Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.435
Filtrar
1.
ISA Trans ; 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-39095286

RESUMO

Rolling bearing is the key component of rotating machinery, and its vibration signal usually exhibits nonlinear and nonstationary characteristics when failure occurs. Multiscale permutation entropy (MPE) is an effective nonlinear dynamics analysis tool, which has been successfully applied to rolling bearing fault diagnosis in recent years. However, MPE ignores the deep amplitude information when measuring the complexity of the time series and the original multiscale coarse-graining is insufficient, which requires further research and improvement. In order to protect the integrity of information structure, a novel nonlinear dynamic analysis method termed refined composite multiscale slope entropy (RCMSlE) is proposed in this paper, which introduced the concept of refined composite to further boost the performance of MPE in nonlinear dynamical complexity analysis. Furthermore, RCMSlE utilizes a novel symbolic representation that takes full account of mode and amplitude information, which overcomes the weaknesses in describing the complexity and regularity of bearing signals. Based on this, a GWO-SVM multi-classifier is introduced to fulfill mode recognition, and then a new intelligent fault diagnosis method for rolling bearing based on RCMSlE and GWO-SVM is proposed. The experimental results show that the proposed method can not only accurately identify different fault types and degrees of rolling bearing, but also has a short computation time and better performance than other comparative methods.

2.
Front Public Health ; 12: 1426295, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39100945

RESUMO

Background: In recent years, the incidence of abdominal obesity among the middle-aged and older adult population in China has significantly increased. However, the gender disparities in the spatial distribution of abdominal obesity incidence and its relationship with meteorological factors among this demographic in China remain unclear. This gap in knowledge highlights the need for further research to understand these dynamics and inform targeted public health strategies. Methods: This study utilized data from the 2015 China Health and Retirement Longitudinal Study (CHARLS) to analyze the incidence of abdominal obesity among the middle-aged and older adult population in China. Additionally, meteorological data were collected from the National Meteorological Information Center. Using Moran's I index and Getis-Ord Gi* statistical methods, the spatial distribution characteristics of abdominal obesity incidence were examined. The influence of various meteorological factors on the incidence of abdominal obesity in middle-aged and older adult males and females was investigated using the q statistic from the Geodetector method. Furthermore, Multi-Scale Geographically Weighted Regression (MGWR) analysis was employed to explore the impact of meteorological factors on the spatial heterogeneity of abdominal obesity incidence from a gender perspective. Results: The spatial distribution of abdominal obesity among middle-aged and older adult individuals in China exhibits a decreasing trend from northwest to southeast, with notable spatial autocorrelation. Hotspots are concentrated in North and Northeast China, while cold spots are observed in Southwest China. Gender differences have minimal impact on spatial clustering characteristics. Meteorological factors, including temperature, sunlight, precipitation, wind speed, humidity, and atmospheric pressure, influence incidence rates. Notably, temperature and sunlight exert a greater impact on females, while wind speed has a reduced effect. Interactions among various meteorological factors generally demonstrate bivariate enhancement without significant gender disparities. However, gender disparities are evident in the influence of specific meteorological variables such as annual maximum, average, and minimum temperatures, as well as sunlight duration and precipitation, on the spatial heterogeneity of abdominal obesity incidence. Conclusion: Meteorological factors show a significant association with abdominal obesity prevalence in middle-aged and older adults, with temperature factors playing a prominent role. However, this relationship is influenced by gender differences and spatial heterogeneity. These findings suggest that effective public health policies should be not only gender-sensitive but also locally adapted.


Assuntos
Conceitos Meteorológicos , Obesidade Abdominal , Análise Espacial , Humanos , China/epidemiologia , Masculino , Pessoa de Meia-Idade , Feminino , Obesidade Abdominal/epidemiologia , Idoso , Prevalência , Estudos Longitudinais , Fatores Sexuais , Incidência
3.
Adv Food Nutr Res ; 111: 71-91, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39103218

RESUMO

Meeting food safety requirements without jeopardizing quality attributes or sustainability involves adopting a holistic perspective of food products, their manufacturing processes and their storage and distribution practices. The virtualization of the food supply chain offers opportunities to evaluate, simulate, and predict challenges and mishaps potentially contributing to present and future food safety risks. Food systems virtualization poses several requirements: (1) a comprehensive framework composed of instrumental, digital, and computational methods to evaluate internal and external factors that impact food safety; (2) nondestructive and real-time sensing methods, such as spectroscopic-based techniques, to facilitate mapping and tracking food safety and quality indicators; (3) a dynamic platform supported by the Internet of Things (IoT) interconnectivity to integrate information, perform online data analysis and exchange information on product history, outbreaks, exposure to risky situations, etc.; and (4) comprehensive and complementary mathematical modeling techniques (including but not limited to chemical reactions and microbial inactivation and growth kinetics) based on extensive data sets to make realistic simulations and predictions possible. Despite current limitations in data integration and technical skills for virtualization to reach its full potential, its increasing adoption as an interactive and dynamic tool for food systems evaluation can improve resource utilization and rational design of products, processes and logistics for enhanced food safety. Virtualization offers affordable and reliable options to assist stakeholders in decision-making and personnel training. This chapter focuses on definitions and requirements for developing and applying virtual food systems, including digital twins, and their role and future trends in enhancing food safety.


Assuntos
Inocuidade dos Alimentos , Abastecimento de Alimentos , Humanos
4.
J Imaging Inform Med ; 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-39103564

RESUMO

Retinal vessel segmentation is crucial for the diagnosis of ophthalmic and cardiovascular diseases. However, retinal vessels are densely and irregularly distributed, with many capillaries blending into the background, and exhibit low contrast. Moreover, the encoder-decoder-based network for retinal vessel segmentation suffers from irreversible loss of detailed features due to multiple encoding and decoding, leading to incorrect segmentation of the vessels. Meanwhile, the single-dimensional attention mechanisms possess limitations, neglecting the importance of multidimensional features. To solve these issues, in this paper, we propose a detail-enhanced attention feature fusion network (DEAF-Net) for retinal vessel segmentation. First, the detail-enhanced residual block (DERB) module is proposed to strengthen the capacity for detailed representation, ensuring that intricate features are efficiently maintained during the segmentation of delicate vessels. Second, the multidimensional collaborative attention encoder (MCAE) module is proposed to optimize the extraction of multidimensional information. Then, the dynamic decoder (DYD) module is introduced to preserve spatial information during the decoding process and reduce the information loss caused by upsampling operations. Finally, the proposed detail-enhanced feature fusion (DEFF) module composed of DERB, MCAE and DYD modules fuses feature maps from both encoding and decoding and achieves effective aggregation of multi-scale contextual information. The experiments conducted on the datasets of DRIVE, CHASEDB1, and STARE, achieving Sen of 0.8305, 0.8784, and 0.8654, and AUC of 0.9886, 0.9913, and 0.9911 on DRIVE, CHASEDB1, and STARE, respectively, demonstrate the performance of our proposed network, particularly in the segmentation of fine retinal vessels.

5.
ArXiv ; 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39130201

RESUMO

Composition is a powerful principle for systems biology, focused on the interfaces, interconnections, and orchestration of distributed processes. Whereas most systems biology models focus on the structure or dynamics of specific subsystems in controlled conditions, compositional systems biology aims to connect such models into integrative multiscale simulations. This emphasizes the space between models-a compositional perspective asks what variables should be exposed through a submodel's interface? How do coupled models connect and translate across scales? How can we connect domain-specific models across biological and physical research areas to drive the synthesis of new knowledge? What is required of software that integrates diverse datasets and submodels into unified multiscale simulations? How can the resulting integrative models be accessed, flexibly recombined into new forms, and iteratively refined by a community of researchers? This essay offers a high-level overview of the key components for compositional systems biology, including: 1) a conceptual framework and corresponding graphical framework to represent interfaces, composition patterns, and orchestration patterns; 2) standardized composition schemas that offer consistent formats for composable data types and models, fostering robust infrastructure for a registry of simulation modules that can be flexibly assembled; 3) a foundational set of biological templates-schemas for cellular and molecular interfaces, which can be filled with detailed submodels and datasets, and are designed to integrate knowledge that sheds light on the molecular emergence of cells; and 4) scientific collaboration facilitated by user-friendly interfaces for connecting researchers with datasets and models, and which allows a community of researchers to effectively build integrative multiscale models of cellular systems.

6.
Front Bioeng Biotechnol ; 12: 1454728, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39161348

RESUMO

Jaw cyst is a fluid-containing cystic lesion that can occur in any part of the jaw and cause facial swelling, dental lesions, jaw fractures, and other associated issues. Due to the diversity and complexity of jaw images, existing deep-learning methods still have challenges in segmentation. To this end, we propose MARes-Net, an innovative multi-scale attentional residual network architecture. Firstly, the residual connection is used to optimize the encoder-decoder process, which effectively solves the gradient disappearance problem and improves the training efficiency and optimization ability. Secondly, the scale-aware feature extraction module (SFEM) significantly enhances the network's perceptual abilities by extending its receptive field across various scales, spaces, and channel dimensions. Thirdly, the multi-scale compression excitation module (MCEM) compresses and excites the feature map, and combines it with contextual information to obtain better model performance capabilities. Furthermore, the introduction of the attention gate module marks a significant advancement in refining the feature map output. Finally, rigorous experimentation conducted on the original jaw cyst dataset provided by Quzhou People's Hospital to verify the validity of MARes-Net architecture. The experimental data showed that precision, recall, IoU and F1-score of MARes-Net reached 93.84%, 93.70%, 86.17%, and 93.21%, respectively. Compared with existing models, our MARes-Net shows its unparalleled capabilities in accurately delineating and localizing anatomical structures in the jaw cyst image segmentation.

7.
Sci Technol Adv Mater ; 25(1): 2388501, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39156881

RESUMO

In a deep-learning-based algorithm, generative adversarial networks can generate images similar to an input. Using this algorithm, an artificial three-dimensional (3D) microstructure can be reproduced from two-dimensional images. Although the generated 3D microstructure has a similar appearance, its reproducibility should be examined for practical applications. This study used an automated serial sectioning technique to compare the 3D microstructures of two dual-phase steels generated from three orthogonal surface images with their corresponding observed 3D microstructures. The mechanical behaviors were examined using the finite element analysis method for the representative volume element, in which finite element models of microstructures were directly constructed from the 3D voxel data using a voxel coarsening approach. The macroscopic material responses of the generated microstructures captured the anisotropy caused by the microscopic morphology. However, these responses did not quantitatively align with those of the observed microstructures owing to inaccuracies in reproducing the volume fraction of the ferrite/martensite phase. Additionally, the generation algorithm struggled to replicate the microscopic morphology, particularly in cases with a low volume fraction of the martensite phase where the martensite connectivity was not discernible from the input images. The results demonstrate the limitations of the generation algorithm and the necessity for 3D observations.


This study provided the comparison between experimentally observed and computationally generated 3D microstructures of dual-phase steels in the macro- and microscopic material behaviors with finite element analysis method for periodic microstructure.

8.
Med Eng Phys ; 130: 104196, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39160024

RESUMO

The 12-lead electrocardiogram (ECG) is widely used for diagnosing cardiovascular diseases in clinical practice. Recently, deep learning methods have become increasingly effective for automatically classifying ECG signals. However, most current research simply combines the 12-lead ECG signals into a matrix without fully considering the intrinsic relationships between the leads and the heart's structure. To better utilize medical domain knowledge, we propose a multi-branch network for multi-label ECG classification and introduce an intuitive and effective lead grouping strategy. Correspondingly, we design multi-branch networks where each branch employs a multi-scale convolutional network structure to extract more comprehensive features, with each branch corresponding to a lead combination. To better integrate features from different leads, we propose a feature weighting fusion module. We evaluate our method on the PTB-XL dataset for classifying 4 arrhythmia types and normal rhythm, and on the China Physiological Signal Challenge 2018 (CPSC2018) database for classifying 8 arrhythmia types and normal rhythm. Experimental results on multiple multi-label datasets demonstrate that our proposed multi-branch network outperforms state-of-the-art networks in multi-label classification tasks.


Assuntos
Eletrocardiografia , Processamento de Sinais Assistido por Computador , Humanos , Análise por Conglomerados , Arritmias Cardíacas/diagnóstico , Arritmias Cardíacas/fisiopatologia , Aprendizado Profundo , Redes Neurais de Computação
9.
Food Res Int ; 193: 114808, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39160056

RESUMO

The digestion of starch-based foods in the intestinal tract is important for human health. Modeling the details enhances fundamental understanding and glycemic prediction accuracy. It is, however, a challenge to take granular properties into account. A multiscale digestion model has been proposed to characterize mass transfer and hydrolysis reaction at both the intestine and particle scales, seamlessly integrating inter-scale mass exchange. A specific grid scheme was formulated for the shrinkage and transport of the particle computational domain. By incorporating additional glycemic-related processes, e.g., intestinal absorption, a dietary property-based glycemic prediction system has been developed. Its effectiveness was validated based on a human tolerance experiment of cooked rice particles. The model-based investigation comprehensively reveals the impact of initial size on digestion behavior, specifically in terms of enzyme distribution and particle evolution. This work also demonstrates the significance of modeling both particle-scale diffusion and intestine-scale transport, a combination not previously explored. The results indicate that ignoring the former mechanism leads to an overestimation of the glycemic peak by at least 50.8%, while ignoring the latter results in an underestimation of 16.3%.


Assuntos
Digestão , Modelos Biológicos , Amido , Amido/química , Amido/metabolismo , Humanos , Oryza/química , Índice Glicêmico , Tamanho da Partícula , Hidrólise , Absorção Intestinal
10.
Artigo em Inglês | MEDLINE | ID: mdl-39188207

RESUMO

For solving the trade-off relationship of the polarization and breakdown electric field, ferroelectric films with high polarization are playing a critical role in energy storage capacitor applications, especially at moderate/low electric fields. In this work, we propose a multiscale structure (including defect, domain, and grain structures) synergetic optimization strategy to optimize the polarization behavior and energy storage performances of BiMg0.5Ti0.5O3 (BMT) ferroelectric films by introducing Sr0.7La0.2TiO3 (SLT) without compromising the breakdown strength. At a moderate electric field of 2917 kV/cm, a high discharge density of 72.2 J/cm3 has been achieved in 0.9BMT-0.1SLT films, together with good frequency, thermal, and cycle stabilities for energy storage. Importantly, the phase difference Δφ is utilized to quantitatively evaluate the polarization switching mobility of the ferroelectric domain/PNRs at an external electric field stimulation. This research demonstrates that a multiscale structure optimization strategy could effectively regulate the energy storage performance, and ecofriendly BMT-based materials are promising candidates for next-generation energy storage capacitors, especially at moderate/low electric fields.

11.
ACS Nano ; 18(34): 22829-22854, 2024 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-39152943

RESUMO

Porous materials, characterized by their controllable pore size, high specific surface area, and controlled space functionality, have become cross-scale structures with microenvironment effects and multiple functions and have gained tremendous attention in the fields of catalysis, energy storage, and biomedicine. They have evolved from initial nanopores to multiscale pore-cavity designs with yolk-shell, multishells, or asymmetric structures, such as bottle-shaped, multichambered, and branching architectures. Various synthesis strategies have been developed for the interfacial engineering of porous structures, including bottom-up approaches by using liquid-liquid or liquid-solid interfaces "templating" and top-down approaches toward chemical tailoring of polymers with different cross-linking degrees, as well as interface transformation using the Oswald ripening, Kirkendall effect, or atomic diffusion and rearrangement methods. These techniques permit the design of functional porous materials with diverse microenvironment effects, such as the pore size effect, pore enrichment effect, pore isolation and synergistic effect, and pore local field enhancement effect, for enhanced applications. In this review, we delve into the bottom-up and top-down interfacial-oriented synthesis approaches of porous structures with advanced structures and microenvironment effects. We also discuss the recent progress in the applications of these collaborative effects and structure-activity relationships in the areas of catalysis, energy storage, electrochemical conversion, and biomedicine. Finally, we outline the persisting obstacles and prospective avenues in terms of controlled synthesis and functionalization of porous engineering. The perspectives proposed in this paper may contribute to promote wider applications in various interdisciplinary fields within the confined dimensions of porous structures.

12.
Front Plant Sci ; 15: 1418396, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39184576

RESUMO

Climate change and human activities have increased droughts, especially overgrazing and deforestation, which seriously threaten the balance of terrestrial ecosystems. The ecological carrying capacity and vegetation cover in the arid zone of Xinjiang, China, are generally low, necessitating research on vegetation response to drought in such arid regions. In this study, we analyzed the spatial and temporal characteristics of drought in Xinjiang from 2001 to 2020 and revealed the response mechanism of SIF to multi-timescale drought in different vegetation types using standardized precipitation evapotranspiration index (SPEI), solar-induced chlorophyll fluorescence (SIF), normalized difference vegetation index (NDVI), and enhanced vegetation index (EVI) data. We employed trend analysis, standardized anomaly index (SAI), Pearson correlation, and trend prediction techniques. Our investigation focused on the correlations between GOSIF (a new SIF product based on the Global Orbital Carbon Observatory-2), NDVI, and EVI with SPEI12 for different vegetation types over the past two decades. Additionally, we examined the sensitivities of vegetation GOSIF to various scales of SPEI in a typical drought year and predicted future drought trends in Xinjiang. The results revealed that the spatial distribution characteristics of GOSIF, normalized difference vegetation index (NDVI), and enhanced vegetation index (EVI) were consistent, with mean correlations with SPEI at 0.197, 0.156, and 0.128, respectively. GOSIF exhibited the strongest correlation with SPEI, reflecting the impact of drought stress on vegetation photosynthesis. Therefore, GOSIF proves advantageous for drought monitoring purposes. Most vegetation types showed a robust response of GOSIF to SPEI at a 9-month scale during a typical drought year, with grassland GOSIF being particularly sensitive to drought. Our trend predictions indicate a decreasing trend in GOSIF vegetation in Xinjiang, coupled with an increasing trend in drought. This study found that compared with that of the traditional greenness vegetation index, GOSIF has obvious advantages in monitoring drought in the arid zone of Xinjiang. Furthermore, it makes up for the lack of research on the mechanism of vegetation GOSIF response to drought on multiple timescales in the arid zone. These results provide strong theoretical support for investigating the monitoring, assessment, and prediction of vegetation response to drought in Xinjiang, which is vital for comprehending the mechanisms of carbon and water cycles in terrestrial ecosystems.

13.
Med Biol Eng Comput ; 2024 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-39183226

RESUMO

Annulus fibrosus' (AF) ability to transmit multi-directional spinal motion is contributed by a combination of chemical interactions among biomolecular constituents-collagen type I (COL-I), collagen type II (COL-II), and proteoglycans (aggrecan and hyaluronan)-and mechanical interactions at multiple length scales. However, the mechanistic role of such interactions on spinal motion is unclear. The present work employs a molecular mechanics-finite element (FE) multiscale approach to investigate the mechanistic role of molecular-scale collagen and hyaluronan nanostructures in AF, on spinal motion. For this, an FE model of the lumbar segment is developed wherein a multiscale model of AF collagen fiber, developed from COL-I, COL-II, and hyaluronan using the molecular dynamics-cohesive finite element multiscale method, is incorporated. Analyses show AF collagen fibers primarily contribute to axial rotation (AR) motion, owing to angle-ply orientation. Maximum fiber strain values of 2.45% in AR, observed at the outer annulus, are 25% lower than the reported values. This indicates native collagen fibers are softer, attributed to the softer non-fibrillar matrix and higher interfibrillar sliding. Additionally, elastic zone stiffness of 8.61 Nm/° is observed to be 20% higher than the reported range, suggesting native AF lamellae exhibit lower stiffness, resulting from inter-collagen fiber bundle sliding. The presented study has further implications towards the hierarchy-driven designing of AF-substitute materials.

14.
Philos Trans A Math Phys Eng Sci ; 382(2280): 20230411, 2024 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-39183652

RESUMO

The Spherical Tokamak for Energy Production (STEP) programme is an ambitious but challenging endeavour to design and deliver a prototype fusion power plant. It is a rapid, fast-moving programme, designing a first of a kind device in a Volatile, Uncertain, Complex and Ambiguous (VUCA) environment, and digital tools play a pivotal role in managing and navigating this space. Digital helps manage the complexity and sheer volume of information. Advanced modelling and simulation techniques provide a platform for designers to explore various scenarios and iteratively refine designs, providing insights into the intricate interplay of requirements, constraints and design factors across physics, technology and engineering domains and aiding informed decision-making amidst uncertainties. It also provides a means of building confidence in the new scientific, technological and engineering solutions, given that a full-scale-integrated precursor test is not feasible, almost by definition. The digital strategy for STEP is built around a vision of a digital twin of the whole plant. This will evolve from the current digital shadow formed by system architecting codes and complex workflows and will be underpinned by developing capabilities in plasma, materials and engineering simulation, data management, advanced control, industrial cybersecurity, regulation, digital technologies and related digital disciplines. These capabilities will help address the key challenges of managing the complexity and quantity of information, improving the reliability and robustness of the current digital shadow and developing an understanding of its validity and performance.This article is part of the theme issue 'Delivering Fusion Energy - The Spherical Tokamak for Energy Production (STEP)'.

15.
Hum Brain Mapp ; 45(12): e26809, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-39185729

RESUMO

Entropy measures are increasingly being used to analyze the structure of neural activity observed by functional magnetic resonance imaging (fMRI), with resting-state networks (RSNs) being of interest for their reproducible descriptions of the brain's functional architecture. Temporal correlations have shown a dichotomy among these networks: those that engage with the environment, known as extrinsic, which include the visual and sensorimotor networks; and those associated with executive control and self-referencing, known as intrinsic, which include the default mode network and the frontoparietal control network. While these inter-voxel temporal correlations enable the assessment of synchrony among the components of individual networks, entropic measures introduce an intra-voxel assessment that quantifies signal features encoded within each blood oxygen level-dependent (BOLD) time series. As a result, this framework offers insights into comprehending the representation and processing of information within fMRI signals. Multiscale entropy (MSE) has been proposed as a useful measure for characterizing the entropy of neural activity across different temporal scales. This measure of temporal entropy in BOLD data is dependent on the length of the time series; thus, high-quality data with fine-grained temporal resolution and a sufficient number of time frames is needed to improve entropy precision. We apply MSE to the Midnight Scan Club, a highly sampled and well-characterized publicly available dataset, to analyze the entropy distribution of RSNs and evaluate its ability to distinguish between different functional networks. Entropy profiles are compared across temporal scales and RSNs. Our results have shown that the spatial distribution of entropy at infra-slow frequencies (0.005-0.1 Hz) reproduces known parcellations of RSNs. We found a complexity hierarchy between intrinsic and extrinsic RSNs, with intrinsic networks robustly exhibiting higher entropy than extrinsic networks. Finally, we found new evidence that the topography of entropy in the posterior cerebellum exhibits high levels of entropy comparable to that of intrinsic RSNs.


Assuntos
Imageamento por Ressonância Magnética , Rede Nervosa , Humanos , Imageamento por Ressonância Magnética/métodos , Rede Nervosa/diagnóstico por imagem , Rede Nervosa/fisiologia , Conectoma/métodos , Entropia , Encéfalo/diagnóstico por imagem , Encéfalo/fisiologia , Rede de Modo Padrão/diagnóstico por imagem , Rede de Modo Padrão/fisiologia , Adulto , Descanso/fisiologia
16.
J Environ Manage ; 368: 122109, 2024 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-39126843

RESUMO

Understanding the characteristics of waterlogging in urban agglomeration is essential for effective waterlogging prevention and management, as well as for promoting sustainable urban development. Previous studies have predominantly focused on the driving mechanisms of waterlogging in urban agglomeration at a single scale, but urban agglomeration space has greater spatio-temporal heterogeneity, it is often difficult to fully reveal such characteristics at a single scale. Consequently, this study endeavors to explore the spatio-temporal evolution characteristics and underlying mechanisms of waterlogging incidents within urban agglomerations by adopting a multi-scale analytical approach. The results indicate that: (1) The waterlogging degree and high-density zones increase in the GBA, and the waterlogging points are spatially polycentric. However, the waterlogging point in Hong Kong is decreasing. (2) The influence of ISP and AI on waterlogging is dominant at all scales, followed by RE and Slope. ISP∩Slope and ISP∩RE are the key interactions for waterlogging. (3) The aggregation of waterlogging decreases with grid scale, and the influence of land cover factors on waterlogging increases with grid scale. Moreover, the findings at the grid scale outperformed those at the watershed scale, indicating that the grid scale is more conducive to the investigation of waterlogging in urban agglomerations. This research broadens our comprehension of the mechanisms behind waterlogging in urban agglomeration and provide references for policy decisions on waterlogging prevention and mitigation within urban agglomerations.

17.
Sci Rep ; 14(1): 18609, 2024 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-39127805

RESUMO

Semantic segmentation plays a crucial role in interpreting remote sensing images, especially in high-resolution scenarios where finer object details, complex spatial information and texture structures exist. To address the challenge of better extracting semantic information and ad-dressing class imbalance in multiclass segmentation, we propose utilizing diffusion models for remote sensing image semantic segmentation, along with a lightweight classification module based on a spatial-channel attention mechanism. Our approach incorporates unsupervised pretrained components with a classification module to accelerate model convergence. The diffusion model component, built on the UNet architecture, effectively captures multiscale features with rich contextual and edge information from images. The lightweight classification module, which leverages spatial-channel attention, focuses more efficiently on spatial-channel regions with significant feature information. We evaluated our approach using three publicly available datasets: Postdam, GID, and Five Billion Pixels. In the test of three datasets, our method achieved the best results. On the GID dataset, the overall accuracy was 96.99%, the mean IoU was 92.17%, and the mean F1 score was 95.83%. In the training phase, our model achieved good performance after only 30 training cycles. Compared with other models, our method reduces the number of parameters, improves the training speed, and has obvious performance advantages.

18.
Ecol Evol ; 14(8): e70131, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39130103

RESUMO

With the rapid development of population, society and economy, human activities have caused serious adverse impacts on the environment, ecosystems and landscape patterns over the long term. In order to address the series of impacts of human activities on the environment, territorial space and resource use, the study of Production-Living-Ecological Space (PLES) and ecological security have all become academic frontiers in the field of sustainable development. In this study, we applied multi-source data and GIS technology to construct an ecological security evaluation model based on the results of PLES delineation and the Pressure-State-Response (PSR) framework, and carried out the three-period PLES ecological security evaluation for 2000, 2010 and 2020 at the county and grid scales in Yunnan Province. The PLES pattern in Yunnan Province is dominated by ecological space, which accounts for 75%, followed by 23% of production space, with ecological space shrinking from 2000 to 2020. Ecological security in ecological space and living space shows an improving trend from 2000 to 2020. The ecological security of production space improved in 2010 compared to 2000 but then showed a decreasing trend in 2020. Ecological security in ecological space shows that north-western and southern Yunnan is safer than central Yunnan, while ecological security in living space is safer in central Yunnan, and ecological security in production space is better in southern Yunnan than in northern Yunnan. Comparison with related research results shows that the ecological security evaluation results of PLES in Yunnan Province in this study are scientific and reasonable. The ecological security evaluation model of PLES constructed in this study solves the problem of complex and incomplete ecological security evaluation indexes in the past, and the results of the study are more refined and precise, which provides new ideas for the study of regional ecological security.

19.
bioRxiv ; 2024 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-39131401

RESUMO

A fundamental understanding of how HIV-1 envelope (Env) protein facilitates fusion is still lacking. The HIV-1 fusion peptide, consisting of 15 to 22 residues, is the N-terminus of the gp41 subunit of the Env protein. Further, this peptide, a promising vaccine candidate, initiates viral entry into target cells by inserting and anchoring into human immune cells. The influence of membrane lipid reorganization and the conformational changes of the fusion peptide during the membrane insertion and anchoring processes, which can significantly affect HIV-1 cell entry, remains largely unexplored due to the limitations of experimental measurements. In this work, we investigate the insertion of the fusion peptide into an immune cell membrane mimic through multiscale molecular dynamics simulations. We mimic the native T-cell by constructing a 9-lipid asymmetric membrane, along with geometrical restraints accounting for insertion in the context of gp41. To account for the slow timescale of lipid mixing while enabling conformational changes, we implement a protocol to go back and forth between atomistic and coarse-grained simulations. Our study provides a molecular understanding of the interactions between the HIV-1 fusion peptide and the T-cell membrane, highlighting the importance of conformational flexibility of fusion peptides and local lipid reorganization in stabilizing the anchoring of gp41 into the targeted host membrane during the early events of HIV-1 cell entry. Importantly, we identify a motif within the fusion peptide critical for fusion that can be further manipulated in future immunological studies.

20.
Nanomicro Lett ; 16(1): 267, 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39134809

RESUMO

Flexible and wearable pressure sensors hold immense promise for health monitoring, covering disease detection and postoperative rehabilitation. Developing pressure sensors with high sensitivity, wide detection range, and cost-effectiveness is paramount. By leveraging paper for its sustainability, biocompatibility, and inherent porous structure, herein, a solution-processed all-paper resistive pressure sensor is designed with outstanding performance. A ternary composite paste, comprising a compressible 3D carbon skeleton, conductive polymer poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate), and cohesive carbon nanotubes, is blade-coated on paper and naturally dried to form the porous composite electrode with hierachical micro- and nano-structured surface. Combined with screen-printed Cu electrodes in submillimeter finger widths on rough paper, this creates a multiscale hierarchical contact interface between electrodes, significantly enhancing sensitivity (1014 kPa-1) and expanding the detection range (up to 300 kPa) of as-resulted all-paper pressure sensor with low detection limit and power consumption. Its versatility ranges from subtle wrist pulses, robust finger taps, to large-area spatial force detection, highlighting its intricate submillimeter-micrometer-nanometer hierarchical interface and nanometer porosity in the composite electrode. Ultimately, this all-paper resistive pressure sensor, with its superior sensing capabilities, large-scale fabrication potential, and cost-effectiveness, paves the way for next-generation wearable electronics, ushering in an era of advanced, sustainable technological solutions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...