Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 952: 175965, 2024 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-39233090

RESUMO

Coastal aquaculture ponds represented a biogeochemical hotspot in the global carbon cycle. However, there was a limited understanding of their dynamics. In this study, the eddy covariance (EC) technique was applied to quantify the net ecosystem CO2 exchange (NEE) over coastal aquaculture ponds in the Liaohe River estuary in northern China during 2020, aiming to investigate and quantify the carbon exchange characteristics of this region. The results showed that (a) a predominant "U" shaped diurnal NEE pattern throughout the year. During the sea cucumber monoculture phase, the ponds exhibited a consistent daytime carbon sink and nighttime carbon source pattern. In contrast, during the shrimp and sea cucumber polyculture phase, the ponds mostly remained in a net carbon sink state. (b) NEE was negatively correlated with photosynthetically active radiation (PAR), air temperature (Tair), and wind speed (WS), while showing a positive correlation with atmospheric pressure (AP). (c) Overall, the entire study area (complex underlying surfaces) functioned as a carbon sink in 2020, with a total net carbon sequestration of 281.533 g C·m-2. This was approximately four times greater than the restored wetlands that naturally formed from decommissioned coastal aquaculture ponds. Adjusting for surface heterogeneity revealed that the complex surfaces led to a 34.28 % underestimation of the aquaculture region's unit area carbon sequestration capacity. This study was crucial for assessing the carbon cycling and sequestration functions of coastal aquaculture pond ecosystems and provided a scientific basis for related ecological restoration projects.

2.
Environ Monit Assess ; 196(10): 905, 2024 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-39243344

RESUMO

The apple orchards in Liaoning, one of the four major apple-producing areas in Bohai Bay, Northeast China, play a crucial role in regulating the carbon sink effect. However, there is limited information on the variation in carbon flux and its influential factors in apple orchards in this region. To address this, CO2 flux data were monitored throughout the entire apple growth seasons from April to November in 2017 and 2018 in the apple (Malus pumila Mill. cv Hanfu) orchard in Shenyang, China. The energy closure of the apple orchard was calculated, and variations in net ecosystem exchange (NEE) at different time scales and its response to environmental factors were analyzed. Our results showed that the energy balance ratio of the apple was 0.74 in 2017 and 1.38 in 2018. NEE was generally positive in April and November and negative from May to October, indicating a strong carbon sink throughout the growth season. The daily average NEE ranged from - 0.103 to 0.094 mg m-2 s-1 in 2017 and from - 0.134 to 0.059 mg m-2 s-1 in 2018, with the lowest values observed in June and July. NEE was negatively correlated with net radiation, atmospheric temperature, saturated vapor pressure deficit, and soil temperature. These findings provide valuable insights for predicting carbon flux in orchard ecosystems within the context of global climate change.


Assuntos
Dióxido de Carbono , Ecossistema , Monitoramento Ambiental , Malus , Malus/crescimento & desenvolvimento , China , Dióxido de Carbono/análise , Sequestro de Carbono , Estações do Ano , Poluentes Atmosféricos/análise , Solo/química , Ciclo do Carbono , Agricultura
3.
Sci Total Environ ; 944: 173742, 2024 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-38839012

RESUMO

Climate change is causing more frequent and intense heatwaves. Therefore, it is important to understand how heatwaves affect the terrestrial carbon cycle, especially in grasslands, which are especially susceptible to climate extremes. This study assessed the impact of naturally occurring, simultaneous short-term heatwaves on CO2 fluxes in three ecosystems on the Mongolia Plateau: meadow steppe (MDW), typical steppe (TPL), and shrub-grassland (SHB). During three heatwaves, net ecosystem productivity (NEP) was reduced by 86 %, 178 %, and 172 % at MDW, TPL, and SHB, respectively. The changes in ecosystem respiration, gross primary production, evapotranspiration, and water use efficiency were divergent, indicating the mechanisms underlying the observed NEP decreases among the sites. The impact of the heatwave in MDW was mitigated by the high soil water content, which enhanced evapotranspiration and subsequent cooling effects. However, at TPL, insufficient soil water led to combined thermal and drought stress and low resilience. At SHB, the ecosystem's low tolerance to an August heatwave was heavily influenced by species phenology, as it coincided with the key phenological growing phase of plants. The potential key mechanism of divergent NEP response to heatwaves lies in the divergent stability and varying importance of environmental factors, combined with the specific sensitivity of NEP to each factor in ecosystems. Furthermore, our findings suggest that anomalies in soil environment, rather than atmospheric anomalies, are the primary determinants of NEP anomalies during heatwaves. This challenges the conventional understanding of heatwaves as a discrete and ephemeral periods of high air temperatures. Instead, heatwaves should be viewed as chronologically variable, compound, and time-sensitive environmental stressors. The ultimate impact of heatwaves on ecosystems is co-determined by a complex interplay of environmental, biological, and heatwave features.


Assuntos
Mudança Climática , Pradaria , Solo , Solo/química , Mongólia , Ciclo do Carbono , Ecossistema , Monitoramento Ambiental , Temperatura Alta
4.
Sci Total Environ ; 927: 172276, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38583634

RESUMO

The increases in extent and frequency of extreme drought events and increased nitrogen (N) deposition due to global change are expected to have profound impacts on carbon cycling in semi-arid grasslands. However, how ecosystem CO2 exchange processes respond to different drought scenarios individually and interactively with N addition remains uncertain. In this study, we experimentally explored the effects of different drought scenarios (early season extreme drought, 50 % reduction in precipitation amount, and 50 % reduction in precipitation events) and N addition on net ecosystem CO2 exchange (NEE), ecosystem respiration (ER), and gross ecosystem productivity (GEP) over three growing seasons (2019-2021) in a semi-arid grassland in northern China. The growing-season ecosystem carbon fluxes in response to drought and N addition were influenced by inter-annual precipitation changes, with 2019 as a normal precipitation year, and 2020 and 2021 as wet years. Early season extreme drought stimulated NEE by reducing ER. 50 % reduction in precipitation amount decreased ER and GEP consistently in three years, but only significantly suppressed NEE in 2019. 50 % reduction in precipitation events stimulated NEE. Nitrogen addition stimulated NEE, ER, and GEP, but only significantly in wet years. The structural equation models showed that changes in carbon fluxes were regulated by soil moisture, soil temperature, microbial biomass nitrogen (MBN), and the key plant functional traits. Decreased community-weighted means of specific leaf area (CWMSLA) was closely related to the reduced ER and GEP under early season extreme drought and 50 % reduction in precipitation amount. While increased community-weighted means of plant height (CWMPH) largely accounted for the stimulated ER and GEP under 50 % reduction in precipitation events. Our study stresses the distinct effects of different drought scenarios and N enrichment on carbon fluxes, and highlights the importance of soil traits and the key plant traits in determining carbon exchange in this water-limited ecosystem.


Assuntos
Ciclo do Carbono , Secas , Pradaria , Nitrogênio , Nitrogênio/análise , China , Chuva , Mudança Climática , Ecossistema , Carbono/metabolismo , Estações do Ano
5.
Sci Total Environ ; 929: 172611, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38642764

RESUMO

Understanding the dynamics of carbon and water vapor fluxes in arid inland river basin ecosystems is essential for predicting and assessing the regional carbon-water budget amid climate change. However, studies aiming to unravel the mechanisms driving the variations and coupling process of regional carbon-water budget in a changing environment in arid regions are limited. Here, we used the eddy covariance technique to analyze the relationship between CO2 and H2O fluxes in three typical ecosystems across the upper, middle, and lower reaches of an arid inland river basin in Northwestern China. Our results showed that all ecosystems acted as carbon sinks, with the alpine swamp meadow, cropland, and desert shrubland sequestrating -300.2 ± 0.01, -644.8 ± 2.9, and - 203.7 ± 22.5 g C m-2 yr-1, respectively. Air temperature (Ta) primarily controlled daily gross primary productivity (GPP) and net ecosystem CO2 exchange (NEE) in the irrigated cropland during the growing season, while soil temperature (Ts) and vapor pressure deficit (VPD) regulated these parameters in the alpine swamp meadow and desert shrubland. Additionally, Ta and net radiation (Rn) controlled daily evapotranspiration (ET) in cropland, while Ts and Rn regulated ET at other sites. Consequently, carbon and water vapor fluxes of all three ecosystems tended to be energy-limited during the growing season. The differential responses of carbon and water vapor fluxes in the upper, middle, and lower reaches of these ecosystems to biophysical factors determined their distinct coupling and variations in water use efficiency. Notably, the desert shrub ecosystem in the lower reach of the basin maintained a stable balance between carbon gain and water loss, indicating adaptation to aridity. This study provides valuable insights into the underlying mechanisms behind the changes in carbon and water vapor fluxes and water-use efficiency in arid river basin ecosystems.

6.
Huan Jing Ke Xue ; 45(2): 920-928, 2024 Feb 08.
Artigo em Chinês | MEDLINE | ID: mdl-38471930

RESUMO

Coastal wetlands are important carbon sinks, and they contribute to reducing the effects of global warming. This study used the eddy covariance method to detect the CO2 flux in the restoration wetland of the Liaohe River estuary in 2021 and investigate the characteristics of ecosystem CO2 exchange and its environmental control factors. The aim was to assess the carbon source/sink capacity of salt marshes in the restored area and to provide data support and theoretical basis for evaluating the effectiveness of ecological restoration projects. The study revealed "U" curves in spring and autumn, "V" curves in summer, and horizontal lines in winter for the average daily variation curve of net ecosystem CO2 exchange (NEE) in the restored area. Its carbon sink efficiencies were -40.06, -63.62, 2.33, and 34.43 g·m-2 in the spring, summer, autumn, and winter, respectively. In the restored area, the daily cumulative variation in NEE was "V" shaped, and the monthly cumulative changes in NEE, ecosystem respiration (Reco), and gross primary productivity (GPP) were obviously different. Photosynthetically active radiation (PAR) was an important regulation factor of daytime NEE in the restored area in 2021, and they displayed a rectangular hyperbolic relationship. PAR could explain 53% of the variation in the daytime NEE. Air temperature (Ta) was the main control factor of Reco,night, and there was an exponential relationship between them. When Ta < 5.5 ℃, the temperature sensitivity of ecosystem respiration (Q10) was 2.19, and Ta could explain 42% of the variation in the Reco,night; when Ta ≥ 5.5 ℃, the Q10 was 1.81, and Ta could explain 51% of the variation in the Reco,night. Additionally, there were significant linear negative correlations between NEE and both soil water content (SWC) and vapor pressure deficit (VPD), whereas NEE was not significantly correlated with soil temperature (Ts) or relative humidity (RH). In 2021, the restored wetland in the Liaohe River estuary acted as a CO2 sink, and the total net carbon sequestration was -66.89 g·m-2. The restored salt plays a role as an important carbon sink and has long-term carbon sequestration potential.

7.
Sci Total Environ ; 918: 170517, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38296087

RESUMO

Sandy regions constitute pivotal components of terrestrial ecosystems, exerting significant influences on global ecological equilibrium and security. This study meticulously explored water and carbon fluxes dynamics within a dune ecosystem in the Horqin Sandy Land throughout the growing seasons from 2013 to 2022 by employing an advanced eddy covariance system. The dynamic characteristics of these fluxes and their underlying driving forces were extensively analyzed, with a particular focus on the impact of precipitation. The main results are as follows: (1) During the growing seasons of 2015 and 2016, the dune ecosystem acted as a modest carbon source, while in 2013, 2014, and 2017- 2022, it transformed into a net carbon sink. Notably, the annual mean values of water use efficiency (WUE) and evapotranspiration (ET) were 5.16 gC·kg-1H2O and 255.4 mm, respectively. (2) The intensity, frequency, and temporal distribution of precipitation were found to significantly influence the carbon and water fluxes dynamics. Isolated minor precipitation events did not trigger substantial fluctuations, but substantial and prolonged precipitation events spanning multiple days or consecutive minor precipitation events resulted in notable assimilation delays. (3) Air temperature, soil temperature, and fractional vegetation cover (FVC) were found to be key factors influencing the carbon and water fluxes. Specifically, FVC exhibited a negative logarithmic correlation with net ecosystem CO2 exchange (NEE) and a power function relationship with WUE. (4) The interaction between carbon and water fluxes is exhibited by exponential increases in ecosystem respiration (Reco) and gross primary productivity (GPP) with WUE, while NEE displayed an exponential decrease in relation to WUE. These findings are of high significance in predicting the potential ramifications of climate change on the intricate carbon and water cycles, and enhance our understanding of ecosystem dynamics in sandy environments.

8.
Sci Total Environ ; 877: 162907, 2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-36934924

RESUMO

Increased nitrogen (N) deposition and altered precipitation regimes have profound effects on carbon (C) flux in semi-arid grasslands. However, the interactive effects between N enrichment and precipitation alterations (both increasing and decreasing) on ecosystem CO2 fluxes and ecosystem resource use efficiency (water use efficiency (WUE) and carbon use efficiency (CUE)) remain unclear, particularly in saline-alkaline grasslands. A four-year (2018-2021) field manipulation experiment was conducted to investigate N enrichment and precipitation alterations (decreased and increased by 50 % of ambient precipitation) and their interactions on ecosystem CO2 fluxes (gross- ecosystem productivity (GEP), ecosystem respiration (ER), and net ecosystem CO2 exchange (NEE)), as well as their underlying regulatory mechanisms under severe salinity stress in northern China. Our results showed that N addition and precipitation alteration alone did not significantly affect the GEP, ER and NEE. While the interaction of N addition and increased precipitation over the four years significantly improved the mean GEP and NEE by 24.9 % and 15.9 %, respectively. The interactive effects of N addition and increased precipitation treatment significantly stimulated the mean value of WUE by 39.1 % compared with control, but had no significant effects on CUE over the four years. Based on the four-year experiment, the magnitude and direction of the effects of N addition on the NEE were related to seasonal precipitation. Nitrogen addition increased the NEE under increased precipitation and decreased it during extreme drought. Soil salinization (pH and base cations) could directly or indirectly affect GEP and NEE via plants productivity, plant communities, as well as ecosystem resource use efficiency (WUE and CUE) based on structural equation model. Our results address lacking investigations of ecosystem C flux in saline-alkaline grasslands, and highlight that precipitation regulates the magnitude and direction of N addition on NEE in saline-alkaline grasslands.

9.
Front Plant Sci ; 14: 1119670, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36760633

RESUMO

Boreal forests, the second continental biome on Earth, are known for their massive carbon storage capacity and important role in the global carbon cycle. Comprehending the temporal dynamics and controlling factors of net ecosystem CO2 exchange (NEE) is critical for predicting how the carbon exchange in boreal forests will change in response to climate change. Therefore, based on long-term eddy covariance observations from 2008 to 2018, we evaluated the diurnal, seasonal, and interannual variations in the boreal forest ecosystem NEE in Northeast China and explored its environmental regulation. It was found that the boreal forest was a minor CO2 sink with an annual average NEE of -64.01 (± 24.23) g CO2 m-2 yr-1. The diurnal variation in the NEE of boreal forest during the growing season was considerably larger than that during the non-growing season, and carbon uptake peaked between 8:30 and 9:30 in the morning. The seasonal variation in NEE demonstrated a "U" shaped curve, and the carbon uptake peaked in July. On a half-hourly scale, photosynthetically active radiation and vapor pressure deficit had larger impacts on daytime NEE during the growing season. However, temperature had major control on NEE during the growing season at night and during the non-growing season. On a daily scale, temperature was the dominant factor controlling seasonal variation in NEE. Occurrence of extreme temperature days, especially extreme temperature events, would reduce boreal forest carbon uptake; interannual variation in NEE was substantially associated with the maximum CO2 uptake rate during the growing season. This study deepens our understanding of environmental controls on NEE at multiple timescales and provides a data basis for evaluating the global carbon budget.

10.
Life (Basel) ; 12(12)2022 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-36556470

RESUMO

Under the macroenvironmental background of global warming, all countries are working to limit climate change. Internationally, biofuel plants are considered to have great potential in carbon neutralization. Several countries have begun using biofuel crops as energy sources to neutralize carbon emissions. Switchgrass (Panicum virgatum) is considered a resource-efficient low-input crop that produces bioenergy. In this paper, we reviewed the effects of switchgrass cultivation on carbon sequestration and greenhouse gas (GHG) emissions. Moreover, the future application and research of switchgrass are discussed and prospected. Switchgrass has huge aboveground and underground biomass, manifesting its huge carbon sequestration potential. The net change of soil surface 30 cm soil organic carbon in 15 years is predicted to be 6.49 Mg ha-1, significantly higher than that of other crops. In addition, its net ecosystem CO2 exchange is about -485 to -118 g C m-2 yr-1, which greatly affects the annual CO2 flux of the cultivation environment. Nitrogen (N) fertilizer is the main source of N2O emission in the switchgrass field. Nitrogen addition increases the yield of switchgrass and also increases the N2O flux of switchgrass soil. It is necessary to formulate the most appropriate N fertilizer application strategy. CH4 emissions are also an important indicator of carbon debt. The effects of switchgrass cultivation on CH4 emissions may be significant but are often ignored. Future studies on GHG emissions by switchgrass should also focus on CH4. In conclusion, as a biofuel crop, switchgrass can well balance the effects of climate change. It is necessary to conduct studies of switchgrass globally with the long-term dimension of climate change effects.

11.
Sci Total Environ ; 853: 158610, 2022 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-36089030

RESUMO

The heat waves (HW) will be more frequent and intense in the future with increased human activity and uncertain implications for ecosystem carbon fluxes. The semi-arid Eurasian grassland is sensitive to climate change and under frequent HWs attacks. Mowing as one of the most common human practices in this region, combining with HW can have comprehensive effects on plant communities, biomass, and nutrient cycling. Hence, a 3-year (2019-2021) field manipulation experiment was conducted to assess how mowing influenced the carbon cycling under HWs, and the interactions between HWs and mowing on carbon fluxes at the community and ecosystem levels in a Eurasian meadow steppe. Over the three years, HW significantly reduced net ecosystem CO2 exchange (NEE) and gross ecosystem production (GEP) by 28 % and 8 % (P < 0.05), respectively, whereas ecosystem respiration (Re) did not show significant changes. Moderate mowing (stubble height was set at 6-8 cm) for harvest effectively mitigated ecosystem sensitivity to HWs and significantly increased ecosystem carbon fluxes (NEE, Re, and GEP), biomass and the number of species. Mowing reduced the negative impact of HWs on ecosystem carbon fluxes by about 15 % compared to HWs alone, contributing to the invasion of species such as Thalictrum squarrosum and Vicia amoena, and increased the indirect effect of HW on NEE in the structural equation model. In addition, the higher soil water content (SWC) was another effective way to reduce the impact of HWs. Therefore, mowing and higher SWC would be effective ways to counteract the negative effects of HWs on carbon fluxes in future grassland management.


Assuntos
Ecossistema , Pradaria , Humanos , Dióxido de Carbono/química , Temperatura Alta , Ciclo do Carbono , Solo , Água/química , Carbono/química
12.
Environ Sci Pollut Res Int ; 29(24): 36486-36501, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35064497

RESUMO

It is of great significance to study the effects of precipitation events on carbon exchange in the ecosystem for an accurate understanding of the carbon cycle. However, the response of net ecosystem CO2 exchange (NEE) in the desert to precipitation events is elusive. In this study, the NEE in response to precipitation events of varying intensities in the Badain Jaran Desert (BJD) in China was continuously monitored using the eddy covariance (EC) technique. The following results were obtained: (1) The BJD ecosystem was a net CO2 sink throughout the study period, with NEE values of -113.4, -130.7, and -175.4 g C m-2a-1 in 2016, 2018, and 2019, respectively. The total precipitation yielded a higher carbon sequestration capacity in 2019 than in the other two years. In addition, the intensity, time, and frequency of precipitation had significant impacts on CO2; (2) the threshold value of the NEE response to precipitation was ~1.4 mm, indicating the extreme sensitivity of the BJD to precipitation events; (3) the variations in the NEE response to precipitation events conformed to a dual exponential model. The analytical results of the model indicate that precipitation intensity was positively correlated with the carbon sequestration capacity of the desert. The model revealed that the greater the precipitation intensity, the longer it takes the NEE to reach the maximum, and the lengthier the duration of the residual effects. With an increase in the total precipitation and frequency of extreme precipitation events under warm and humidification climates, the carbon sequestration capacity of the BJD will likely be enhanced. The results of this study are of great significance for revealing the carbon cycle mechanism of the desert ecosystem.


Assuntos
Dióxido de Carbono , Ecossistema , Carbono/análise , Ciclo do Carbono , Dióxido de Carbono/análise , Sequestro de Carbono , China
13.
Glob Chang Biol ; 27(23): 6192-6205, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34525229

RESUMO

Subtropical forests are important ecosystems globally due to their extensive role in carbon sequestration. Extreme climate events are known to introduce disturbances in the ecosystem that cause long-term changes in carbon balance and radiation reflectance. However, how these ecosystem function changes contribute to global warming in terms of radiative forcing (RF), especially in the years following a disturbance, still needs to be investigated. We studied an extreme snow event that occurred in a subtropical evergreen broadleaved forest in south-western China in 2015 and used 9 years (2011-2019) of net ecosystem CO2 exchange (NEE) and surface albedo (α) data to investigate the effect of the event on the ecosystem RF changes. In the year of the disturbance, leaf area index (LAI) declined by 40% and α by 32%. The annual NEE was -718 ±â€…128 g C m-2 as a sink in the pre-disturbance years (2011-2014), but after the event, the sink strength dropped significantly by 76% (2015). Both the vegetation, indicated by LAI, and α recovered to pre-disturbance levels in the fourth post-disturbance year (2018). However, the NEE recovery lagged and occurred a year later in 2019, suggesting a more severe and lasting impact on the ecosystem carbon balance. Overall, the extreme event caused a positive (warming effect) net RF which was predominantly caused by changes in α (90%-93%) rather than those in NEE. This result suggests that, compared to the climate effect caused by forest carbon sequestration changes, the climate effect of α alterations can be more sensitive to vegetation damage induced by natural disturbances. Moreover, this study demonstrates the important role of vegetation recovery in driving canopy reflectance and ecosystem carbon balance during the post-disturbance period, which determines the ecosystem feedbacks to the climate change.


Assuntos
Ecossistema , Neve , Carbono , Dióxido de Carbono , Mudança Climática , Florestas
14.
Ying Yong Sheng Tai Xue Bao ; 31(11): 3665-3673, 2020 Nov.
Artigo em Chinês | MEDLINE | ID: mdl-33300716

RESUMO

Accurate measurement of CO2 storage flux (Fs) in forest ecosystems is of great significance for estimating ecosystem carbon budget by eddy covariance (EC). The errors in the estimation of ecosystem carbon budget caused by different methods for calculating Fs has yet not been comprehensively assessed. Using data from an open-path EC system and an eight-level CO2/H2O profile system (AP100, Campbell Scientific Inc., USA) in a broadleaved deciduous forest at the Maoer-shan in 2018, we evaluated the methodological effect of Fs[2-min mean profile (P2 min), 30-min mean profile (P30 min) and 30-min mean EC single point (Ps)] on the estimation of net ecosystem exchange (NEE), ecosystem respiration (Re), and gross primary productivity (GPP). The results showed that the impact of Fs methods on forest carbon flux generally increased with the increases of time scale, indicating that gap-filling of flux data would further amplify the impacts of Fs estimation methods. At the annual scale, NEE based on P2 min and Ps methods were 36.3% and 29.4% lower than that based on P30 min, while Re based on P2 min was higher than that based on P30 min and Ps by 8.7%. The GPP based on P2 min was 5.4% higher, while that based on Ps was 2.1% lower than that based on P30 min. The traditional P30 min ignored the instantaneous changes in CO2 concentration, Ps missed the changes of CO2 concentration within canopy, and thus both underestimated the actual Re. The approximately instantaneous profile (2-min mean profile) had higher temporal and spatial resolution and could more accurately estimate forest carbon budget with non-flat terrain and complex canopy structure. Our findings had great implications for solving the underestimation of forest Re and GPP as well as the overestimation of net carbon sink on complex conditions with the EC method.


Assuntos
Carbono , Ecossistema , Ciclo do Carbono , Dióxido de Carbono , Florestas
15.
Ecol Evol ; 9(17): 9723-9735, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31534688

RESUMO

Tea plantations are widely distributed and continuously expanding across subtropical China in recent years. However, carbon flux exchanges from tea plantation ecosystems are poorly understood at the ecosystem level. In this study, we use the eddy covariance technique to quantify the magnitude and temporal variations of the net ecosystem exchange (NEE) in tea plantation in Southeast China over four years (2014-2017). The result showed that the tea plantation was a net carbon sink, with an annual NEE that ranged from -182.40 to -301.51 g C/m2, which was a much lower carbon sequestration potential than other ecosystems in subtropical China. Photosynthetic photon flux density (PPFD) explained the highest proportion of the variation in NEE and gross primary productivity (GPP) (for NEE: F = 389.89, p < .01; for GPP: F = 1,018.04, p < .01), and air temperature (Ta) explained the highest proportion of the variation in ecosystem respiration (RE) (F = 13,141.81, p < .01). The strong pruning activity in April not only reduced the carbon absorption capacity but also provided many plant residues for respiration, which switched the tea plantation to a carbon source from April to June. Suppression of NEE at higher air temperatures was due to the decrease in GPP more than the decrease in RE, which indicated that future global warming may transform this subtropical tea plantation from a carbon sink to carbon source.

16.
Glob Chang Biol ; 25(10): 3319-3333, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31148318

RESUMO

Climate change has altered global precipitation patterns and has led to greater variation in hydrological conditions. Wetlands are important globally for their soil carbon storage. Given that wetland carbon processes are primarily driven by hydrology, a comprehensive understanding of the effect of inundation is needed. In this study, we evaluated the effect of water level (WL) and inundation duration (ID) on carbon dioxide (CO2 ) fluxes by analysing a 10-year (2008-2017) eddy covariance dataset from a seasonally inundated freshwater marl prairie in the Everglades National Park. Both gross primary production (GPP) and ecosystem respiration (ER) rates showed declines under inundation. While GPP rates decreased almost linearly as WL and ID increased, ER rates were less responsive to WL increase beyond 30 cm and extended inundation periods. The unequal responses between GPP and ER caused a weaker net ecosystem CO2 sink strength as inundation intensity increased. Eventually, the ecosystem tended to become a net CO2 source on a daily basis when either WL exceeded 46 cm or inundation lasted longer than 7 months. Particularly, with an extended period of high-WLs in 2016 (i.e., WL remained >40 cm for >9 months), the ecosystem became a CO2 source, as opposed to being a sink or neutral for CO2 in other years. Furthermore, the extreme inundation in 2016 was followed by a 4-month postinundation period with lower net ecosystem CO2 uptake compared to other years. Given that inundation plays a key role in controlling ecosystem CO2 balance, we suggest that a future with more intensive inundation caused by climate change or water management activities can weaken the CO2 sink strength of the Everglades freshwater marl prairies and similar wetlands globally, creating a positive feedback to climate change.


Assuntos
Dióxido de Carbono , Áreas Alagadas , Mudança Climática , Ecossistema , Água Doce
17.
Glob Chang Biol ; 24(11): 5188-5204, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30101501

RESUMO

Across the Arctic, the net ecosystem carbon (C) balance of tundra ecosystems is highly uncertain due to substantial temporal variability of C fluxes and to landscape heterogeneity. We modeled both carbon dioxide (CO2 ) and methane (CH4 ) fluxes for the dominant land cover types in a ~100-km2 sub-Arctic tundra region in northeast European Russia for the period of 2006-2015 using process-based biogeochemical models. Modeled net annual CO2 fluxes ranged from -300 g C m-2  year-1 [net uptake] in a willow fen to 3 g C m-2  year-1 [net source] in dry lichen tundra. Modeled annual CH4 emissions ranged from -0.2 to 22.3 g C m-2  year-1 at a peat plateau site and a willow fen site, respectively. Interannual variability over the decade was relatively small (20%-25%) in comparison with variability among the land cover types (150%). Using high-resolution land cover classification, the region was a net sink of atmospheric CO2 across most land cover types but a net source of CH4 to the atmosphere due to high emissions from permafrost-free fens. Using a lower resolution for land cover classification resulted in a 20%-65% underestimation of regional CH4 flux relative to high-resolution classification and smaller (10%) overestimation of regional CO2 uptake due to the underestimation of wetland area by 60%. The relative fraction of uplands versus wetlands was key to determining the net regional C balance at this and other Arctic tundra sites because wetlands were hot spots for C cycling in Arctic tundra ecosystems.


Assuntos
Ciclo do Carbono , Tundra , Regiões Árticas , Carbono , Dióxido de Carbono/análise , Ecossistema , Metano/análise , Federação Russa , Solo , Áreas Alagadas
18.
Oecologia ; 188(2): 355-365, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29959571

RESUMO

Climatic patterns are expected to become more extreme, with changes in precipitation characterized by heavier rainfall and prolonged dry periods. Yet, most studies focus on persistent moderate changes in precipitation, limiting our understanding of how ecosystems will function in the future. We examined the effects of extreme changes in precipitation on leaf-level and ecosystem CO2 and H2O exchange of three native C4 bunchgrasses (Andropogon gerardii, Panicum virgatum, and Sorghastrum nutans) over 3 years. Grasses were grown in three precipitation treatments: extreme dry, mean, and extreme wet based on historical rainfall records. After 3 years, plants were 45% smaller in the extreme dry treatment relative to the mean and extreme high treatment, which did not differ. We also found that an extreme decrease in precipitation caused reductions of 55, 40, and 40% in leaf-level photosynthesis (Anet), stomatal conductance (gs), and water use efficiency (WUE), respectively. Extreme increases in precipitation inhibited leaf-level WUE, with a 44% reduction relative to the mean treatment. At the ecosystem level, both an extreme increase and decrease in precipitation reduced net CO2 and water fluxes relative to plants grown with mean levels of precipitation. Net water fluxes (ET) were reduced by an average of 74% in the extreme dry and extreme wet treatment relative to mean treatment; net carbon fluxes followed a similar trend, with average reductions of 68% (NEE) and 100% (Re). Unlike moderate climate change, extreme increases in precipitation may be just as detrimental as extreme decreases in precipitation in shifting grassland physiology.


Assuntos
Ecossistema , Poaceae , Ciclo do Carbono , Dióxido de Carbono , Fotossíntese
19.
Ying Yong Sheng Tai Xue Bao ; 29(5): 1523-1534, 2018 May.
Artigo em Chinês | MEDLINE | ID: mdl-29797885

RESUMO

Using the eddy covariance technique, the Bowen-ratio meteorological and soil monitoring system, we analyzed the CO2 flux dynamics and its responses to temperature and moisture over a meadow wetland in the Horqin during the growing season (from May to September) in 2016. The results showed that the accumulated net ecosystem CO2 exchange (NEE) was -766.18 g CO2·m-2 during the growing season. The gross primary productivity (GPP) and ecosystem respiration (Re) were 3379.89 and 2613.71 g CO2·m-2, respectively. The ratio of Re to GPP was 77.3%, indicating that this ecosystem was an obvious carbon sink. The average diurnal variation of NEE exhibited a single peak U-shaped curve with an absorption of CO2 from May to mid August and a release of CO2 from late August to September. Daytime NEE well fitted with the photosynthetically active radiation (PAR) by a rectangular hyperbolic function. Meanwhile, the relationship was affected by the environmental factors, including vapor pressure deficit (VPD), soil water content (SWC) and air temperature (Ta). Regression analysis showed that the VPD and SWC for the maximum daytime NEE were 1.75 kPa and 35.5%, respectively. Daytime NEE increased with Ta, and with no inhibitory effect on the daytime NEE when it reached the maximum. Nighttime NEE had an exponential relationship with soil temperature (Ts). During the entire growing season, the temperature sensitivity of the ecosystem respiration (Q10) was 2.4, which was negatively related to SWC. The nighttime NEE was controlled by both Ts and SWC.


Assuntos
Ciclo do Carbono , Dióxido de Carbono , Áreas Alagadas , China , Ecossistema , Pradaria , Fotossíntese , Estações do Ano , Temperatura
20.
Ying Yong Sheng Tai Xue Bao ; 29(1): 269-277, 2018 Jan.
Artigo em Chinês | MEDLINE | ID: mdl-29692036

RESUMO

As a unique hydrological characteristic, the tidal action can strongly affect carbon balance in a salt marsh despite their short duration. Using the eddy covariance technique, we measured the net ecosystem CO2 exchange (NEE) and its environmental factors and tidal change over a salt marsh in the Yellow River Delta. It aimed to investigate the effect of tidal process and drying and wetting cycles induced by tides on NEE. The results showed that the tidal process promoted the daytime CO2 uptake, but it didn't clearly affect the nighttime CO2 release. Tidal inundation was a major factor influencing daytime NEE. The diurnal change of NEE showed a distinct U-shaped curve on both drought and wet stages, but not with substantial variation in its amplitude during the drought stage. The drying and wetting cycles enhanced the absorption of daytime CO2. Under drought stage, the mean of the maximum photosynthetic rate (Amax), apparent quantum yield (α) and ecosystem respiration (Reco) were higher than those in wet stage. In addition, the drying and wetting cycles suppressed the nighttime CO2 release from the salt marsh but increased its temperature sensitivity.


Assuntos
Dióxido de Carbono , Ecossistema , Áreas Alagadas , China , Rios , Ondas de Maré
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...