Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 104
Filtrar
Mais filtros












Intervalo de ano de publicação
1.
PeerJ ; 12: e17960, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39221270

RESUMO

Water soaking is a commercially important disorder of field-grown strawberries that is exacerbated by surface wetness and high humidity. The objective was to establish the effect of genotype on susceptibility to water soaking. Three greenhouse-grown model 'collections' were used comprising a total of 172 different genotypes: (1) a segregating F2 population, (2) a collection of strawberry cultivars and breeding clones, and (3) a collection of wild Fragaria species. A standardized immersion assay was used to induce water soaking. Potential relationships between water soaking and water uptake characteristics, depth of the achene depressions, fruit firmness, cuticle mass and strain relaxation and microcracking were investigated. Further, the effect of downregulating the polygalacturonase genes (FaPG1 and FaPG2) on the susceptibility to water soaking was investigated. The collection of wild species was most susceptible to water soaking. This was followed by the collection of cultivars and breeding clones, and by the F2 population. Susceptibility to water soaking was strongly correlated with water uptake rate (mass of water, per fruit, per time). For the pooled dataset of 172 genotypes, 46% of the variability in water soaking was accounted for by the permeance of the skin to osmotic water uptake. Susceptibility to water soaking was not, or was only poorly correlated with measurements of fruit surface area or of the osmotic potential of the expressed fruit juice. The only exceptions were the wild Fragaria species which were highly variable in fruit size and also in fruit osmotic potential. For genotypes from the F2 and the wild species collections, firmer fruit were less susceptible to water soaking than softer fruit. There were no relationships between fruit firmness and susceptibility to water soaking in transgenic plants in which FaPG1 and FaPG2 were down-regulated. Susceptibility to water soaking was not related to cuticle mass per unit fruit surface area, nor to strain relaxation of the cuticle upon isolation, nor to achene position. In summary, strawberry's susceptibility to water soaking has a significant genetic component and is closely and consistently related to the skin's permeance to osmotic water uptake.


Assuntos
Fragaria , Frutas , Genótipo , Fenótipo , Água , Fragaria/genética , Fragaria/metabolismo , Água/metabolismo , Frutas/genética , Frutas/metabolismo
2.
Proc Inst Mech Eng H ; 238(8-9): 909-921, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39177050

RESUMO

Bone microstructure governs microcrack propagation complexity. Current research, relying on linear elastic fracture mechanics, inadequately considers authentic multi-level structures, like cement lines and osteons, impacting stress intensity at cracks. This study, by constructing models encompassing single or multiple osteons, delves into the influence of factors like crack length, osteon radius, and modulus ratio on the stress intensity factor at the crack tip. Employing a fracture mechanics phase-field approach to simulate crack propagation paths, it particularly explores the role of cement lines as weak interfaces in crack extension. The aim is to comprehensively and systematically elucidate the critical factors of bone microstructure in the context of crack propagation.


Assuntos
Estresse Mecânico , Ósteon/fisiologia , Fenômenos Biomecânicos , Cimentos Ósseos , Osso e Ossos/fisiologia
3.
Int J Mol Sci ; 25(12)2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38928355

RESUMO

The pathology of medication-related osteonecrosis of the jaw (MRONJ), often associated with antiresorptive therapy, is still not fully understood. Osteocyte networks are known to play a critical role in maintaining bone homeostasis and repair, but the exact condition of these networks in MRONJ is unknown. On the other hand, the local application of E-coli-derived Recombinant Human Bone Morphogenetic Protein 2/ß-Tricalcium phosphate (E-rhBMP-2/ß-TCP) has been shown to promote bone regeneration and mitigate osteonecrosis in MRONJ-like mouse models, indicating its potential therapeutic application for the treatment of MRONJ. However, the detailed effect of BMP-2 treatment on restoring bone integrity, including its osteocyte network, in an MRONJ condition remains unclear. Therefore, in the present study, by applying a scanning electron microscope (SEM) analysis and a 3D osteocyte network reconstruction workflow on the alveolar bone surrounding the tooth extraction socket of an MRONJ-like mouse model, we examined the effectiveness of BMP-2/ß-TCP therapy on the alleviation of MRONJ-related bone necrosis with a particular focus on the osteocyte network and alveolar bone microstructure (microcrack accumulation). The 3D osteocyte dendritic analysis showed a significant decrease in osteocyte dendritic parameters along with a delay in bone remodeling in the MRONJ group compared to the healthy counterpart. The SEM analysis also revealed a notable increase in the number of microcracks in the alveolar bone surface in the MRONJ group compared to the healthy group. In contrast, all of those parameters were restored in the E-rhBMP-2/ß-TCP-treated group to levels that were almost similar to those in the healthy group. In summary, our study reveals that MRONJ induces osteocyte network degradation and microcrack accumulation, while application of E-rhBMP-2/ß-TCP can restore a compromised osteocyte network and abrogate microcrack accumulation in MRONJ.


Assuntos
Proteína Morfogenética Óssea 2 , Fosfatos de Cálcio , Modelos Animais de Doenças , Osteócitos , Proteínas Recombinantes , Animais , Proteína Morfogenética Óssea 2/farmacologia , Proteína Morfogenética Óssea 2/metabolismo , Osteócitos/efeitos dos fármacos , Fosfatos de Cálcio/farmacologia , Camundongos , Proteínas Recombinantes/farmacologia , Proteínas Recombinantes/administração & dosagem , Osteonecrose da Arcada Osseodentária Associada a Difosfonatos/etiologia , Osteonecrose da Arcada Osseodentária Associada a Difosfonatos/patologia , Humanos , Regeneração Óssea/efeitos dos fármacos , Masculino , Extração Dentária/efeitos adversos , Fator de Crescimento Transformador beta/metabolismo , Fator de Crescimento Transformador beta/farmacologia , Processo Alveolar/efeitos dos fármacos , Processo Alveolar/patologia
4.
J Funct Biomater ; 15(6)2024 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-38921538

RESUMO

Resin-based dental composites, commonly used in dentistry, offer several advantages including minimally invasive application, esthetically pleasing appearance, and good physical and mechanical properties. However, these dental composites can be susceptible to microcracks due to various factors in the complex oral environment. These microcracks can potentially lead to clinical restoration failure. Conventional materials and methods are inadequate for detecting and repairing these microcracks in situ. Consequently, incorporating self-healing properties into dental composites has become a necessity. Recent years have witnessed rapid advancements in self-healing polymer materials, drawing inspiration from biological bionics. Microcapsule-based self-healing dental composites (SHDCs) represent some of the most prevalent types of self-healing materials utilized in this domain. In this article, we undertake a comprehensive review of the most recent literature, highlighting key insights and findings related to microcapsule-based SHDCs. Our discussion centers particularly on the preparation techniques, application methods, and the promising future of self-healing microcapsules in the field of dentistry.

5.
Materials (Basel) ; 17(10)2024 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-38793349

RESUMO

Network microstructure titanium matrix composites (NMTMCs), featuring Ti6Al4V as the matrix and network-distributed TiB whiskers (TiBw) as reinforcement, exhibit remarkable potential for diverse applications due to their superior physical properties. Due to the difficulty in machining titanium matrix composites, electrical discharge machining (EDM) stands as one of the preferred machining techniques for NMTMCs. Nevertheless, the compromised surface quality and the recast layer significantly impact the performance of the workpiece machined by EDM. Therefore, for the purpose of enhancing the surface quality and restraining the defects of NMTMCs, this study conducted comparative EDM milling experiments between NMTMCs and Ti6Al4V to analyze the effects of discharge capacitance, charging current, and pulse interval on the surface roughness, recast layer thickness, recast layer uniformity, and surface microcrack density of both materials. The results indicated that machining energy significantly influences workpiece surface quality. Furthermore, comparative experiments exploring the influence of network reinforcement on EDM milling revealed that NMTMCs have a higher melting point, leading to an accumulation phenomenon in low-energy machining where the reinforcement could not be completely removed. The residual reinforcement in the recasting layer had an adsorption effect on molten metal affecting the thermal conductivity and uniformity within the recasting layer. Finally, specific guidelines are put forward for optimizing the material's surface roughness, recast layer thickness, and uniformity, along with minimizing microcrack density, which attain a processing effect that features a roughness of Ra 0.9 µm, an average recast layer thickness of 6 µm with a range of 8 µm, and a surface microcrack density of 0.08 µm-1.

6.
Cureus ; 16(3): e57302, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38690448

RESUMO

BACKGROUND: Since the beginning of modern endodontics, there have been many concepts, strategies, and techniques for root canal preparation. A mind-boggling variety of files have developed for negotiating and shaping them throughout the years. Today's most secure, most effective, and simplest file system combines the most reliable design elements of the past with the latest technological advances to create the most effective file system. So, the need for the study is to evaluate the fracture strength of tooth roots following canal preparation by three rotary file systems: ProTaper Universal file system (Dentsply, USA), ProTaper Next file system (Dentsply Sirona USA), and Neolix A1 nickel-titanium (NiTi) file system (Orikam Healthcare India Pvt Ltd., New Delhi, India). METHOD: Ninety human mandibular molars were selected for the study. Inclusion criteria include human mandibular first and second molars and teeth removed for routine clinical reasons, and intact apices were selected, excluding cases with root surface caries, root surface fissures, teeth with immature root apex, mesial canal fusion, extremely short roots, thin roots, or curved roots. All teeth were preserved in a solution of 10% neutral buffered formalin for two weeks and then transferred to distilled water for examination. The teeth were randomly divided into three groups. Access cavities were created, and working lengths were determined. Groups 1, 2, and 3 underwent shaping using ProTaper Universal, ProTaper Next, and Neolix A1 (NiTi) file systems, respectively, following guidelines. Canals were irrigated with sodium hypochlorite and ethylenediaminetetraacetic acid (EDTA) and were obturated up to the mid-root region with AH Plus sealer. To facilitate fracture testing, obturation was performed to distribute the load from the spreader to the canal wall. The EndoSequence and Quick-Fill obturation system were utilized to fill the apical half of the canal with gutta-percha material. After obturation, the distal root of each tooth was cut, while the mesial root was securely positioned in a putty material. A universal testing machine was employed for the fracture tests, operating at a cross-head speed of 1 mm/min. The machine was equipped with a D11 hand spreader tip, which was inserted into the root canal to make contact with the gutta-percha. Gradual force was applied to the root canal until a fracture occurred, at which point the force application was stopped. The amount of force required to cause the fracture was measured in newtons. Data were collected and recorded using IBM SPSS Statistics for Windows, Version 17.0 (Released 2008; IBM Corp., Armonk, New York, United States) and then transferred to Microsoft Excel for analysis. Descriptive statistics, mean, and standard deviation were used for continuous data. The fracture resistance of dental roots treated with three types of files was compared using a one-way ANOVA. Graphs were generated using Excel and Word. A significance level of p<0.01 was chosen. RESULT: ANOVA indicated significant differences in mean fracture resistance: Neolix A1 (NiTi) (95.3 N) > NEXT (91.0 N) > universal (86.6 N), with a p-value of 0.004 (<0.001), confirming statistical significance. CONCLUSION: The study concludes that the canal instrumented with Neolix A1 (NiTi) exhibits higher fracture resistance after canal instrumentation compared to ProTaper Next and ProTaper Universal.

7.
Materials (Basel) ; 17(3)2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38591417

RESUMO

In diamond wire saw cutting monocrystalline silicon (mono-Si), the material brittleness removal can cause microcrack damage in the subsurface of the as-sawn silicon wafer, which has a significant impact on the mechanical properties and subsequent processing steps of the wafers. In order to quickly and non-destructively obtain the subsurface microcrack damage depth (SSD) of as-sawn silicon wafers, this paper conducted research on the SSD prediction model for diamond wire saw cutting of mono-Si, and established the relationship between the SSD and the as-sawn surface roughness value (SR) by comprehensively considering the effect of tangential force and the influence of the elastic stress field and residual stress field below the abrasive on the propagation of median cracks. Furthermore, the theoretical relationship model between SR and SSD has been improved by adding a coefficient considering the influence of material ductile regime removal on SR values based on experiments sawing mono-Si along the (111) crystal plane, making the theoretical prediction value of SSD more accurate. The research results indicate that a decrease in wire speed and an increase in feed speed result in an increase in SR and SSD in silicon wafers. There is a non-linear increasing relationship between silicon wafer SSD and SR, with SSD = 21.179 Ra4/3. The larger the SR, the deeper the SSD, and the smaller the relative error of SSD between the theoretical predicted and experimental measurements. The research results provide a theoretical and experimental basis for predicting silicon wafer SSD in diamond wire sawing and optimizing the process.

8.
ACS Appl Mater Interfaces ; 16(10): 12599-12611, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38437708

RESUMO

The rapid decline of the reversible capacity originating from microcracks and surface structural degradation during cycling is still a serious obstacle to the practical utilization of Ni-rich LiNixCoyAl1-x-yO2 (x ≥ 0.8) cathode materials. In this research, a feasible Hf-doping method is proposed to improve the electrochemical performance of LiNi0.9Co0.08Al0.02O2 (NCA90) through microstructural optimization and structural enhancement. The addition of Hf refines the primary particles of NCA90 and develops them into a short rod shape, making them densely arranged along the radial direction, which increases the secondary particle toughness and reduces their internal porosity. Moreover, Hf-doping stabilizes the layered structure and suppresses the side reactions through the introduction of robust Hf-O bonding. Multiple advantages of Hf-doping allowed significant improvement of the cycling stability of LiNi0.895Co0.08Al0.02Hf0.005O2 (NCA90-Hf0.5), with a reversible capacity retention rate of 95.3% after 100 cycles at 1 C, as compared with only 82.0% for the pristine NCA90. The proposed synergetic strategy combining microstructural engineering and crystal structure enhancement can effectively resolve the inherent capacity fading of Ni-rich layered cathodes, promoting their practical application for next-generation lithium-ion batteries.

9.
Nanomaterials (Basel) ; 14(6)2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38535704

RESUMO

The 8-16-4 graphyne, a recently identified two-dimensional carbon allotrope, exhibits distinctive mechanical and electrical properties, making it a candidate material for flexible electronic applications. This study endeavors to enhance our comprehension of the fracture behavior and mechanical properties of 8-16-4 graphyne. The mechanical properties of 8-16-4 graphyne were evaluated through molecular dynamics simulations, examining the impact of boundary conditions, temperature, and strain rate, as well as the coupled interactions between temperature, vacancy defects, and microcracks. The findings reveal that 8-16-4 graphyne undergoes fracture via the cleavage of ethylene bonds at a critical strain value of approximately 0.29. Variations in boundary conditions and strain rate influence the fidelity of tensile simulation outcomes. Temperature, vacancy concentration, and the presence of microcracks markedly affect the mechanical properties of 8-16-4 graphyne. In contrast to other carbon allotropes, 8-16-4 graphyne exhibits a diminished sensitivity to vacancy defects in its mechanical performance. However, carbon vacancies at particular sites are more prone to initiating cracks. Furthermore, pre-existing microcracks within the material can potentially alter the fracture mode.

10.
Eur Arch Paediatr Dent ; 25(2): 181-189, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38461490

RESUMO

PURPOSE: Pulpectomy can be used for the management of deep dentinal carious lesions in primary teeth which can be restored. Mechanical preparation of root canals can be performed using hand or NiTi rotary files. However, this may cause dentinal stress and consequently dentinal microcracks. Hence, the aim was comparative evaluation of hand and rotary file systems on dentinal microcrack formation during pulpectomy procedure in primary teeth. METHODS: 60 extracted primary molar teeth were selected comprising of 80 root canals. Simple random sampling was used to divide root canals into four groups (n = 20): Group A-Hedstrom file, Group B-Pro AF Baby Gold rotary, Group C-ProTaper Next rotary, and Group D-unprepared group. Assessment was conducted on presence or absence of microcracks using Chi square test (p < 0.05). RESULTS: The total number of microcracks in Group A: one (5%), Group B: four (20%), Group C: nine (45%) and Group D: zero (0%) which was statistically significant (p = 0.002). At cervical third, the number of microcracks seen with Group A: one (5%), Group B: zero (0%), Group C: five (25%) and Group D: zero (0%) (p = 0.005). At the middle third, the number of microcracks seen in Group A: zero (0%), Group B: four (20%), Group C: four (20%) and Group D: zero (0%) (p = 0.029). CONCLUSION: The study concluded that dentinal microcracks are formed with both hand and rotary file systems in primary teeth. ProTaper Next showed significantly higher number of microcracks, followed by ProAF Baby Gold and H files.


Assuntos
Dentina , Pulpectomia , Preparo de Canal Radicular , Dente Decíduo , Humanos , Dente Decíduo/cirurgia , Preparo de Canal Radicular/instrumentação , Preparo de Canal Radicular/métodos , Pulpectomia/métodos , Dentina/lesões , Técnicas In Vitro , Instrumentos Odontológicos/efeitos adversos , Dente Molar/cirurgia , Desenho de Equipamento , Cavidade Pulpar/cirurgia , Níquel
11.
Life (Basel) ; 14(2)2024 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-38398729

RESUMO

Forensic anthropologists play a key role in skeletal trauma analysis and commonly use macroscopic features to distinguish between trauma types. However, this approach can be challenging, particularly in cases of highly comminuted or incompletely recovered fractures. Histological analysis of microscopic fracture characteristics in fractured bones may thus help provide additional information on trauma type and bone fracture biomechanics in general. This study analysed the extent of microcrack damage to osteons in long bones with blunt force trauma (BFT) and gunshot trauma (GST), from both traumatic death cases and post-mortem experimental fractures. We identified four types of osteonal damage (OD). In traumatic death cases, OD affecting the inside of the osteon and compromising the Haversian canal (type 1) was found to be indicative of BFT. Moreover, OD affecting the cement line (type 3) and interstitial lamellae (type 4) was more common in the GST samples. OD affecting the inside of the osteon without compromising the Haversian canal (type 2) was not found to be indicative of either trauma type. In cases of experimental fractures, our study revealed that post-mortem fractures in dry bone samples featured the highest amount of OD, particularly of type 4. This study also found that the experimentally produced GST featured similar OD patterns to GST death cases. These findings support our hypothesis that there are distinct osteonal damage patterns in human long bones with BFT and GST, which are of relevant value for trauma analysis in forensic anthropology.

12.
Adv Sci (Weinh) ; 11(17): e2308530, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38348594

RESUMO

Rechargeable Li metal batteries have the potential to meet the demands of high-energy density batteries for electric vehicles and grid-energy storage system applications. Achieving this goal, however, requires resolving not only safety concerns and a shortened battery cycle life arising from a combination of undesirable lithium dendrite and solid-electrolyte interphase formations. Here, a series of microcrack-free anionic network polymer membranes formed by a facile one-step click reaction are reported, displaying a high cation conductivity of 3.1 × 10-5 S cm-1 at high temperature, a wide electrochemical stability window up to 5 V, a remarkable resistance to dendrite growth, and outstanding non-flammability. These enhanced properties are attributed to the presence of tethered borate anions in microcrack-free membranes, which benefits the acceleration of selective Li+ cations transport as well as suppression of dendrite growth. Ultimately, the microcrack-free anionic network polymer membranes render Li metal batteries a safe and long-cyclable energy storage device at high temperatures with a capacity retention of 92.7% and an average coulombic efficiency of 99.867% at 450 cycles.

13.
Aust Endod J ; 50(1): 123-130, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37997642

RESUMO

The objective of this study was to compare the effects of ultrasonic and trephine burs on microcrack formation during the removal of broken instruments, utilising micro-computed tomography (Micro-CT). Twenty-five extracted human mandibular molars were used for this study. The hand files were fractured into the mesiobuccal canal, except in the control group. In the ultrasonic group (n = 10), ultrasonic tips were used to retrieve the instrument, while in the trephine group (n = 10), trephine burs (Meitrac, Meisinger) and an extractor device were utilised. For the control group (n = 5), only staging platform was prepared. After the removal procedures, micro-CT images were obtained from the specimens. The chi-squared test was used to analyse the data, and significance was considered to be p < 0.05. Overall, 15 736 cross sections were analysed. No significant differences were found between control and experimental groups. Removal of broken instruments with trephine burs caused significantly more dentinal microcracks compared with ultrasonics (p = 0.016).


Assuntos
Preparo de Canal Radicular , Ultrassom , Humanos , Microtomografia por Raio-X , Preparo de Canal Radicular/métodos , Dentina , Cavidade Pulpar
14.
Healthcare (Basel) ; 11(22)2023 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-37998410

RESUMO

BACKGROUND: Endodontic shaping causes stress and strain in the root canal dentin. Dentin microcracks have the potential to be later followed by root fractures occurring under the occlusal load. The aim of our research was to theoretically determine the values of such dentinal states of stress and strain during the endodontic shaping of curved root canals using finite element analysis (FEA). METHODS: To highlight the stress concentrations in dentin, two geometric models were created considering the volume of the curved dental root and the contact between the endodontic file and the root canal walls. The application of forces with different values was simulated both on a uniform curved root canal and on a root canal with an apical third curvature of 25° as they would be applied during the preparation of a root canal. RESULTS: In the case of the first model, which was acted upon with a force of 5 N, the deformations of the root canal appeared along the entire working length, reaching the highest values in the apical third of the root, although there were no geometric changes in the shape of the root canal. Regarding the second root model, with an apical third curvature of 25°, although the applied force was 2 N, the deformations were accompanied by geometric changes in the shape of the root, especially in the upper part of the apical third. At a higher force of 7 N exerted on the endodontic file, the geometric shape changed, and the deformation reached extreme critical values. The resulting tensile stresses appearing in the experimental structure varied similarly to the deformations. CONCLUSIONS: Significant stress and strain can develop, especially in the apical third of curved root canals during their shaping, and the risk of cracks is higher for endodontically treated teeth presenting severe curvatures in the apical third of the root.

15.
Clin Biomech (Bristol, Avon) ; 108: 106072, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37611387

RESUMO

BACKGROUND: The morphology of osteocyte lacunae varies in bones of different ages and bone pathologies. Osteocyte lacunae can cause stress concentration and initiate microcracks. However, the influence of changes in osteocyte lacunar shape on microcrack is unknown. Therefore, the aim of this study was to determine the effects of osteocyte lacunae with different shapes on microcrack initiation and propagation. METHODS: Osteon models containing osteocyte lacunae with different shapes were established. The progressive damage analysis method, based on computer simulations, was used to study the evolution of microdamage within the osteon, including the processes of intralaminar and interlaminar microdamage. FINDINGS: Models with larger DoE values can effectively delay or prevent the formation of linear microcracks, which ensures high fracture toughness of cortical bone. It is subjected to stronger mechanical stimulation, making it more sensitive to loads. Models with smaller DoE values increase the load threshold for microdamage generation and reduces its impact on bone mechanical performance, making it less susceptible to microdamage than models with larger DoE values. INTERPRETATION: These findings enhance the limited knowledge of the influence of the lacunar shape on microdamage and contribute to a better understanding of bone biomechanics.


Assuntos
Osso Cortical , Osteócitos , Humanos , Fenômenos Biomecânicos , Cognição , Simulação por Computador
16.
Sensors (Basel) ; 23(13)2023 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-37447942

RESUMO

Cracks have a primary effect on the failure of a structure. Therefore, the development of crack sensors with high accuracy and resolution and cracks detection method are important. In this study, the crack sensors were fabricated, and the crack locations were detected with the electrical signal of the crack sensor. First, a metal grid-type micro-crack sensor based on silver was fabricated. The sensor is made with electrohydrodynamics (EHD) inkjet printing technology, which is well known as the next generation of printed electronics technology. Optimal printing conditions were established through experiments, and a grid sensor was obtained. After that, single cracks and multiple cracks were simulated on the sensor, and electrical signals generated from the sensor were measured. The measured electrical signal tracked the location of the cracks in three steps: simple cross-calculation, interpolation, and modified P-SPICE. It was confirmed that cracks could be effectively found and displayed using the method presented in this paper.


Assuntos
Sistemas Computacionais , Eletricidade , Eletrônica , Prata , Tecnologia
17.
Int J Dent Hyg ; 2023 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-37357382

RESUMO

OBJECTIVES: The purpose of this study was to compare the effectiveness of three different instruments on cement loss, porosity and micro-crack formation, which was not evaluated before, following scaling and root planning (SRP) using micro-computed tomography (micro-CT). METHODS: In this experimental study, 30 single-rooted extracted human teeth were used and divided into three groups. All the teeth were scanned with micro-CT before and after SRP. Group 1: SRP was performed with Gracey curettes, Group 2: SRP was performed by using an ultrasonic device, and Group 3: SRP was performed by using diamond burs. Cement loss from the root surface, porosity, and micro-crack formation in the root dentine were analysed. Micro-CT is used for qualitative and quantitative analysis of samples. The obtained data were analysed statistically (p < 0.05). RESULTS: Minimum cement loss following SRP was detected with ultrasonic scaler (26.98 mm3 ), whereas the highest was created by diamond burs (96.20 mm3 ) (p < 0.05). The total porosity values after SRP were 0.278%, 0.334% and 0.252% for Groups 1, 2 and 3, respectively. Although Group 3 had the least porosity values, there was no statistically significant difference between the groups. The highest micro-crack formation was seen in Group 2 and the lowest was in Group 1 with a significant difference (p < 0.05). CONCLUSIONS: More cement loss was observed with diamond burs. Ultrasonic devices appear to be a viable alternative to instrumentation with curettes. However, ultrasonic devices should be used carefully because of micro-crack formation since the micro-crack resulting from instrumentation with hand instruments is the least of all.

18.
Materials (Basel) ; 16(12)2023 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-37374526

RESUMO

The mechanical characteristics and mechanisms of rock failure involve complex rock mass mechanics problems involving parameters such as energy concentration, storage, dissipation, and release. Therefore, it is important to select appropriate monitoring technologies to carry out relevant research. Fortunately, infrared thermal imaging monitoring technology has obvious advantages in the experimental study of rock failure processes and energy dissipation and release characteristics under load damage. Therefore, it is necessary to establish the theoretical relationship between the strain energy and infrared radiation information of sandstone and to reveal its fracture energy dissipation and disaster mechanism. In this study, an MTS electro-hydraulic servo press was used to carry out uniaxial loading experiments on sandstone. The characteristics of dissipated energy, elastic energy, and infrared radiation during the damage process of sandstone were studied using infrared thermal imaging technology. The results show that (1) the transition of sandstone loading from one stable state to another occurs in the form of an abrupt change. This sudden change is characterized by the simultaneous occurrence of elastic energy release, dissipative energy surging, and infrared radiation count (IRC) surging, and it has the characteristics of a short duration and large amplitude variation. (2) With the increase in the elastic energy variation, the surge in the IRC of sandstone samples presents three different development stages, namely fluctuation (stage Ⅰ), steady rise (stage Ⅱ), and rapid rise (stage Ⅲ). (3) The more obvious the surge in the IRC, the greater the degree of local damage of the sandstone and the greater the range of the corresponding elastic energy change (or dissipation energy change). (4) A method of sandstone microcrack location and propagation pattern recognition based on infrared thermal imaging technology is proposed. This method can dynamically generate the distribution nephograph of tension-shear microcracks of the bearing rock and accurately evaluate the real-time process of rock damage evolution. Finally, this study can provide a theoretical basis for rock stability, safety monitoring, and early warning.

19.
PeerJ ; 11: e15402, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37193026

RESUMO

Fruit cracking is a commercially important disorder that reduces both quantity and quality of strawberries (Fragaria × ananassa Duch.). The objective was to identify the physiological mechanism of cracking and the factors affecting cracking. Cracking is more common in necked than in normal-shaped fruit. Most macroscopic cracks ('macrocracks') occur in the seedless neck. Large fruit is more cracking susceptible than medium size or small fruit. Macrocrack orientation is predominantly latitudinal in the proximal region of the neck and longitudinal in the mid and distal regions of the neck. The neck region of necked fruit has a thicker cuticle than the body of necked or normal-shaped fruit. The vascular bundles in the neck (seedless) are orientated longitudinally, while those in the body (with seeds) are both longitudinal and radial. Epidermal cells in the neck region are elongated longitudinally, with those in the proximal region of the neck being more elongated than those in the mid or distal regions of the neck. Cuticular microcracking was more severe in necked fruit than in normal-shaped fruit. The orientations of the microcracks matched those of the macrocracks, i.e., latitudinal in the proximal neck and longitudinal in the mid and distal neck regions. Following artificial incisions (blade), gaping was significantly more pronounced in necked than in normal-shaped fruit. Incubation of fruit in deionized water induced macrocracks in about 75% of fruit. Necked fruit cracked more than normal-shaped fruit. Most macrocracks were oriented latitudinally in the proximal neck and longitudinally in the distal neck regions. The results indicate cracking results from excessive growth strains which are further increased by surface water uptake.


Assuntos
Fragaria , Frutas , Pescoço , Sementes , Água
20.
Materials (Basel) ; 16(10)2023 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-37241403

RESUMO

This paper investigates the change in solidification microcrack susceptibility under the influence of thermal-shock-induced effects for pulsed laser spot welding molten pools with different waveforms, powers, frequencies, and pulse widths. During the welding process, the temperature of the molten pool under the effect of thermal shock changes sharply, triggering pressure waves, creating cavities in the molten pool paste area, and forming crack sources during solidification. The microstructure near the cracks was analyzed using a SEM (scanning electron microscope) and EDS (electronic differential system), and it was found that bias precipitation occurred during the rapid solidification of the melt pool, and a large amount of Nb elements were enriched in the interdendritic and grain boundaries, which eventually formed a liquid film with a low melting point, known as a Laves phase. When cavities appear in the liquid film, the chance of crack source formation is further increased. Using a slow rise and slow fall waveform is good for reducing cracks; reducing the peak laser power to 1000 w is good for reducing cracks in the solder joint; increasing the pulse width to 20 ms reduces the degree of crack damage; reducing the pulse frequency to 10 hz reduces the degree of crack damage.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...