual de Metaloproteinase-3/genética
14.
Cytokine ; 120: 41-53, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31003188

RESUMO

BACKGROUND: Postoperative cognitive dysfunction (POCD) is a common complication after surgery and its occurrence is associated with increased morbidity and mortality. However, the pathophysiology of this complication remains largely unknown. Efforts to identify causes of POCD have focused on the hippocampal neuroinflammation. Recently, accumulated evidence indicates that NeurimmiRs, a subset of microRNAs (miRNAs), which modulate both neuronal and immune processes, play an important role in neuroinflammation. However, the impact of NeurimmiRs on POCD has not been investigated. We hypothesized that NeurimmiRs is involved in surgery-induced cognitive impairment in adult mice via mediating hippocampal neuroinflammation. METHODS: MicroRNA(miR)-181b-5p was found to be downregulated in the hippocampi of mice with POCD using microRNA array, which was also verified in vivo in the mouse model of POCD by Quantitative real-time polymerase chain reaction (qPCR). Subsequently, the expression of miR-181b-5p was measured in lipopolysaccharide (LPS) stimulated BV-2 microglial cells and hippocampal tissues of the mice with POCD. Then, loss of function and overexpression studies were performed by transfection with miR-181b-5p mimic/ inhibitor in cultured BV-2 cell lines and intrahippocampal injection of miR-181b-5p agomir before Surgery/Anesthesia, to identify the role of miR-181b-5p in neuroinflammation and cognitive impairments. QPCR, western blot and ELISA were used to determine the expression of proinflammatory mediators. Immunofluorescence staining was applied to evaluate the activation of microglia. Furthermore, we used bioinformatics analysis and dual-luciferase assay to predict and verify the potential target of miR-181b-5p. RESULTS: The results indicated that miR-181b-5p mimic could repress the mRNA and protein expression of proinflammatory mediators, including tumor necrosis factor (TNF)-α, interleukin (IL)-1ß, and monocyte chemoattractant protein (MCP)-1 in LPS-stimulated BV-2 microglial cells, while the miR-181b-5p inhibitor induced upregulation of the above-mentioned proinflammatory factors. Further bioinformatics analysis showed that miR-181b-5p was predicted to potentially target the 3'-untranslated region (UTR) of TNF-α, and binding sites of miR-181b-5p in the 3'-UTR of TNF-α were identified by dual-luciferase assay. Importantly, injecting miR-181b-5p agomir into the hippocampus of mice before surgery, ameliorated the hippocampus-dependent memory, and was accompanied by downregulation of proinflammatory factors expression and reduced microglial activation in the hippocampus of POCD mice. CONCLUSIONS: Collectively, these findings suggest that miR-181b-5p attenuates early POCD by suppressing hippocampal neuroinflammation in mice. They also highlight the importance of studying miRNAs in the context of POCD and identify miR-181b-5p as a novel potential therapeutic target for improving POCD.


Assuntos
Hipocampo/patologia , Inflamação/genética , MicroRNAs/metabolismo , Complicações Cognitivas Pós-Operatórias/genética , Regiões 3' não Traduzidas/genética , Animais , Sequência de Bases , Comportamento Animal , Linhagem Celular , Condicionamento Clássico , Medo , Inflamação/complicações , Inflamação/patologia , Mediadores da Inflamação/metabolismo , Lipopolissacarídeos , Masculino , Camundongos Endogâmicos C57BL , MicroRNAs/genética , Microglia/metabolismo , Ligação Proteica , Fator de Necrose Tumoral alfa/metabolismo
15.
Exp Ther Med ; 17(3): 1537-1544, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30783419

RESUMO

Hypertrophic scar (HS) is a common skin disorder occurring during the wound healing process, and the pathogenesis of HS remains unclear. Previous studies indicated that miRNAs may be involved in the onset and progression of HS. In the present study, reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and western blotting were used to investigate the expression of miR-181b-5p and decorin in HS tissues. Direct interaction between miR-181b-5p and decorin was confirmed using a dual-luciferase assay. Human HS fibroblasts (HSFbs) were cultured and transfected with miR-181b-5p mimics, and MTT assay and Annexin V fluorescein isothiocyanate/propidium iodide staining were performed to investigate the role of miR-181b-5p in the proliferation and apoptosis of HSFbs. Subsequently, the expression levels of mitogen-activated protein kinase kinase (MEK), phospho (p)-extracellular signal-regulated kinase (ERK) and p21 were determined in HSFbs transfected with miR-181b-5p mimics and untransfected cells using RT-qPCR and western blotting. The results indicated upregulation of miR-181b-5p and downregulation of decorin expression in HS tissues compared with normal skin samples. miR-181b-5p may regulate the expression of decorin through direct binding to the 3'-untranslated region, as demonstrated by the results of the dual-luciferase assay. Transfection with miR-181b-5p mimics in HSFbs enhanced cell proliferation, reduced apoptosis and increased the expression of MEK, p-ERK and p21. Furthermore, treatment with MEK inhibitor in HSFbs transfected with miR-181b-5p mimics partially inhibited miR-181b-5p-induced antiapoptotic effects. Taken together, increased expression of miR-181b-5p may serve important roles in the pathogenesis of HS through regulating the MEK/ERK/p21 pathway, suggesting that miR-181b-5p may be a therapeutic target for the treatment of HS.

16.
Pathol Res Pract ; 215(2): 335-342, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30580904

RESUMO

BACKGROUND: The aim of the study was to measure the expression of microRNA (miR)-181b in patients with lung cancer, investigate its biological function and elucidate the underlying mechanisms associated with the development of lung cancer. METHODS: miR-181b expression in tissues was measured via RT-qPCR. After A549 cells were transfected with miR-181b mimic or si-Sox6, the proliferation, migration and cell cycle distribution of A549 were evaluated using cell counting kit-8 assay, transwell assay and flow cytometry. The levels of cell cycle-related proteins and Sox6 were analyzed by western blotting. Gene targets of miR-181b were predicted via bioinformatics analysis and verified using a dual-luciferase reporter gene assay. RESULTS: Expression of miR-181b was significantly downregulated in lung cancer tissues (P < 0.05), and was inversely correlated with the degree of cell differentiation and clinical stages of lung cancer (both P < 0.05). Additionally, the expression of miR-181b was significantly lower in adenocarcinoma compared with squamous cell carcinoma in the lungs (P < 0.05). Overexpression of miR-181b significantly decreased the protein level of Sox6 and significantly suppressed the cell proliferation and metastasis (both P < 0.05); this effect was also observed in A549 cells transfected with si-Sox6. The luciferase activity of a Sox6 3'-untranslated region-based reporter construct was significantly lower when transfected with miR-181b (P < 0.05), which suggests that Sox6 is a direct target of miR-181b. CONCLUSION: The results of the present study suggest that miR-181b may function as a tumor inhibitor in the development of lung cancer via targeting Sox6 to decrease the proliferation and metastasis of lung cancer cells.


Assuntos
Regulação Neoplásica da Expressão Gênica/genética , Neoplasias Pulmonares/patologia , MicroRNAs/genética , Fatores de Transcrição SOXD/biossíntese , Células A549 , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Proliferação de Células/genética , Humanos , Neoplasias Pulmonares/genética , MicroRNAs/metabolismo , Invasividade Neoplásica/genética , Fatores de Transcrição SOXD/genética , Carcinoma de Pequenas Células do Pulmão/genética , Carcinoma de Pequenas Células do Pulmão/patologia
17.
Stem Cell Res Ther ; 9(1): 327, 2018 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-30470250

RESUMO

BACKGROUND: Lung cancer stem cells have the ability to self-renew and are resistant to conventional chemotherapy. MicroRNAs (miRNAs) regulate and control the expression and function of many target genes; therefore, miRNA disorders are involved in the pathogenesis of human diseases, such as cancer. However, the effects of miRNA dysregulation on tumour stemness and drug resistance have not been fully elucidated. miR-181b has been reported to be a tumour suppressor miRNA and is associated with drug-resistant non-small cell lung cancer. METHODS: Cancer stem cell (CSC)-like properties were tested by a cell proliferation assay and flow cytometry; miR-181b expression was measured by real-time PCR; and Notch2 and related proteins were detected by Western blotting and immunohistochemistry. A mouse xenograft model was also established. RESULTS: In this study, we found that ectopic miR-181b expression suppressed cancer stem cell properties and enhanced sensitivity to cisplatin (DDP) treatment by directly targeting Notch2. miR-181b could inactivate the Notch2/Hes1 signalling pathway. In addition, tumours from nude mice treated with miR-181b were significantly smaller than tumours from mice treated with control agomir. Decreased miR-181b expression and increased Notch2 expression were observed to have a significant relationship with overall survival (OS) and CSC-like properties in non-small cell lung cancer (NSCLC) patients. CONCLUSIONS: This study elucidates an important role of miR-181b in the regulation of CSC-like properties, suggesting a potential therapeutic target for overcoming drug resistance in NSCLC.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Resistencia a Medicamentos Antineoplásicos/genética , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , MicroRNAs/metabolismo , Células-Tronco Neoplásicas/metabolismo , Receptor Notch2/metabolismo , Animais , Linhagem Celular Tumoral , Cisplatino , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , Camundongos Nus , MicroRNAs/genética , Pessoa de Meia-Idade , Células-Tronco Neoplásicas/patologia , Receptor Notch2/genética , Transdução de Sinais
18.
J Cell Mol Med ; 22(10): 5040-5049, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30054984

RESUMO

This study aimed to investigate the relationship between the expression of microRNA (miR)-181b, protein inhibitor of activated STAT3 (PIAS3) and STAT3, and to examine the function of the miR-181b/PIAS3/STAT3 axis on the Warburg effect and xenograft tumour growth of colon cancer. Moreover, a positive feedback loop between miR-181b and STAT3 that regulated the Warburg effect in colon cancer was explored. A luciferase reporter assay was used to identify whether PIAS3 was a direct target of miR-181b. The gain-of-function and loss-of-function experiments were performed on HCT 116 cells to investigate the effect of miR-181b/PIAS3/STAT3 on the Warburg effect and xenograft tumour growth of colon cancer, as determined by commercial kits and xenograft experiments. The relationship between the expression of miR-181b, PIAS3 and STAT3 in HCT 116 and HT-29 cells was determined using RT-qPCR and Western blot. We found miR-181b was a direct regulator of PIAS3. miR-181b promoted the Warburg effect and the growth of colon cancer xenografts; however, these effects could be reversed by PIAS3. miR-181b expression interacted with STAT3 phosphorylation in a positive feedback loop in colon cancer cells via regulating PIAS3 expression. In conclusion, this study for the first time demonstrated that miR-181b contributed to the Warburg effect and xenograft tumour growth of colon cancer by targeting PIAS3. Moreover, a positive feedback loop between miR-181b and STAT3 that regulated the Warburg effect in colon cancer was also demonstrated. This study suggested miR-181b/PIAS3/STAT3 axis as a novel target for colon cancer treatment.


Assuntos
Neoplasias do Colo/genética , MicroRNAs/genética , Chaperonas Moleculares/genética , Proteínas Inibidoras de STAT Ativados/genética , Fator de Transcrição STAT3/genética , Animais , Proliferação de Células/genética , Neoplasias do Colo/patologia , Regulação Neoplásica da Expressão Gênica/genética , Células HCT116 , Humanos , Camundongos , Ensaios Antitumorais Modelo de Xenoenxerto
19.
J Mol Neurosci ; 65(1): 74-83, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29705934

RESUMO

Adipose-derived stem cells (ADSCs) have been demonstrated to promote cerebral vascular remodeling processes after stroke. However, the exact molecular mechanism by which ADSCs exert protective roles in ischemic stroke is still poorly understood. In this study, we identified the role of exosomal microRNA-181b-5p (181b-Exos) in regulating post-stroke angiogenesis. The results of migration assay and capillary network formation assay showed that exosomes secreted by ADSCs (ADSCs-Exos) promoted the mobility and angiogenesis of brain microvascular endothelial cells (BMECs) after oxygen-glucose deprivation (OGD). Quantitative real-time polymerase chain reaction (qRT-PCR) showed that microRNA-212-5p (miR-212-5p) and miR-181b-5p were upregulated in BMECs subjected to the brain extract of the middle cerebral artery occlusion rats. The migration distance and tube length were increased in BMECs cultured with 181b-Exos. Furthermore, we identified that transient receptor potential melastatin 7 (TRPM7) was a direct target of miR-181b-5p. TRPM7 mRNA and protein levels were declined in BMECs cultured with 181b-Exos, but not in BMECs cultured with 212-Exos. Overexpression of TRPM7 reversed the effects of 181b-Exos on migration and tube formation of BMECs. In addition, 181b-Exos upregulated the protein expression of hypoxia-inducible factor 1α and vascular endothelial cell growth factor, and downregulated the protein expression of tissue inhibitor of metalloproteinase 3. The regulatory effect of 181b-Exos was attenuated by overexpressing TRPM7. Altogether, ADSCs-Exos promote the angiogenesis of BMECs after OGD via miR-181b-5p/TRPM7 axis, suggesting that ADSCs-Exos may represent a novel therapeutic approach for stroke recovery.


Assuntos
Células Endoteliais/efeitos dos fármacos , Exossomos/metabolismo , Infarto da Artéria Cerebral Média/metabolismo , Células-Tronco Mesenquimais/metabolismo , MicroRNAs/genética , Neovascularização Fisiológica , Canais de Cátion TRPM/genética , Tecido Adiposo/citologia , Animais , Encéfalo/irrigação sanguínea , Hipóxia Celular , Células Cultivadas , Meios de Cultivo Condicionados/farmacologia , Células Endoteliais/citologia , Células Endoteliais/metabolismo , Endotélio Vascular/citologia , Glucose/deficiência , Masculino , MicroRNAs/metabolismo , Ratos , Ratos Wistar , Canais de Cátion TRPM/metabolismo
20.
Oncol Lett ; 15(2): 2515-2521, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29434967

RESUMO

Cumulative evidence has indicated that celastrol may suppress cancer growth; however, the underlying mechanism requires further investigation. In the present study, A549 cells were treated with various concentrations of celastrol. Lung cancer cell proliferation was evaluated using an MTT assay and observed under a microscope. Cell apoptosis was detected by Annexin V fluorescein isothiocyanate/propidium iodide double-labeled flow cytometry. The results demonstrated that celastrol suppressed proliferation and induced apoptosis in a dose-independent manner. Celastrol may also decrease the phosphorylation levels of signal transducer and activator of transcription 3 (STAT3) and the B cell lymphoma-2 (Bcl-2)/Bcl-2 associated C protein (Bax) ratio. As microRNA (miR-24 and miR-181b) were predicated to target STAT3, STAT3 activation was inhibited in miR-24-or miR-181b-treated A549 cells compared with the control treatment. The ratio of Bcl-2/Bax was further reduced in miR-24 or miR-181b-treated A549 cells. The results were further confirmed by detecting in another lung adenocarcinoma cell line, LTEP-a-2. In summary, the results of the present study demonstrated that celastrol treatment suppressed the proliferation and induced apoptosis by regulating the expression levels of miR-24 and miR-181b.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...