Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 233
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Front Pharmacol ; 15: 1469053, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39309002

RESUMO

Epilepsy, a complex neurological condition marked by recurring seizures, is increasingly recognized for its intricate relationship with mitochondria, the cellular powerhouses responsible for energy production and calcium regulation. This review offers an in-depth examination of the interplay between epilepsy, mitochondrial function, and aging. Many factors might account for the correlation between epilepsy and aging. Mitochondria, integral to cellular energy dynamics and neuronal excitability, perform a critical role in the pathophysiology of epilepsy. The mechanisms linking epilepsy and mitochondria are multifaceted, involving mitochondrial dysfunction, reactive oxygen species (ROS), and mitochondrial dynamics. Mitochondrial dysfunction can trigger seizures by compromising ATP production, increasing glutamate release, and altering ion channel function. ROS, natural byproducts of mitochondrial respiration, contribute to oxidative stress and neuroinflammation, critical factors in epileptogenesis. Mitochondrial dynamics govern fusion and fission processes, influence seizure threshold and calcium buffering, and impact seizure propagation. Energy demands during seizures highlight the critical role of mitochondrial ATP generation in maintaining neuronal membrane potential. Mitochondrial calcium handling dynamically modulates neuronal excitability, affecting synaptic transmission and action potential generation. Dysregulated mitochondrial calcium handling is a hallmark of epilepsy, contributing to excitotoxicity. Epigenetic modifications in epilepsy influence mitochondrial function through histone modifications, DNA methylation, and non-coding RNA expression. Potential therapeutic avenues targeting mitochondria in epilepsy include mitochondria-targeted antioxidants, ketogenic diets, and metabolic therapies. The review concludes by outlining future directions in epilepsy research, emphasizing integrative approaches, advancements in mitochondrial research, and ethical considerations. Mitochondria emerge as central players in the complex narrative of epilepsy, offering profound insights and therapeutic potential for this challenging neurological disorder.

2.
Crit Care ; 28(1): 292, 2024 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-39227925

RESUMO

Sepsis is a severe medical condition characterized by a systemic inflammatory response, often culminating in multiple organ dysfunction and high mortality rates. In recent years, there has been a growing recognition of the pivotal role played by mitochondrial damage in driving the progression of sepsis. Various factors contribute to mitochondrial impairment during sepsis, encompassing mechanisms such as reactive nitrogen/oxygen species generation, mitophagy inhibition, mitochondrial dynamics change, and mitochondrial membrane permeabilization. Damaged mitochondria actively participate in shaping the inflammatory milieu by triggering key signaling pathways, including those mediated by Toll-like receptors, NOD-like receptors, and cyclic GMP-AMP synthase. Consequently, there has been a surge of interest in developing therapeutic strategies targeting mitochondria to mitigate septic pathogenesis. This review aims to delve into the intricate mechanisms underpinning mitochondrial dysfunction during sepsis and its significant impact on immune dysregulation. Moreover, we spotlight promising mitochondria-targeted interventions that have demonstrated therapeutic efficacy in preclinical sepsis models.


Assuntos
Mitocôndrias , Sepse , Humanos , Sepse/fisiopatologia , Sepse/tratamento farmacológico , Sepse/terapia , Mitocôndrias/metabolismo , Animais , Mitofagia/fisiologia , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/fisiologia
3.
Angew Chem Int Ed Engl ; : e202411498, 2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39143745

RESUMO

New generation of nanomaterials with organelle-level precision provide significant promise for targeted attacks on mitochondria, exhibiting remarkable therapeutic potency. Here, we report a novel amphiphilic phenolic polymer (PF) for the mitochondria-targeted photodynamic therapy (PDT), which can trigger excessive mitochondrial DNA (mtDNA) damage by the synergistic action of oxidative stress and furan-mediated DNA cross-linking. Moreover, the phenolic units on PF enable further self-assembly with Mn2+ via metal-phenolic coordination to form metal-phenolic nanomaterial (PFM). We focus on the synergistic activation of the cGAS-STING pathway by Mn2+ and tumor-derived mtDNA in tumor-associated macrophages (TAMs), and subsequently repolarizing M2-like TAMs to M1 phenotype. We highlight that PFM facilitates the cGAS-STING-dependent immunity at the organelle level for potent antitumor efficacy.

4.
Anal Bioanal Chem ; 2024 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-39212698

RESUMO

Chromene as the efficient biothiol recognition site was widely used to develop fluorescent probes based on thiol-chromene click reaction. However, chromene-based fluorescent probes with the both properties of ratiometric measurement and mitochondria-targeted function have not been reported and remain challenging. In this paper, we skillfully designed and synthesized the first mitochondria-targeted ratiometric fluorescent probe (Probe 1) for biothiols based on chromene. Upon addition of biothiols (Cys, Hcy, and GSH), the absorption and fluorescence spectra of Probe 1 changed from 490 to 426 nm and from 567 to 498 nm respectively, accompanied by color changes from orange to pale yellow under natural light and from orange to blue under a 365-nm UV lamp, which can be attributed to the click reaction of biothiols with α,ß-unsaturated ketone of chromene moiety, subsequent pyran ring-opening, and phenol formation as well as 1,6-elimination of p-hydroxybenzyl moiety. Probe 1 not only exhibited high sensitivity (LODs of 149 nM, 133 nM, and 116 nM for Cys, GSH, and Hcy respectively), rapid response, and excellent selectivity for biothiols (Cys, Hcy, and GSH), but also could target in mitochondria and ratiometrically image the fluctuation of intracellular biothiols. Moreover, the novel design strategy of modifying chromene to the N atom of pyridine was proposed for the first time.

5.
Free Radic Biol Med ; 224: 117-129, 2024 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-39178922

RESUMO

MitoTEMPO (MT) and Visomitin (SKQ1) are regareded as mitochondria-targeted antioxidants, which inhibit production of mitochondrial reactive oxygen species (ROS). However, the differences in function between MT and SKQ1 remain unexplored. Herein, we investigated the differential potency of MT and SKQ1 in mitigating oxidative stress under different conditions. The results indicated that high levels of SKQ1 induced cell death. The appropriate concentrations of MT and SKQ1 can prevent or rescue cell damage triggered by hydrogen peroxide (H2O2) and menadione (MEN). MT and SKQ1 reduced ROS levels and reversed the down-regulation of antioxidant defence genes and enzymes. These effects can alleviate the damage to lipids, proteins, and deoxyribonucleic acid (DNA) caused by oxidative stress and restore adenosine 5' triphosphate (ATP) generation. Subsequently, we found that MT administration in ischemic reperfusion kidney injury in mice provided superior renal protection compared to SKQ1, as evidenced by reduced plasma levels of kidney injury markers, improved renal morphology, decreased apoptosis, restored mitochondrial function, and enhanced antioxidant capacity. Overall, our findings suggest that MT is safer and has greater potential than SKQ1 as a therapeutic agent to mitigate oxidative stress damage or oxidative renal injury.

6.
Pharmacol Rep ; 76(4): 693-713, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38982016

RESUMO

Huntington's disease (HD) is an inherited neurodegenerative disorder caused by an expansion in CAG repeat on huntington (Htt) gene, leading to a degeneration of GABAergic medium spiny neurons (MSNs) in the striatum, resulting in the generation of reactive oxygen species, and decrease antioxidant activity. These pathophysiological alterations impair mitochondrial functions, leading to an increase in involuntary hyperkinetic movement. However, researchers investigated the neuroprotective effect of antioxidants using various animal models. Still, their impact is strictly limited to curtailing oxidative stress and increasing the antioxidant enzyme in the brain, which is less effective in HD. Meanwhile, researchers discovered Mitochondria-targeted antioxidants (MTAXs) that can improve mitochondrial functions and antioxidant activity through the modulation of mitochondrial signaling pathways, including peroxisome proliferator-activated receptor (PPAR)-coactivator 1 (PGC-1α), dynamin-related protein 1 (Drp1), mitochondrial fission protein 1 (Fis1), and Silent mating type information regulation 2 homolog 1 (SIRT-1), showing neuroprotective effects in HD. The present review discusses the clinical and preclinical studies that investigate the neuroprotective effect of MTAXs (SS31, XJB-5-131, MitoQ, bezafibrate, rosiglitazone, meldonium, coenzyme Q10, etc.) in HD. This brief literature review will help to understand the relevance of MTAXs in HD and enlighten the importance of MTAXs in future drug discovery and development.


Assuntos
Antioxidantes , Doença de Huntington , Mitocôndrias , Fármacos Neuroprotetores , Doença de Huntington/tratamento farmacológico , Doença de Huntington/metabolismo , Humanos , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Animais , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Estresse Oxidativo/efeitos dos fármacos
7.
Pharmaceutics ; 16(7)2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-39065647

RESUMO

The special bilayer structure of mitochondrion is a promising therapeutic target in the diagnosis and treatment of diseases such as cancer and metabolic diseases. Nanocarriers such as liposomes modified with mitochondriotropic moieties can be developed to send therapeutic molecules to mitochondria. In this study, DSPE-PEG-TPP polymer conjugate was synthesized and used to prepare mitochondria-targeted liposomes (TPPLs) to improve the therapeutic index of chemotherapeutic agents functioning in mitochondria and reduce their side effects. Doxorubicin (Dox) loaded-TPPL and non-targeted PEGylated liposomes (PPLs) were prepared and compared based on physicochemical properties, morphology, release profile, cellular uptake, mitochondrial localization, and anticancer effects. All formulations were spherically shaped with appropriate size, dispersity, and zeta potential. The stability of the liposomes was favorable for two months at 4 °C. TPPLs localize to mitochondria, whereas PPLs do not. The empty TPPLs and PPLs were not cytotoxic to HCT116 cells. The release kinetics of Dox-loaded liposomes showed that Dox released from TPPLs was higher at pH 5.6 than at pH 7.4, which indicates a higher accumulation of the released drug in the tumor environment. The half-maximal inhibitory concentration of Dox-loaded TPPLs and PPLs was 1.62-fold and 1.17-fold lower than that of free Dox due to sustained drug release, respectively. The reactive oxygen species level was significantly increased when HCT116 cells were treated with Dox-loaded TPPLs. In conclusion, TPPLs may be promising carriers for targeted drug delivery to tumor mitochondria.

8.
Bioact Mater ; 36: 490-507, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-39055351

RESUMO

Immunogenic cell death (ICD) represents a modality of apoptosis distinguished by the emanation of an array of damage-related molecular signals. This mechanism introduces a novel concept in the field of contemporary tumor immunotherapy. The inception of reactive oxygen species (ROS) within tumor cells stands as the essential prerequisite and foundation for ICD induction. The formulation of highly efficacious photodynamic therapy (PDT) nanomedicines for the successful induction of ICD is an area of significant scientific inquiry. In this work, we devised a ROS-responsive and triple-synergistic mitochondria-targeted polymer micelle (CAT/CPT-TPP/PEG-Ce6, CTC) that operates with multistage amplification of ROS to achieve the potent induction of ICD. Utilizing an "all-in-one" strategy, we direct both the PDT and chemotherapeutic units to the mitochondria. Concurrently, a multistage cyclical amplification that caused by triple synergy strategy stimulates continuous, stable, and adequate ROS generation (domino effect) within the mitochondria of cells. Conclusively, influenced by ROS, tumor cell-induced ICD is effectively activated, remodeling immunogenicity, and enhancing the therapeutic impact of PDT when synergized with chemotherapy. Empirical evidence from in vitro study substantiates that CTC micelles can efficiently provoke ICD, catalyzing CRT translocation, the liberation of HMGB1 and ATP. Furthermore, animal trials corroborate that polymer micelles, following tail vein injection, can induce ICD, accumulate effectively within tumor tissues, and markedly inhibit tumor growth subsequent to laser irradiation. Finally, transcriptome analysis was carried out to evaluate the changes in tumor genome induced by CTC micelles. This work demonstrates a novel strategy to improve combination immunotherapy using nanotechnology.

9.
Talanta ; 279: 126561, 2024 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-39047628

RESUMO

Acute lung injury (ALI) is a serious pulmonary inflammatory disease resulting from excessive reactive oxygen species (ROS) which could cause the damage of the alveolar epithelial cells and capillary endothelial cells. Peroxynitrite, as one of short-lived reactive oxygen species, is closely related to the process of ALI. Thus, it is important to monitor the fluctuation of peroxynitrite in living system for understanding the process of ALI. Herein, the novel mitochondria-targeted fluorescent probe BHMT was designed to respond to peroxynitrite and pH with distinct fluorescence properties respectively. The absorption spectrum of the probe BHMT exhibited a notable red shift as the pH value declined from 8.8 to 2.6. Upon reaction with peroxynitrite, BHMT had a significant increase of fluorescence intensity (63-fold) with maintaining a detection limit of only 43.7 nM. Furthermore, BHMT could detect the levels of endogenous peroxynitrite and image the intracellular pH in ratiometric channels utilizing cell imaging. In addition, BHMT was successfully applied to revealing the relationship between the peroxynitrite and the extent of ALI. Thus, these results indicated the probe BHMT could be a potential tool for diagnosing the early stage of ALI and revealed the peroxynitrite was likely to be a crucial therapeutic target in ALI treatment.


Assuntos
Lesão Pulmonar Aguda , Corantes Fluorescentes , Mitocôndrias , Ácido Peroxinitroso , Ácido Peroxinitroso/metabolismo , Ácido Peroxinitroso/análise , Lesão Pulmonar Aguda/diagnóstico por imagem , Lesão Pulmonar Aguda/metabolismo , Corantes Fluorescentes/química , Mitocôndrias/metabolismo , Humanos , Animais , Concentração de Íons de Hidrogênio , Camundongos , Imagem Óptica , Masculino
10.
Arch Biochem Biophys ; 758: 110047, 2024 08.
Artigo em Inglês | MEDLINE | ID: mdl-38844154

RESUMO

Antioxidants exert a paradoxical influence on cancer prevention. The latest explanation for this paradox is the different target sites of antioxidants. However, it remains unclear how mitochondria-targeted antioxidants trigger specific p53-dependent pathways in malignant transformation models. Our study revealed that overexpression of mitochondria-targeted catalase (mCAT) instigated such malignant transformation via mouse double minute 2 homolog (MDM2) -mediated p53 degradation. In mouse epithelial JB6 Cl41 cells, the stable expression of mCAT resulted in MDM2-mediated p53 degradation, unlike in catalase-overexpressed Cl41 cells. Further, we demonstrated that mCAT overexpression upregulated ubiquitin-specific protease 28 (USP28) expression, which in turn stabilized c-Jun protein levels. This alteration initiated the activation of the miR-200b promoter transcription activity and a subsequent increase in miR-200b expression. Furthermore, elevated miR-200b levels then promoted its binding to the 3'-untranslated region of protein phosphatase 2A catalytic subunit (PP2A-C) α-isoform mRNA, consequently resulting in PP2A-C protein downregulation. This cascade of events ultimately contributed to increased MDM2 phosphorylation and p53 protein degradation. Thus, the mCAT overexpression triggers MDM2/p53-dependent malignant transformation through USP28/miR-200b/PP2A-Cα pathway, which may provide a new information for understanding mitochondria-targeted antioxidants facilitate the progression to the tumorigenic state.


Assuntos
Catalase , Transformação Celular Neoplásica , Regulação para Baixo , MicroRNAs , Mitocôndrias , Proteína Fosfatase 2 , Estabilidade Proteica , Proteínas Proto-Oncogênicas c-mdm2 , Proteína Supressora de Tumor p53 , Ubiquitina Tiolesterase , Proteína Supressora de Tumor p53/metabolismo , Proteína Supressora de Tumor p53/genética , MicroRNAs/metabolismo , MicroRNAs/genética , Animais , Camundongos , Mitocôndrias/metabolismo , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Proteínas Proto-Oncogênicas c-mdm2/genética , Ubiquitina Tiolesterase/metabolismo , Ubiquitina Tiolesterase/genética , Transformação Celular Neoplásica/metabolismo , Transformação Celular Neoplásica/genética , Catalase/metabolismo , Catalase/genética , Proteína Fosfatase 2/metabolismo , Proteína Fosfatase 2/genética , Humanos , Linhagem Celular , Transdução de Sinais , Regulação Neoplásica da Expressão Gênica
11.
Biomolecules ; 14(6)2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38927133

RESUMO

Lipid peroxidation plays an important role in various pathologies and aging, at least partially mediated by ferroptosis. The role of mitochondrial lipid peroxidation during ferroptosis remains poorly understood. We show that supplementation of exogenous iron in the form of ferric ammonium citrate at submillimolar doses induces production of reactive oxygen species (ROS) and lipid peroxidation in mitochondria that precede ferroptosis in H9c2 cardiomyocytes. The mitochondria-targeted antioxidant SkQ1 and the redox mediator methylene blue, which inhibits the production of ROS in complex I of the mitochondrial electron transport chain, prevent both mitochondrial lipid peroxidation and ferroptosis. SkQ1 and methylene blue also prevented accumulation of lipofuscin observed after 24 h incubation of cardiomyocytes with ferric ammonium citrate. Using isolated cardiac mitochondria as an in vitro ferroptosis model, it was shown that rotenone (complex I inhibitor) in the presence of ferrous iron stimulates lipid peroxidation and lipofuscin accumulation. Our data indicate that ROS generated in complex I stimulate mitochondrial lipid peroxidation, lipofuscin accumulation, and ferroptosis induced by exogenous iron.


Assuntos
Ferroptose , Ferro , Peroxidação de Lipídeos , Lipofuscina , Miócitos Cardíacos , Espécies Reativas de Oxigênio , Peroxidação de Lipídeos/efeitos dos fármacos , Ferroptose/efeitos dos fármacos , Lipofuscina/metabolismo , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/efeitos dos fármacos , Animais , Ratos , Espécies Reativas de Oxigênio/metabolismo , Ferro/metabolismo , Linhagem Celular , Compostos de Amônio Quaternário/farmacologia , Mitocôndrias/metabolismo , Mitocôndrias/efeitos dos fármacos , Azul de Metileno/farmacologia , Mitocôndrias Cardíacas/metabolismo , Mitocôndrias Cardíacas/efeitos dos fármacos , Compostos Férricos , Plastoquinona/análogos & derivados
12.
Int J Mol Sci ; 25(11)2024 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-38892325

RESUMO

Mitochondria-targeted antioxidants (MTAs) have been studied quite intensively in recent years as potential therapeutic agents and vectors for the delivery of other active substances to mitochondria and bacteria. Their most studied representatives are MitoQ and SkQ1, with its fluorescent rhodamine analog SkQR1, a decyl ester of rhodamine 19 carrying plastoquinone. In the present work, we observed a pronounced antibacterial action of SkQR1 against Gram-positive bacteria, but virtually no effect on Gram-negative bacteria. The MDR pump AcrAB-TolC, known to expel SkQ1, did not recognize and did not pump out SkQR1 and dodecyl ester of rhodamine 19 (C12R1). Rhodamine 19 butyl (C4R1) and ethyl (C2R1) esters more effectively suppressed the growth of ΔtolC Escherichia coli, but lost their potency with the wild-type E. coli pumping them out. The mechanism of the antibacterial action of SkQR1 may differ from that of SkQ1. The rhodamine derivatives also proved to be effective antibacterial agents against various Gram-positive species, including Staphylococcus aureus and Mycobacterium smegmatis. By using fluorescence correlation spectroscopy and fluorescence microscopy, SkQR1 was shown to accumulate in the bacterial membrane. Thus, the presentation of SkQR1 as a fluorescent analogue of SkQ1 and its use for visualization should be performed with caution.


Assuntos
Antibacterianos , Ésteres , Testes de Sensibilidade Microbiana , Rodaminas , Antibacterianos/farmacologia , Antibacterianos/química , Rodaminas/química , Rodaminas/farmacologia , Ésteres/química , Ésteres/farmacologia , Plastoquinona/análogos & derivados , Plastoquinona/farmacologia , Plastoquinona/química , Bactérias Gram-Positivas/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Staphylococcus aureus/efeitos dos fármacos , Corantes Fluorescentes/química
13.
Nano Lett ; 24(26): 8107-8116, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38888223

RESUMO

The integration of sonodynamic therapy (SDT) with cuproptosis for targeted cancer treatment epitomizes a significant advancement in oncology. Herein, we present a dual-responsive therapeutic system, "CytoNano", which combines a cationic liposome infused with copper-nitride nanoparticles and oxygen-rich perfluorocarbon (Lip@Cu3N/PFC-O2), all enveloped in a biomimetic coating of neutrophil membrane and acid-responsive carboxymethylcellulose. CytoNano leverages the cellular mimicry of neutrophils and acid-responsive materials, enabling precise targeting of tumors and their acidic microenvironment. This strategic design facilitates the targeted release of Lip@Cu3N/PFC-O2 within the tumor, enhancing cancer cell uptake and mitochondrial localization. Consequently, it amplifies the therapeutic efficacy of both Cu3N-driven SDT and cuproptosis while preserving healthy tissues. Additionally, CytoNano's ultrasound responsiveness enhances intratumoral oxygenation, overcoming physiological barriers and initiating a combined sonodynamic-cuproptotic effect that induces multiple cell death pathways. Thus, we pioneer a biomimetic approach in precise sonodynamic cuproptosis, revolutionizing cancer therapy.


Assuntos
Mitocôndrias , Terapia por Ultrassom , Humanos , Mitocôndrias/metabolismo , Mitocôndrias/efeitos dos fármacos , Animais , Terapia por Ultrassom/métodos , Camundongos , Linhagem Celular Tumoral , Neoplasias/terapia , Neoplasias/patologia , Nanopartículas/química , Materiais Biomiméticos/química , Materiais Biomiméticos/farmacologia , Cobre/química , Cobre/farmacologia , Lipossomos/química , Fluorocarbonos/química , Biomimética/métodos , Oxigênio/química
14.
EPMA J ; 15(2): 163-205, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38841620

RESUMO

Despite their subordination in humans, to a great extent, mitochondria maintain their independent status but tightly cooperate with the "host" on protecting the joint life quality and minimizing health risks. Under oxidative stress conditions, healthy mitochondria promptly increase mitophagy level to remove damaged "fellows" rejuvenating the mitochondrial population and sending fragments of mtDNA as SOS signals to all systems in the human body. As long as metabolic pathways are under systemic control and well-concerted together, adaptive mechanisms become triggered increasing systemic protection, activating antioxidant defense and repair machinery. Contextually, all attributes of mitochondrial patho-/physiology are instrumental for predictive medical approach and cost-effective treatments tailored to individualized patient profiles in primary (to protect vulnerable individuals again the health-to-disease transition) and secondary (to protect affected individuals again disease progression) care. Nutraceuticals are naturally occurring bioactive compounds demonstrating health-promoting, illness-preventing, and other health-related benefits. Keeping in mind health-promoting properties of nutraceuticals along with their great therapeutic potential and safety profile, there is a permanently growing demand on the application of mitochondria-relevant nutraceuticals. Application of nutraceuticals is beneficial only if meeting needs at individual level. Therefore, health risk assessment and creation of individualized patient profiles are of pivotal importance followed by adapted nutraceutical sets meeting individual needs. Based on the scientific evidence available for mitochondria-relevant nutraceuticals, this article presents examples of frequent medical conditions, which require protective measures targeted on mitochondria as a holistic approach following advanced concepts of predictive, preventive, and personalized medicine (PPPM/3PM) in primary and secondary care.

15.
Chem Biodivers ; 21(7): e202400864, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38699953

RESUMO

Pinostrobin demonstrated anticancer properties, but its hydrophobic feature led to a reduction in bioavailability. The mitochondria-targeted approach successfully synthesized eight new alkyl triphenylphosphonium pinostrobin derivatives (1-8) with good yield in this study. Seven compounds (1-3, 5-8) showed greater cytotoxic potency against the human MCF-7 breast cancer cell line than pinostrobin. Molecular docking studies were performed with two important targets in hormone-dependent anticancer strategies, estrogen receptor α (ERα) ligand binding domains, 3ERT (antagonist recognition and antiproliferative function), and 1GWR (agonist recognition and pro-proliferative function). In addition, the MD simulation study of the two most potent compounds (2 and 3) complexed with both ERα forms suggested that compounds 2 and 3 could serve as favourable antagonists. Furthermore, the in silico ADMET prediction indicated that compounds 2 and 3 could be potential drug candidates.


Assuntos
Antineoplásicos , Neoplasias da Mama , Proliferação de Células , Ensaios de Seleção de Medicamentos Antitumorais , Simulação de Acoplamento Molecular , Compostos Organofosforados , Humanos , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/síntese química , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Neoplasias da Mama/metabolismo , Proliferação de Células/efeitos dos fármacos , Compostos Organofosforados/química , Compostos Organofosforados/farmacologia , Compostos Organofosforados/síntese química , Relação Estrutura-Atividade , Células MCF-7 , Receptor alfa de Estrogênio/metabolismo , Receptor alfa de Estrogênio/antagonistas & inibidores , Feminino , Descoberta de Drogas , Estrutura Molecular , Relação Dose-Resposta a Droga , Flavanonas
16.
World J Gastroenterol ; 30(7): 714-727, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38515951

RESUMO

BACKGROUND: Pancreatic cancer is a leading cause of cancer-related deaths. Increased activity of the epidermal growth factor receptor (EGFR) is often observed in pancreatic cancer, and the small molecule EGFR inhibitor erlotinib has been approved for pancreatic cancer therapy by the food and drug administration. Nevertheless, erlotinib alone is ineffective and should be combined with other drugs to improve therapeutic outcomes. We previously showed that certain receptor tyrosine kinase inhibitors can increase mitochondrial membrane potential (Δψm), facilitate tumor cell uptake of Δψm-sensitive agents, disrupt mitochondrial homeostasis, and subsequently trigger tumor cell death. Erlotinib has not been tested for this effect. AIM: To determine whether erlotinib can elevate Δψm and increase tumor cell uptake of Δψm-sensitive agents, subsequently triggering tumor cell death. METHODS: Δψm-sensitive fluorescent dye was used to determine how erlotinib affects Δψm in pancreatic adenocarcinoma (PDAC) cell lines. The viability of conventional and patient-derived primary PDAC cell lines in 2D- and 3D cultures was measured after treating cells sequentially with erlotinib and mitochondria-targeted ubiquinone (MitoQ), a Δψm-sensitive MitoQ. The synergy between erlotinib and MitoQ was then analyzed using SynergyFinder 2.0. The preclinical efficacy of the two-drug combination was determined using immune-compromised nude mice bearing PDAC cell line xenografts. RESULTS: Erlotinib elevated Δψm in PDAC cells, facilitating tumor cell uptake and mitochondrial enrichment of Δψm-sensitive agents. MitoQ triggered caspase-dependent apoptosis in PDAC cells in culture if used at high doses, while erlotinib pretreatment potentiated low doses of MitoQ. SynergyFinder suggested that these drugs synergistically induced tumor cell lethality. Consistent with in vitro data, erlotinib and MitoQ combination suppressed human PDAC cell line xenografts in mice more effectively than single treatments of each agent. CONCLUSION: Our findings suggest that a combination of erlotinib and MitoQ has the potential to suppress pancreatic tumor cell viability effectively.


Assuntos
Adenocarcinoma , Neoplasias Pancreáticas , Humanos , Animais , Camundongos , Cloridrato de Erlotinib/farmacologia , Cloridrato de Erlotinib/uso terapêutico , Neoplasias Pancreáticas/patologia , Sobrevivência Celular , Adenocarcinoma/patologia , Camundongos Nus , Ubiquinona/farmacologia , Ubiquinona/uso terapêutico , Quinazolinas , Linhagem Celular Tumoral , Receptores ErbB , Mitocôndrias/patologia , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Proliferação de Células
17.
Cells ; 13(3)2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38334639

RESUMO

Amyotrophic lateral sclerosis (ALS) is a devastating neurodegenerative disease characterized by the progressive loss of motor neurons, for which current treatment options are limited. Recent studies have shed light on the role of mitochondria in ALS pathogenesis, making them an attractive therapeutic intervention target. This review contains a very comprehensive critical description of the involvement of mitochondria and mitochondria-mediated mechanisms in ALS. The review covers several key areas related to mitochondria in ALS, including impaired mitochondrial function, mitochondrial bioenergetics, reactive oxygen species, metabolic processes and energy metabolism, mitochondrial dynamics, turnover, autophagy and mitophagy, impaired mitochondrial transport, and apoptosis. This review also highlights preclinical and clinical studies that have investigated various mitochondria-targeted therapies for ALS treatment. These include strategies to improve mitochondrial function, such as the use of dichloroacetate, ketogenic and high-fat diets, acetyl-carnitine, and mitochondria-targeted antioxidants. Additionally, antiapoptotic agents, like the mPTP-targeting agents minocycline and rasagiline, are discussed. The paper aims to contribute to the identification of effective mitochondria-targeted therapies for ALS treatment by synthesizing the current understanding of the role of mitochondria in ALS pathogenesis and reviewing potential convergent therapeutic interventions. The complex interplay between mitochondria and the pathogenic mechanisms of ALS holds promise for the development of novel treatment strategies to combat this devastating disease.


Assuntos
Esclerose Lateral Amiotrófica , Doenças Neurodegenerativas , Humanos , Esclerose Lateral Amiotrófica/metabolismo , Doenças Neurodegenerativas/metabolismo , Mitocôndrias/metabolismo , Neurônios Motores/patologia , Apoptose
18.
Spectrochim Acta A Mol Biomol Spectrosc ; 311: 123970, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38324947

RESUMO

A mitochondria-targeted ratiometric fluorescent sensor (Mito-Si-NA) for formaldehyde (FA) has been constructed by functionalizing silica-based nanodots (silica-based ND). As the fluorescence reference and carrier, the silica-based ND conjugate with small molecule probe for FA via covalent. Further modifying with mitochondria targeting moiety enables the sensor to specifically target mitochondria. In the presence of FA, the emission of silica-based ND remain constant to act as an internal reference (445 nm) while the response signal of small molecule probe was gradually enhanced (545 nm). This sensor exhibits excellent selectivity towards FA with great changes of fluorescence intensity ratio values (I545/I445). The FA ratiometric fluorescence imaging in mitochondria was achieved successfully. In addition, the sensor was also successfully used for imaging FA in zebrafish. The good performance of Mito-Si-NA for FA bioimaging confirms that Mito-Si-NA is an appealing imaging tool to monitor FA in mitochondria and shows great potential to study the functions of FA on mitochondria.


Assuntos
Corantes Fluorescentes , Peixe-Zebra , Animais , Humanos , Naftalimidas , Mitocôndrias , Imagem Óptica , Formaldeído , Células HeLa
19.
Small ; 20(29): e2311571, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38385823

RESUMO

Parkinson's disease (PD) is currently the second most incurable central neurodegenerative disease resulting from various pathogenesis. As the "energy factory" of cells, mitochondria play an extremely important role in supporting neuronal signal transmission and other physiological activities. Mitochondrial dysfunction can cause and accelerate the occurrence and progression of PD. How to effectively prevent and suppress mitochondrial disorders is a key strategy for the treatment of PD from the root. Therefore, the emerging mitochondria-targeted therapy has attracted considerable interest. Herein, the relationship between mitochondrial dysfunction and PD, the causes and results of mitochondrial dysfunction, and major strategies for ameliorating mitochondrial dysfunction to treat PD are systematically reviewed. The study also prospects the main challenges for the treatment of PD.


Assuntos
Mitocôndrias , Doença de Parkinson , Doença de Parkinson/metabolismo , Doença de Parkinson/patologia , Humanos , Mitocôndrias/metabolismo , Mitocôndrias/efeitos dos fármacos , Animais
20.
Mitochondrion ; 75: 101850, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38331015

RESUMO

The interplay between mitochondrial function and diabetes has gained significant attention due to its crucial role in the pathogenesis and progression of the disease. Mitochondria, known as the cellular powerhouses, are essential for glucose metabolism. Dysfunction of these organelles has been implicated in the development of insulin resistance and beta-cell failure, both prominent features of diabetes. This comprehensive review explores the intricate mechanisms involved, including the generation of reactive oxygen species and the impact of mitochondrial DNA (mtDNA) mutations. Moreover, the review delves into emerging therapeutic strategies that specifically target mitochondria, such as mitochondria-targeted antioxidants, agents promoting mitochondrial biogenesis, and compounds modulating mitochondrial dynamics. The potential of these novel approaches is critically evaluated, taking into account their benefits and limitations, to provide a well-rounded perspective. Ultimately, this review emphasizes the importance of advancing our understanding of mitochondrial biology to revolutionize the treatment of diabetes.


Assuntos
Diabetes Mellitus , Resistência à Insulina , Humanos , Mitocôndrias/metabolismo , Diabetes Mellitus/tratamento farmacológico , Diabetes Mellitus/metabolismo , DNA Mitocondrial/genética , DNA Mitocondrial/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Estresse Oxidativo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...