Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 981
Filtrar
1.
Pathol Res Pract ; 262: 155576, 2024 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-39232286

RESUMO

Cancer-associated fibroblasts are the most important cellular component of the tumor microenvironment, controlling cancer progression and therapeutic response. These cells in the tumor microenvironment regulate tumor progression and development as oncogenic or tumor suppressor agents. However, the mechanisms by which CAFs communicate with cancer cells remain to investigate. Here, we review evidence that extracellular vesicles, particularly exosomes, serve as vehicles for the intercellular transfer of bioactive cargos, notably microRNAs and long non-coding RNAs, from CAFs to cancer cells. We try to highlight molecular pathways of non-coding RNAs and the interaction among these molecules. Together, these findings elucidate a critical exosome-based communication axis by which CAFs create mostly a supportive pro-tumorigenic microenvironment and highlight therapeutic opportunities for disrupting this intercellular crosstalk.

2.
Genomics ; 116(5): 110920, 2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39151553

RESUMO

BACKGROUND: Follicles are fundamental units of the ovary, regulated intricately during development. Exosomes and ovarian granulosa cells (OGCs) play pivotal roles in follicular development, yet the regulatory mechanisms governing exosomes remain elusive. RESULTS: High-throughput sequencing was employed to evaluate the complete transcript expression profiles of six samples (three porcine ovarian granulosa cells-exosome co-culture samples (GCE) and three porcine ovarian granulosa cells (POGCs) samples). Differential expression analysis revealed 924 lncRNAs, 35 circRNAs, 49 miRNAs, and 9823 mRNAs in the GCE group. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses indicated enrichment of differentially expressed transcripts in pathways related to cell proliferation and apoptosis. Furthermore, a ceRNA regulatory network comprising 43 lncRNAs, 6 circRNAs, 11 miRNAs, and 126 mRNAs was constructed based on intergene co-expression correlations. Seven miRNAs associated with cell proliferation and apoptosis regulation were identified within this network, encompassing 92 subnet pairs as candidate genes for further exploration of exosome regulatory mechanisms. Additionally, preliminary verification at the cellular level demonstrated that exosomal miR-200b enhances the viability of POGCs. CONCLUSIONS: Transcriptome analysis unveiled a pivotal candidate ceRNA network potentially implicated in exosome-mediated regulation of granulosa cell proliferation and apoptosis, thereby influencing porcine follicular development. These findings offer insights into the molecular mechanisms of follicular fluid exosome regulation, encompassing both coding and non-coding RNA perspectives.

3.
J Transl Med ; 22(1): 731, 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-39103911

RESUMO

Targeting non-coding RNAs (ncRNAs), including microRNAs (miRNAs) and long non-coding RNAs (lncRNAs), has recently emerged as a promising strategy for treating malignancies and other diseases. In recent years, the development of ncRNA-based therapeutics for targeting protein-coding and non-coding genes has also gained momentum. This review systematically examines ongoing and completed clinical trials to provide a comprehensive overview of the emerging landscape of ncRNA-based therapeutics. Significant efforts have been made to advance ncRNA therapeutics to early clinical studies. The most advanced trials have been conducted with small interfering RNAs (siRNAs), miRNA replacement using nanovector-entrapped miRNA mimics, or miRNA silencing by antisense oligonucleotides. While siRNA-based therapeutics have already received FDA approval, miRNA mimics, inhibitors, and lncRNA-based therapeutics are still under evaluation in preclinical and early clinical studies. We critically discuss the rationale and methodologies of ncRNA targeting strategies to illustrate this rapidly evolving field.


Assuntos
Ensaios Clínicos como Assunto , Neoplasias , RNA não Traduzido , Humanos , Neoplasias/genética , Neoplasias/terapia , RNA não Traduzido/genética , RNA não Traduzido/uso terapêutico , MicroRNAs/genética , MicroRNAs/uso terapêutico , MicroRNAs/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Animais , RNA Interferente Pequeno/uso terapêutico
4.
Cancer Med ; 13(15): e70105, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39140420

RESUMO

OBJECTIVE: Kidney renal clear cell carcinoma (KIRC, ccRCC) is the most common type of renal cancer with high recurrence and mortality. It has long been recognized that Antizyme inhibitor 1 (AZIN1) serves as a pro-oncogenic molecule in multiple cancers. However, the clinicopathological features of AZIN1 in KIRC remain unexplored. MATERIALS AND METHODS: The Cancer Genome Atlas (TCGA, TIMER, and GEPIA) were employed for pan-cancer expression and survival analysis of AZIN1, indicating the unique anti-tumor role of AZIN1 in KIRC. The expression and clinical characteristics of AZIN1 in KIRC were further proven via Human Protein Atlas and TCGA. single-sample GSEA was employed to investigate the immune infiltration of AZIN1. Then the downstream pathways were illustrated via the LinkedOmics, Metascape, and Cytoscape databases. The possible upper regulating noncoding RNAs (ncRNAs) were analyzed from five programs-TargetScan, StarBase, miRanda, PITA, and miRmap. RESULTS: AZIN1 is downregulated in KIRC patients. Lower levels of AZIN1 were linked with unfavorable outcomes in KIRC patients. The AZIN1 expression was positively related to immune cell infiltration in KIRC. We also elucidated a possible upstream regulatory ncRNA of AZIN1 in KIRC namely STK4-AS1/AC068338.2-miR-106b-5p-AZIN1 axis as well as the downstream signaling pathways. CONCLUSION: This study illustrated the unique anti-tumor role of AZIN1 in KIRC and provided potential value for guiding immunotherapy and targeted therapy.


Assuntos
Carcinoma de Células Renais , Regulação Neoplásica da Expressão Gênica , Neoplasias Renais , Humanos , Carcinoma de Células Renais/genética , Carcinoma de Células Renais/mortalidade , Carcinoma de Células Renais/patologia , Carcinoma de Células Renais/metabolismo , Neoplasias Renais/genética , Neoplasias Renais/patologia , Neoplasias Renais/mortalidade , Neoplasias Renais/metabolismo , Prognóstico , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Masculino , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Feminino
5.
Cells ; 13(15)2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-39120276

RESUMO

Circular RNAs (circRNAs) are cardinal players in numerous physiological and pathological processes. CircRNAs play dual roles as tumor suppressors and oncogenes in different oncological contexts, including hepatocellular carcinoma (HCC). Their roles significantly impact the disease at all stages, including initiation, development, progression, invasion, and metastasis, in addition to the response to treatment. In this review, we discuss the biogenesis and regulatory functional roles of circRNAs, as well as circRNA-protein-mRNA ternary complex formation, elucidating the intricate pathways tuned by circRNAs to modulate gene expression and cellular processes through a comprehensive literature search, in silico search, and bioinformatics analysis. With a particular focus on the interplay between circRNAs, epigenetics, and HCC pathology, the article sets the stage for further exploration of circRNAs as novel investigational theranostic agents in the dynamic realm of HCC.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Medicina de Precisão , RNA Circular , RNA não Traduzido , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/metabolismo , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/metabolismo , RNA Circular/genética , RNA Circular/metabolismo , Medicina de Precisão/métodos , RNA não Traduzido/genética , RNA não Traduzido/metabolismo , Simulação por Computador , Regulação Neoplásica da Expressão Gênica , Biologia Computacional/métodos
6.
Artigo em Inglês | MEDLINE | ID: mdl-39102033

RESUMO

PIWI-interacting RNAs (piRNAs) have received a lot of attention for their functions in cancer research. This class of short non-coding RNAs (ncRNA) has roles in genomic stability, chromatin remodeling, messenger RNA (mRNA) integrity, and genome structure. We summarized the mechanisms underlying the biogenesis and regulatory molecular functions of piRNAs. Among all piRNAs studied in cancer, this review offers a comprehensive analysis of the emerging roles of piR-823 in various types of cancer, including colorectal, gastric, liver, breast, and renal cancers, as well as multiple myeloma. piR-823 has emerged as a crucial modulator of various cancer hallmarks through regulating multiple pathways. In the current review, we analyzed several databases and conducted an extensive literature search to explore the influence of piR-823 in carcinogenesis in addition to describing the potential application of piR-823 as prognostic and diagnostic markers as well as the therapeutic potential toward ncRNA precision.

7.
Artigo em Inglês | MEDLINE | ID: mdl-39188553

RESUMO

LNA-i-miR-221 is a novel microRNA(miRNA)-221 inhibitor designed for the treatment of human malignancies. It has recently undergone phase 1 clinical trial (P1CT) and early pharmacokinetics (PKs) data in cancer patients are now available. We previously used multiple allometric interspecies scaling methods to draw inferences about LNA-i-miR-221 PKs in humans and estimated the patient dose based on the safe and pharmacodynamic (PD) active dose observed in mice, therefore providing a framework for the definition of safe starting and escalation doses for the P1CT. The preliminary data collected during the P1CT showed that the LNA-i-miR-221 anticipated doses, according to our human PK estimation approach, were indeed well tolerated and effective. PD data demonstrated concentration-dependent downregulation of miR-221 and upregulation of its CDKN1B/p27 and PTEN canonical targets as well as stable disease in 8 (50.0%) patients and partial response in 1 (6.3%) colorectal cancer case. Here, we detail the experimentally evaluated PK parameters of LNA-i-miR-221 in human, using both a non-compartmental and a population PKs approach. The population approach was adequately described by a three-compartments model with first-order elimination. The recorded age, sex and body weight of patients were evaluated as potential covariates. The estimated typical population parameter values were clearance (CL = 200 mL/h/kg), central volume of distribution (V1 = 45 mL/kg), peripheral volume of distribution (V2 = 200 mL/kg, volume of the second peripheral compartment V3 = 930 mL/h/kg) and inter-compartmental clearance (Q2 = 480 mL/h/kg and Q3 = 68 mL/h/kg). Age was found to be a predictor of Q3, with a statistically significant correlation. This work aimed also at retrospectively comparing the measured plasmatic clearance values with those predicted by different allometric scaling approaches. Our comparative analysis showed that the most accurate prediction was achieved by applying the single species allometric scaling approach and that the use of more than one species in allometric scaling to predict therapeutic oligonucleotides PKs would not necessarily generate the best prediction. Finally, our predictive approach was found accurate not only in predicting the main PK parameters in human but suggesting the range of effective and safe dose to be applied in the next clinic phase 2.

8.
Vet Sci ; 11(8)2024 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-39195815

RESUMO

Hypoxia contributes to tumor progression and metastasis, and hypoxically dysregulated RNA molecules may, thus, be implicated in poor outcomes. Canine oral melanoma (COM) has a particularly poor prognosis, and some hypoxia-mediated miRNAs are known to exist in this cancer; however, equivalent data on other hypoxically dysregulated non-coding RNAs (ncRNAs) are lacking. Accordingly, we aimed to elucidate non-miRNA ncRNAs that may be mediated by hypoxia, targeting primary-site and metastatic COM cell lines and clinical COM tissue samples in next-generation sequencing (NGS), with subsequent qPCR validation and quantification in COM primary and metastatic cells and plasma and extracellular vesicles (EVs) for any identified ncRNA of interest. The findings suggest that a number of non-miRNA ncRNA species are hypoxically up- or downregulated in COM. We identified one ncRNA, the long ncRNA fragment ENSCAFT00000084705.1, as a molecule of interest due to its consistent downregulation in COM tissues, hypoxically and normoxically cultured primary and metastatic cell lines, when compared to the oral tissues from healthy dogs. However, this molecule was undetectable in plasma and plasma EVs, suggesting that its expression may be tumor tissue-specific, and it has little potential as a biomarker. Here, we provide evidence of hypoxic transcriptional dysregulation for ncRNAs other than miRNA in COM for the first time and suggest that ncRNA ENSCAFT00000084705.1 is a molecule of interest for future research on the role of the transcriptome in the hypoxia-mediated progression of this aggressive cancer.

9.
Cancer Genet ; 288-289: 20-31, 2024 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-39213700

RESUMO

Glioblastoma (GBM) is one of the most aggressive and fatal cancers, for which Temozolomide (TMZ) chemo drug is commonly used for its treatment. However, patients gradually develop resistance to this drug, leading to tumor relapse. In our previous study, we have identified lncRNAs that regulate chemoresistance through the competing endogenous RNA (ceRNA) mechanism. In this study, we tried to find FDA-approved drugs against the target proteins of these ceRNA networks through drug repurposing using differential gene expression profiles, which could be used to nullify the effect of lncRNAs and promote the sensitivity of TMZ in GBM. We performed molecular docking and simulation studies of predicted repurposed drugs and their targets. Among the predicted repurposed drugs, we found BMS345541 has a higher binding affinity towards its target protein - FOXG1, making it a more stable complex with FOXG1-DNA. The ADMET analysis of this drug BMS345541 shows a higher half-life and lower cytotoxicity level than other predicted repurposed drugs. Hence, we conjecture that this could be a better drug for increasing the sensitivity of TMZ for treating GBM patients.

10.
Gene ; 928: 148817, 2024 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-39098512

RESUMO

It was previously thought that ncRNA could not encode polypeptides, but recent reports have challenged this notion. As research into ncRNA progresses, it is increasingly clear that it serves roles beyond traditional mechanisms, playing significant regulatory roles in various diseases, notably cancer, which is responsible for 70% of human deaths. Numerous studies have highlighted the diverse regulatory mechanisms of ncRNA that are pivotal in cancer initiation and progression. The role of ncRNA-encoded polypeptides in cancer regulation has gained prominence. This article explores the newly identified regulatory functions of these polypeptides in three types of ncRNA-lncRNA, pri-miRNA, and circRNA. These polypeptides can interact with proteins, influence signaling pathways, enhance miRNA stability, and regulate cancer progression, malignancy, resistance, and other clinical challenges. Furthermore, we discuss the evolutionary significance of these polypeptides in the transition from RNA to protein, examining their emergence and conservation throughout evolution.


Assuntos
Neoplasias , Peptídeos , RNA não Traduzido , Humanos , Neoplasias/genética , Neoplasias/metabolismo , Peptídeos/genética , Peptídeos/metabolismo , RNA não Traduzido/genética , RNA não Traduzido/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Regulação Neoplásica da Expressão Gênica , RNA Circular/genética , RNA Circular/metabolismo , Animais , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Transdução de Sinais
11.
Life Sci ; 354: 122946, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-39122108

RESUMO

Colorectal cancer (CRC) being one of the most common malignancies, has a significant death rate, especially when detected at an advanced stage. In most cases, the fundamental aetiology of CRC remains unclear despite the identification of several environmental and intrinsic risk factors. Numerous investigations, particularly in the last ten years, have indicated the involvement of epigenetic variables in this type of cancer. The development, progression, and metastasis of CRC are influenced by long non-coding RNAs (lncRNAs), which are significant players in the epigenetic pathways. LncRNAs are implicated in diverse pathological processes in CRC, such as liver metastasis, epithelial to mesenchymal transition (EMT), inflammation, and chemo-/radioresistance. It has recently been determined that CRC cells and tissues exhibit dysregulation of tens of oncogenic and tumor suppressor lncRNAs. Serum samples from CRC patients exhibit dysregulated expressions of several of these transcripts, offering a non-invasive method of detecting this kind of cancer. In this review, we outlined the typical paradigms of the deregulated lncRNA which exert significant role in the underlying molecular mechanisms of CRC initiation and progression. We comprehensively discuss the role of lncRNAs as innovative targets for CRC prognosis and treatment.


Assuntos
Neoplasias Colorretais , Regulação Neoplásica da Expressão Gênica , Medicina de Precisão , RNA Longo não Codificante , Humanos , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Neoplasias Colorretais/terapia , RNA Longo não Codificante/genética , Medicina de Precisão/métodos , Transição Epitelial-Mesenquimal/genética , Epigênese Genética , Animais , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Prognóstico
12.
Biochim Biophys Acta Rev Cancer ; 1879(5): 189153, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38986720

RESUMO

This review comprehensively investigates the intricate interplay between small non-coding RNAs (sncRNAs) and pancreatic ductal adenocarcinoma (PDAC), a devastating malignancy with limited therapeutic options. Our analysis reveals the pivotal roles of sncRNAs in various facets of PDAC biology, spanning diagnosis, pathogenesis, drug resistance, and therapeutic strategies. sncRNAs have emerged as promising biomarkers for PDAC, demonstrating distinct expression profiles in diseased tissues. sncRNA differential expression patterns, often detectable in bodily fluids, hold potential for early and minimally invasive diagnostic approaches. Furthermore, sncRNAs exhibit intricate involvement in PDAC pathogenesis, regulating critical cellular processes such as proliferation, apoptosis, and metastasis. Additionally, mechanistic insights into sncRNA-mediated pathogenic pathways illuminate novel therapeutic targets and interventions. A significant focus of this review is dedicated to unraveling sncRNA mechanisms underlying drug resistance in PDAC. Understanding these mechanisms at the molecular level is imperative for devising strategies to overcome drug resistance. Exploring the therapeutic landscape, we discuss the potential of sncRNAs as therapeutic agents themselves as their ability to modulate gene expression with high specificity renders them attractive candidates for targeted therapy. In summary, this review integrates current knowledge on sncRNAs in PDAC, offering a holistic perspective on their diagnostic, pathogenic, and therapeutic relevance. By elucidating the roles of sncRNAs in PDAC biology, this review provides valuable insights for the development of novel diagnostic tools and targeted therapeutic approaches, crucial for improving the prognosis of PDAC patients.

13.
Transl Cancer Res ; 13(6): 3106-3125, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38988908

RESUMO

N6-methyladenosine (m6A) is one of the most common internal modifications in eukaryotic RNA. The presence of m6A on transcripts can affect a series of fundamental cellular processes, including mRNA splicing, nuclear transportation, stability, and translation. The m6A modification is introduced by m6A methyltransferases (writers), removed by demethylases (erasers), and recognized by m6A-binding proteins (readers). Current research has demonstrated that m6A methylation is involved in the regulation of malignant phenotypes in tumors by controlling the expression of cancer-related genes. Non-coding RNAs (ncRNAs) are a diverse group of RNA molecules that do not encode proteins and are widely present in the human genome. This group includes microRNAs (miRNAs), long non-coding RNAs (lncRNAs), circular RNAs (circRNAs), and PIWI interaction RNAs (piRNAs). They function as oncogenes or tumor suppressors through various mechanisms, regulating the initiation and progression of cancer. Previous studies on m6A primarily focused on coding RNAs, but recent discoveries have revealed the significant regulatory role of m6A in ncRNAs. Simultaneously, ncRNAs also exert their influence by modulating the stability, splicing, translation, and other biological processes of m6A-related enzymes. The interplay between m6A and ncRNAs collectively contributes to the occurrence and progression of malignant tumors in humans. This review provides an overview of the interactions between m6A regulatory factors and ncRNAs and their impact on tumors.

14.
Front Neurosci ; 18: 1421675, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39005845

RESUMO

Alzheimer's disease (AD) is the leading cause of dementia globally, having a pathophysiology that is complex and multifactorial. Recent findings highlight the significant role of non-coding RNAs (ncRNAs), specifically microRNAs (miRNAs), long non-coding RNAs (lncRNAs), circular RNAs (circRNAs), and piwi-interacting RNAs (piRNAs) in the molecular mechanisms underlying AD. These ncRNAs are involved in critical biological processes such as cell proliferation, apoptosis, oxidative stress, amyloid-beta aggregation, tau phosphorylation, neuroinflammation, and autophagy, which are pivotal in AD development and progression. This systematic review aims to consolidate current scientific knowledge on the role of ncRNAs in AD, making it the first to encompass the four types of ncRNAs associated with the disease. Our comprehensive search and analysis reveal that ncRNAs not only play crucial roles in the pathogenesis of AD but also hold potential as biomarkers for its early detection and as novel therapeutic targets. Specifically, the findings underscore the significance of miRNAs in regulating genes involved in key AD pathways such as activin receptor signaling pathway, actomyosin contractile ring organization, and advanced glycation endproducts-receptor advanced glycation endproducts (AGE-RAGE) signaling pathway. This review also highlights the potential of ncRNAs in unveiling novel diagnostic and therapeutic strategies, emphasizing the need for further research to validate their clinical utility. Our systematic exploration provides a foundation for future bioinformatic analyses and the development of ncRNA-based precision medicine approaches for AD, offering new insights into the disease's molecular pathology and paving the way for innovative treatment strategies. Systematic review registration: PROSPERO, https://www.crd.york.ac.uk/prospero/, CRD42022355307.

15.
Front Genet ; 15: 1429411, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39036703

RESUMO

Pest control heavily relies on chemical pesticides has been going on for decades. However, the indiscriminate use of chemical pesticides often results in the development of resistance in pests. Almost all pests have developed some degree of resistance to pesticides. Research showed that the mechanisms of insecticide resistance in insects encompass metabolic resistance, behavioral resistance, penetration resistance and target-site resistance. Research on the these mechanisms has been mainly focused on the cis-regulatory or trans-regulatory for the insecticide resistance-related genes, with less attention paid to non-coding RNAs (ncRNAs), such as microRNA (miRNA), long non-coding RNA (lncRNA), and circular RNA (circRNA). There has been increased studies focus on understanding how these ncRNAs are involved in post-transcriptional regulation of insecticide resistance-related genes. Besides, the formatted endogenous RNA (ceRNA) regulatory networks (lncRNA/circRNA-miRNA-mRNA) has been identified as a key player in governing insect resistance formation. This review delves into the functions and underlying mechanisms of miRNA, lncRNA, and circRNA in regulating insect resistance. ncRNAs orchestrate insect resistance by modulating the expression of detoxification enzyme genes, insecticide target genes, as well as receptor genes, effectively regulating both target-site, metabolic and penetration resistance in insects. It also explores the regulatory mechanisms of ceRNA networks in the development of resistance. By enhancing our understanding of the mechanisms of ncRNAs in insecticide resistance, it will not only provide valuable insights into the new mechanisms of insecticide resistance but also help to enrich new directions in ncRNAs gene regulation research.

16.
Plant Biotechnol J ; 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-39021281

RESUMO

Cis-regulatory elements (CREs) are integral to the spatiotemporal and quantitative expression dynamics of target genes, thus directly influencing phenotypic variation and evolution. However, many of these CREs become highly susceptible to transcriptional silencing when in a transgenic state, particularly when organised as tandem repeats. We investigated the mechanism of this phenomenon and found that three of the six selected flower-specific CREs were prone to transcriptional silencing when in a transgenic context. We determined that this silencing was caused by the ectopic expression of non-coding RNAs (ncRNAs), which were processed into 24-nt small interfering RNAs (siRNAs) that drove RNA-directed DNA methylation (RdDM). Detailed analyses revealed that aberrant ncRNA transcription within the AGAMOUS enhancer (AGe) in a transgenic context was significantly enhanced by an adjacent CaMV35S enhancer (35Se). This particular enhancer is known to mis-activate the regulatory activities of various CREs, including the AGe. Furthermore, an insertion of 35Se approximately 3.5 kb upstream of the AGe in its genomic locus also resulted in the ectopic induction of ncRNA/siRNA production and de novo methylation specifically in the AGe, but not other regions, as well as the production of mutant flowers. This confirmed that interactions between the 35Se and AGe can induce RdDM activity in both genomic and transgenic states. These findings highlight a novel epigenetic role for CRE-CRE interactions in plants, shedding light on the underlying forces driving hypermethylation in transgenes, duplicate genes/enhancers, and repetitive transposons, in which interactions between CREs are inevitable.

17.
Front Oncol ; 14: 1373821, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38952548

RESUMO

The substantial heterogeneity exhibited by head and neck cancer (HNC), encompassing diverse cellular origins, anatomical locations, and etiological contributors, combined with the prevalent late-stage diagnosis, poses significant challenges for clinical management. Genomic sequencing endeavors have revealed extensive alterations in key signaling pathways that regulate cellular proliferation and survival. Initiatives to engineer therapies targeting these dysregulated pathways are underway, with several candidate molecules progressing to clinical evaluation phases, including FDA approval for agents like the EGFR-targeting monoclonal antibody cetuximab for K-RAS wild-type, EGFR-mutant HNSCC treatment. Non-coding RNAs (ncRNAs), owing to their enhanced stability in biological fluids and their important roles in intracellular and intercellular signaling within HNC contexts, are now recognized as potent biomarkers for disease management, catalyzing further refined diagnostic and therapeutic strategies, edging closer to the personalized medicine desideratum. Enhanced comprehension of the genomic and immunological landscapes characteristic of HNC is anticipated to facilitate a more rigorous assessment of targeted therapies benefits and limitations, optimize their clinical deployment, and foster innovative advancements in treatment approaches. This review presents an update on the molecular mechanisms and mutational spectrum of HNC driving the oncogenesis of head and neck malignancies and explores their implications for advancing diagnostic methodologies and precision therapeutics.

18.
Cell Biol Toxicol ; 40(1): 53, 2024 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-38970639

RESUMO

Diabetic retinopathy (DR), a significant and vision-endangering complication associated with diabetes mellitus, constitutes a substantial portion of acquired instances of preventable blindness. The progression of DR appears to prominently feature the loss of retinal cells, encompassing neural retinal cells, pericytes, and endothelial cells. Therefore, mitigating the apoptosis of retinal cells in DR could potentially enhance the therapeutic approach for managing the condition by suppressing retinal vascular leakage. Recent advancements have highlighted the crucial regulatory roles played by non-coding RNAs (ncRNAs) in diverse biological processes. Recent advancements have highlighted that non-coding RNAs (ncRNAs), including microRNAs (miRNAs), circular RNAs (circRNAs), and long non-coding RNAs (lncRNAs), act as central regulators in a wide array of biogenesis and biological functions, exerting control over gene expression associated with histogenesis and cellular differentiation within ocular tissues. Abnormal expression and activity of ncRNAs has been linked to the regulation of diverse cellular functions such as apoptosis, and proliferation. This implies a potential involvement of ncRNAs in the development of DR. Notably, ncRNAs and apoptosis exhibit reciprocal regulatory interactions, jointly influencing the destiny of retinal cells. Consequently, a thorough investigation into the complex relationship between apoptosis and ncRNAs is crucial for developing effective therapeutic and preventative strategies for DR. This review provides a fundamental comprehension of the apoptotic signaling pathways associated with DR. It then delves into the mutual relationship between apoptosis and ncRNAs in the context of DR pathogenesis. This study advances our understanding of the pathophysiology of DR and paves the way for the development of novel therapeutic strategies.


Assuntos
Apoptose , Retinopatia Diabética , RNA não Traduzido , Transdução de Sinais , Retinopatia Diabética/genética , Retinopatia Diabética/metabolismo , Retinopatia Diabética/terapia , Humanos , Apoptose/genética , Transdução de Sinais/genética , Animais , RNA não Traduzido/genética , RNA não Traduzido/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , RNA Circular/genética , RNA Circular/metabolismo , Retina/metabolismo , Retina/patologia
19.
Pathol Res Pract ; 260: 155442, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38991456

RESUMO

Circular RNAs (CircRNAs) are non-coding RNAs (ncRNAs) characterized by a stable circular structure that regulates gene expression at both transcriptional and post-transcriptional levels. They play diverse roles, including protein interactions, DNA methylation modification, protein-coding potential, pseudogene creation, and miRNA sponging, all of which influence various physiological processes. CircRNAs are often highly expressed in brain tissues, and their levels vary with neural development, suggesting their significance in nervous system diseases such as gliomas. Research has shown that circRNA expression related to the PI3K pathway correlates with various clinical features of gliomas. There is an interact between circRNAs and the PI3K pathway to regulate glioma cell processes such as proliferation, differentiation, apoptosis, inflammation, angiogenesis, and treatment resistance. Additionally, PI3K pathway-associated circRNAs hold potential as biomarkers for cancer diagnosis, prognosis, and treatment. In this study, we reviewed the latest advances in the expression and cellular roles of PI3K-mediated circRNAs and their connections to glioma carcinogenesis and progression. We also highlighted the significance of circRNAs as diagnostic and prognostic biomarkers and therapeutic targets in glioma.


Assuntos
Neoplasias Encefálicas , Progressão da Doença , Glioma , Fosfatidilinositol 3-Quinases , RNA Circular , Transdução de Sinais , Humanos , Glioma/patologia , Glioma/genética , Glioma/metabolismo , RNA Circular/genética , RNA Circular/metabolismo , Transdução de Sinais/genética , Fosfatidilinositol 3-Quinases/metabolismo , Fosfatidilinositol 3-Quinases/genética , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/metabolismo , Regulação Neoplásica da Expressão Gênica/genética , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Animais
20.
Sci Total Environ ; 949: 174864, 2024 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-39032741

RESUMO

DNA methylation plays a pivotal role in cancer. The ubiquitous contaminant perfluorooctanesulfonic acid (PFOS) has been epidemiologically associated with breast cancer, and can induce proliferation and malignant transformation of normal human breast epithelial cells (MCF-10A), but the information about its effect on DNA methylation is sparse. The aim of this study was to characterize the whole-genome methylome effects of PFOS in our breast cell model and compare the findings with previously demonstrated DNA methylation alterations in breast tumor tissues. The DNA methylation profile was assessed at single CpG resolution in MCF-10A cells treated with 1 µM PFOS for 72 h by using Enzymatic Methyl sequencing (EM-seq). We found 12,591 differentially methylated CpG-sites and 13,360 differentially methylated 100 bp tiles in the PFOS exposed breast cells. These differentially methylated regions (DMRs) overlapped with 2406 genes of which 494 were long non-coding RNA and 1841 protein coding genes. We identified 339 affected genes that have been shown to display altered DNA methylation in breast cancer tissue and several other genes related to cancer development. This includes hypermethylation of GACAT3, DELEC1, CASC2, LCIIAR, MUC16, SYNE1 and hypomethylation of TTN and KMT2C. DMRs were also found in estrogen receptor genes (ESR1, ESR2, ESRRG, ESRRB, GREB1) and estrogen responsive genes (GPER1, EEIG1, RERG). The gene ontology analysis revealed pathways related to cancer phenotypes such as cell adhesion and growth. These findings improve the understanding of PFOS's potential role in breast cancer and illustrate the value of whole-genome methylome analysis in uncovering mechanisms of chemical effects, identifying biomarker candidates, and strengthening epidemiological associations, potentially impacting risk assessment.


Assuntos
Ácidos Alcanossulfônicos , Neoplasias da Mama , Metilação de DNA , Fluorocarbonos , Humanos , Ácidos Alcanossulfônicos/toxicidade , Fluorocarbonos/toxicidade , Metilação de DNA/efeitos dos fármacos , Neoplasias da Mama/genética , Feminino , Epigenoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...