Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 539
Filtrar
1.
Curr Org Synth ; 21(8): 1102-1109, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39044698

RESUMO

BACKGROUND: Hydrazonoyl chloride, accessible from the respective 5-amino-8-fluoro- 4-oxoquinoline-3-carboxylate, undergoes a reaction with sec-cyclic amines to generate N1-(1- ethyl-8-fluoro-4-oxoquinolin-5-yl)amidrazone carboxylates. INTRODUCTION: A novel set of N1-(1-ethyl-8-fluoro-4-oxoquinolin-5-yl)amidrazone carboxylates (7a-h) incorporating N-piperazines or related congeners was synthesized via interaction of the hydrazonoyl chloride (6), accessible from the respective 5-amino-8-fluoro-4-oxoquinoline-3-carboxylate, with the appropriate sec-cyclic amine. These new compounds were characterized by 1HNMR, 13C-NMR, and HRMS spectral data and screened for their anticancer activities. AIMS: This study aimed at the synthesis of novel N1-( 4-oxoquinolin-5-yl)amidrazone carboxylate derivatives and investigated their potential as anticancer agents. OBJECTIVE: The reaction of hydrazonoyl chloride with the appropriate sec-cyclic amine was applied to synthesize a novel set of N1-(1-ethyl-8-fluoro-4-oxoquinolin-5- yl)amidrazone carboxylates that incorporate N piperazines. METHODS: A direct reaction of piperazines and related sec-cyclic amines with N-(4-oxoquinolin-5- yl)nitrile imine (1,3-dipole) was carried out for 8-10 h. RESULTS: The 1,3-dipole, generated in situ from its hydrazonoyl chloride precursor in the presence of trimethylamine, is suitable for the facile synthesis of N1-(1-ethyl-8-fluoro-4-oxoquinolin-5- yl)amidrazone carboxylates. CONCLUSION: This study led to the successful synthesis of novel N1-(8-fluoro-4-oxoquinolin-5- yl)amidrazones. All the examined compounds showed moderate activity with reasonable IC50 values in the micromolar range compared to Doxorubicin.


Assuntos
Antineoplásicos , Antineoplásicos/síntese química , Antineoplásicos/farmacologia , Humanos , Linhagem Celular Tumoral , Ensaios de Seleção de Medicamentos Antitumorais , Relação Estrutura-Atividade , Estrutura Molecular , Proliferação de Células/efeitos dos fármacos
2.
Angew Chem Int Ed Engl ; : e202411224, 2024 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-39058557

RESUMO

Deep eutectic electrolytes (DEEs) are regarded as one of the next-generation electrolytes to promote the development of lithium metal batteries (LMBs) due to their unparalleled advantages compared to both liquid electrolytes and solid electrolytes. However, its application in LMBs is limited by electrode interface compatibility. Here, we introduce a novel solid dimethylmalononitrile (DMMN)-based DEE induced by N coordination to dissociate LiTFSI. We confirmed that the DMMN molecule can promote the dissociation of LiTFSI by the interaction between the N atom and Li+, and form the hydrogen bond with TFSI- anion, which can promote the dissociation of LiTFSI to form DEE. More importantly, due to the absence of active α-hydrogen, DMMN exhibits greatly enhanced reduction stability with Li metal, resulting in favorable electrode/electrolyte interface compatibility. Polymer electrolytes based on this DEE exhibit high ionic conductivity (0.67 mS cm-1 at 25 ℃), high oxidation voltage (5.0 V vs. Li+/Li), favorable interfacial stability and nonflammability. Li‖LFP and Li‖NCM811 full batteries utilizing this DEE polymer electrolyte exhibit excellent long-term cycling stability and excellent rate performance at high rates. Therefore, the new DMMN-based DEE overcomes the limitations of traditional electrolytes in electrode interface compatibility and opens new possibilities for improving the performance of LMBs.

3.
J Mol Model ; 30(8): 282, 2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-39048781

RESUMO

CONTEXT: The theoretical study investigates the [3 + 2] cycloaddition (32CA) reactions between C, N-diphenyl nitrilimine with 2,3,4,5-tetraphenylcyclopentadienone and benzonitrile oxide with 2,3,4,5-tetraphenylcyclopentadienone. Nitrilimines and nitrile oxides are dipoles used in the synthesis of several heterocyclic compounds, including spiropyrazoline oxindoles and isoxazolines. The derivatives of these compounds are found with different biological activities, such as ion channel blockers, anti-inflammatory and anticancer agents as well as antimalarial. Conceptual density functional theory (CDFT) analysis, along with the activation energies of the 32CA reaction between C, N-diphenyl nitrilimine with 2,3,4,5-tetraphenylcyclopentadienone, demonstrates concordance with the empirical findings. The 32CA reaction is found to proceed through a very polar single-step asynchronous mechanism. While deductions from the activation energies of the 32CA reaction between benzonitrile oxide and 2,3,4,5-tetraphenylcyclopentadienone are found to lead to the experimental product, the parr function analysis could not explain the observed chemo- and regioselectivity. This 32CA reaction is also found to proceed through a one-step asynchronous mechanism, though with a non-polar character. The modulation of substituents positioned at the reactive sites of the reactants is found to influence the kinetics, thermodynamics, and CDFT parameters of the two 32CA reactions, consequently impacting the observed selectivities. METHODS: The 32CA reactions between C, N-diphenyl nitrilimine with 2,3,4,5-tetraphenylcyclopentadienone and benzonitrile oxide with 2,3,4,5-tetraphenylcyclopentadienone have been explored theoretically using the density functional theory method at the hybrid ωB97X-D coupled with the split valence triple-ξ (TZ) basis set as implemented in the Gaussian 09. Solvent effects were taken into account by full optimization of the gas phase geometries through the polarizable continuum model developed within the self-consistent reaction field.

4.
Int J Mol Sci ; 25(13)2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-39000245

RESUMO

A major challenge in improving the overall efficiency of dye-sensitized solar cells is improving the optoelectronic properties of small molecule acceptors. This work primarily investigated the effects of conjugation in nitriles incorporated as acceptor moieties into a newly designed series of D-A-A dyes. Density functional theory was employed to specifically study how single-double and single-triple conjugation in nitriles alters the optical and electronic properties of these dyes. The Cy-4c dye with a highly conjugated nitrile unit attained the smallest band gap (1.80 eV), even smaller than that of the strong cyanacrylic anchor group (2.07 eV). The dyes lacking conjugation in nitrile groups did not contribute to the LUMO, while LUMOs extended from donors to conjugated nitrile components, facilitating intramolecular charge transfer and causing a strong bind to the film surface. Density of state analysis revealed a considerable impact of conjugated nitrile on the electronic properties of dyes through an effective contribution in the LUMO, exceeding the role of the well-known strong 2,1,3-benzothiadiazole acceptor unit. The excited state properties and the absorption spectra were investigated using time-dependent density functional theory (TD-DFT). Conjugation in the nitrile unit caused the absorption band to broaden, strengthen, and shift toward the near-infrared region. The proposed dyes also showed optimum photovoltaic properties; all dyes possess high light-harvesting efficiency (LHE) values, specifically 96% for the dyes Cy-3b and Cy-4c, which had the most conjugated nitrile moieties. The dyes with higher degrees of conjugation had longer excitation lifetime values, which promote charge transfer by causing steady charge recombination at the interface. These findings may provide new insights into the structure of conjugated nitriles and their function as acceptor moieties in DSSCS, which may lead to the development of extremely effective photosensitizers for solar cells.


Assuntos
Corantes , Teoria da Densidade Funcional , Nitrilas , Energia Solar , Nitrilas/química , Corantes/química , Estrutura Molecular
5.
Mol Biol Rep ; 51(1): 817, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39012451

RESUMO

BACKGROUND: Nitrile Hydratase (NHase) is one of the most important industrial enzyme widely used in the petroleum exploitation field. The enzyme, composed of two unrelated α- and ß-subunits, catalyzes the conversion of acrylonitrile to acrylamide, releasing a significant amount of heat and generating the organic solvent product, acrylamide. Both the heat and acrylamide solvent have an impact on the structural stability of NHase and its catalytic activity. Therefore, enhancing the stress resistance of NHase to toxic substances is meaningful for the petroleum industry. METHODS AND RESULTS: To improve the thermo-stability and acrylamide tolerance of NHase, the two subunits were fused in vivo using SpyTag and SpyCatcher, which were attached to the termini of each subunit in various combinations. Analysis of the engineered strains showed that the C-terminus of ß-NHase is a better fusion site than the N-terminus, while the C-terminus of α-NHase is the most suitable site for fusion with a larger protein. Fusion of SpyTag and SpyCatcher to the C-terminus of ß-NHase and α-NHase, respectively, led to improved acrylamide tolerance and a slight enhancement in the thermo-stability of one of the engineered strains, NBSt. CONCLUSION: These results indicate that in vivo ligation of different subunits using SpyTag/SpyCatcher is a valuable strategy for enhancing subunit interaction and improving stress tolerance.


Assuntos
Hidroliases , Rhodococcus , Rhodococcus/enzimologia , Rhodococcus/genética , Hidroliases/metabolismo , Hidroliases/genética , Hidroliases/química , Estabilidade Enzimática , Estresse Fisiológico , Acrilamida/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/química , Subunidades Proteicas/metabolismo , Subunidades Proteicas/genética
6.
Chemistry ; : e202402311, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-39016937

RESUMO

Azametallacyclopentadienes are an important class of metallacycles as the key intermediates in metal-promoted or catalyzed carbon-carbon coupling reaction of nitriles and alkynes. Rare-earth azametallacyclopentadienes have shown unique reactivity toward benzonitriles. The reaction chemistry of azalutetacyclopentadienes toward 2-methylbenzonitriles has been investigated in this work, showing different reactivity. Experimental and computational studies reveal that the reaction selectively initiates with the remote activation of the benzylic C-H bond by the Lu-N bond, followed by the intramolecular nucleophilic attack from the deprotonated benzylic carbon to form a C-C bond. Subsequently, the high ring strain promoted the generation of the uncoordinated carbanion dissociated from the lutetium center, which then undergoes intramolecular nucleophilic attack toward C≡N triple bond to give the final product containing fused 7-5-6-membered azalutetacycle. This work not only achieves highly selective three-step cascade transformation to form a unique class of rare-earth metallacycle, but also reveals a novel reaction pattern of unsaturated substrates with C-H bonds that can be activated.

7.
Bioorg Med Chem Lett ; 110: 129887, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-39002936

RESUMO

Human cathepsin K (CatK) stands out as a promising target for the treatment of osteoporosis, considering its role in degrading the bone matrix. Given the small and shallow S2 subsite of CatK and considering its preference for proline or hydroxyproline, we now propose the rigidification of the leucine fragment found at the P2 position in a dipeptidyl-based inhibitor, generating rigid proline-based analogs. Accordingly, with these new proline-based peptidomimetics inhibitors, we selectively inhibited CatK against other human cathepsins (B, L and S). Among these new ligands, the most active one exhibited a high affinity (pKi = 7.3 - 50.1 nM) for CatK and no inhibition over the other cathepsins. This specific inhibitor harbors two novel substituents never employed in other CatK inhibitors: the trifluoromethylpyrazole and the 4-methylproline at P3 and P2 positions. These results broaden and advance the path toward new potent and selective inhibitors for CatK.


Assuntos
Catepsina K , Peptidomiméticos , Prolina , Catepsina K/antagonistas & inibidores , Catepsina K/metabolismo , Peptidomiméticos/farmacologia , Peptidomiméticos/química , Peptidomiméticos/síntese química , Prolina/química , Prolina/farmacologia , Humanos , Relação Estrutura-Atividade , Estrutura Molecular , Relação Dose-Resposta a Droga
8.
Chemistry ; : e202401674, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38839567

RESUMO

Nitrile-aminothiol conjugation (NATC) stands out as a promising biocompatible ligation technique due to its high chemo-selectivity. Herein we investigated the reactivity and substrate scope of NAT conjugation chemistry, thus developing a novel pH dependent orthogonal NATC as a valuable tool for chemical biology. The study of reaction kinetics elucidated that the combination of heteroaromatic nitrile and aminothiol groups led to the formation of an optimal bioorthogonal pairing, which is pH dependent. This pairing system was effectively utilized for sequential and dual conjugation. Subsequently, these rapid (≈1 h) and high yield (>90 %) conjugation strategies were successfully applied to a broad range of complex biomolecules, including oligonucleotides, chelates, small molecules and peptides. The effectiveness of this conjugation chemistry was demonstrated by synthesizing a fluorescently labelled antimicrobial peptide-oligonucleotide complex as a dual conjugate to imaging in live cells. This first-of-its-kind sequential NATC approach unveils unprecedented opportunities in modern chemical biology, showcasing exceptional adaptability in rapidly creating structurally complex bioconjugates. Furthermore, the results highlight its potential for versatile applications across fundamental and translational biomedical research.

9.
Macromol Rapid Commun ; : e2400226, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38837553

RESUMO

Coordinative chain transfer polymerization (CCTP) of ethylene and its copolymerization with 1,3-butadiene is conducted in toluene at 80 °C using a combination of {(Me2Si(C13H8)2)Nd(µ-BH4)[(µ-BH4)Li(THF)]}2 (1) metal complex and various organomagnesium compounds used as chain transfer agents including n-butyl-n-octyl-magnesium (BOMAG), n-butyl-mesityl-magnesium (n-BuMgMes), n-butyl-magnesium chloride (n-BuMgCl), n-pentyl-magnesium bromide (n-C5H11MgBr), pentanediyl-1,5-di(magnesium bromide) (PDMB) and isobutyl-magnesium chloride (i-BuMgCl). Kinetics and performance in terms of control of the (co)polymerization are comparatively discussed particularly considering the presence of ether and the nature of the organomagnesium compounds employed. Taking advantage of the well-known reactivity between nitrile and molecular organomagnesium compounds, the functionalization of the chains is further carried out by deactivation of the polymerization medium with benzonitrile or methoxybenzonitrile compounds leading to ketone ω-functionalized chains. The success of the functionalizations is extended to coupling strategies using dinitrile reagents and to the functionalization of high molar mass ethylene butadiene rubber (EBR).

10.
J Occup Environ Hyg ; : 1-10, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38830228

RESUMO

The National Institute for Occupational Safety and Health recommends the use of nitrile gloves with a minimum thickness of 5.0 ± 2.0 mil [0.127 ± 0.051 millimeters] in situations where it is suspected or known that fentanyl or other illicit drugs are present. However, there is limited data available on fentanyl permeation through gloves. Current test methods used to measure fentanyl permeation do not consider the effect of glove fit and flexion. Furthermore, first responders need to have PPE readily available in the field, and storage conditions may affect the protective performance of the gloves. The objective of this study was to evaluate the effects of glove stretch and storage temperatures on glove durability and barrier performance against fentanyl. Nine nitrile glove models previously shown to be resistant to fentanyl permeation were selected for this investigation. These nine models were stretched 25% in one linear direction, to consider glove fit and flexion, and tested against fentanyl hydrochloride permeation. Additionally, four of the nine glove models were stored at 48 °C, 22 °C, and -20 °C, and evaluated for tensile strength, ultimate elongation, and puncture resistance after up to 16 wk of storage and fentanyl permeation after up to 8 wk of storage. At least one sample for six of the nine tested models had maximum permeation over the test method fail threshold when stretched. The tested storage temperatures showed no effect on glove tensile strength, ultimate elongation, and puncture resistance. The findings of this study can be used to inform PPE recommendations, with consideration to storage practices and proper sizing for first responders with potential exposure to fentanyl and other illicit drugs. The results of this study can be used to assess the need for new standard test methods to evaluate the barrier performance of gloves and shelf-life determination with consideration to glove fit.

11.
Acta Crystallogr E Crystallogr Commun ; 80(Pt 6): 671-676, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38845699

RESUMO

The structural characterization is reported of the supra-molecular complex between the tetra-quinoxaline-based cavitand 2,8,14,20-tetra-hexyl-6,10:12,16:18,22:24,4-O,O'-tetra-kis-(quinoxaline-2,3-di-yl)calix[4]resorcinarene (QxCav) with benzo-nitrile. The complex, of general formula C84H80N8O8·2C7H5N, crystallizes in the space group P with two independent mol-ecules in the asymmetric unit, displaying very similar geometrical parameters. For each complex, one of the benzo-nitrile mol-ecules is engulfed inside the cavity, while the other is located among the alkyl legs at the lower rim. The host and the guests mainly inter-act through weak C-H⋯π, C-H⋯N and dispersion inter-actions. These inter-actions help to consolidate the formation of supra-molecular chains running along the crystallographic b-axis direction.

12.
Microbiol Resour Announc ; 13(7): e0011924, 2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-38899906

RESUMO

Bacillus safensis strain WOIS2, a nitrile-metabolizing bacterium, was isolated from solid waste leachates at the Olusosun dumpsite, Ojota, Lagos State, Nigeria. Here, we present the draft genome sequence of strain WOIS2. These data provide valuable information on the bioprospecting of B. safensis nitrilase and other intriguing genes of interest.

13.
J Agric Food Chem ; 72(23): 13284-13296, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38808775

RESUMO

Benzyl nitrile from tea plants attacked by various pests displays a diurnal pattern, which may be closely regulated by the endogenous circadian clock. However, the molecular mechanism by the circadian clock of tea plants that regulates the biosynthesis and release of volatiles remains unclear. In this study, the circadian clock gene CsPCL1 can activate both the expression of the benzyl nitrile biosynthesis-related gene CsCYP79 and the jasmonic acid signaling-related transcription factor CsMYC2 involved in upregulating CsCYP79 gene, thereby resulting in the accumulation and release of benzyl nitrile. Therefore, the anti-insect function of benzyl nitrile was explored in the laboratory. The application of slow-release beads of benzyl nitrile in tea plantations significantly reduced the number of tea geometrids and had positive effects on the yield of fresh tea leaves. These findings reveal the potential utility of herbivore-induced plant volatiles for the green control of pests in tea plantations.


Assuntos
Camellia sinensis , Relógios Circadianos , Nitrilas , Proteínas de Plantas , Compostos Orgânicos Voláteis , Camellia sinensis/genética , Camellia sinensis/química , Camellia sinensis/metabolismo , Camellia sinensis/parasitologia , Animais , Compostos Orgânicos Voláteis/química , Compostos Orgânicos Voláteis/metabolismo , Compostos Orgânicos Voláteis/farmacologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Relógios Circadianos/genética , Nitrilas/farmacologia , Nitrilas/química , Nitrilas/metabolismo , Regulação da Expressão Gênica de Plantas , Mariposas/genética , Mariposas/efeitos dos fármacos , Mariposas/metabolismo , Inseticidas/farmacologia , Inseticidas/química
14.
Chemistry ; 30(38): e202401716, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38708622

RESUMO

Macrocyclic peptides containing a thiazole or thiazoline in the backbone are considered privileged structures in both natural compounds and drug discovery, owing to their enhanced bioactivity, stability, and permeability. Here, we present the biocompatible synthesis of macrocyclic peptides from N-terminal cysteine and C-terminal nitrile. While the N-terminal cysteine is incorporated during solid-phase peptide synthesis, the C-terminal nitrile is introduced during cleavage with aminoacetonitrile, utilizing a cleavable benzotriazole linker. This method directly yields the fully functionalized linear peptide precursor. The biocompatible cyclization reaction occurs in buffer at physiological pH and room temperature. The resulting thiazoline heterocycle remains stable in buffer but hydrolyzes under acidic conditions. While such hydrolysis enables access to macrocyclic peptides with a complete amide backbone, mild oxidation of the thiazoline leads to the stable thiazole macrocyclic peptide. While conventional oxidation strategies involve metals, we developed a protocol simply relying on alkaline salt and air. Therefore, we offer a rapid and metal-free pathway to macrocyclic thiazole peptides, featuring a biocompatible key cyclization step.


Assuntos
Tiazóis , Ciclização , Tiazóis/química , Peptídeos Cíclicos/química , Peptídeos Cíclicos/síntese química , Oxirredução , Peptídeos/química , Peptídeos/síntese química , Compostos Macrocíclicos/química , Compostos Macrocíclicos/síntese química , Materiais Biocompatíveis/química , Materiais Biocompatíveis/síntese química , Técnicas de Síntese em Fase Sólida , Cisteína/química , Triazóis/química , Triazóis/síntese química , Hidrólise , Concentração de Íons de Hidrogênio
15.
Heliyon ; 10(9): e29397, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38694025

RESUMO

Although lithium-ion batteries (LIBs) are extensively used as secondary storage energy devices, they also pose a significant fire and explosion hazard. Subsequently, thermal stability studies for LiPF6- and LiFSI-type electrolytes have been conducted extensively. However, the thermal characteristics of these electrolytes with thermally stable additives in a full cell assembly have yet to be explored. This study presents a comprehensive accelerating rate calorimetry (ARC) study. First, 1.2-Ah cells were prepared using a control commercial LiPF6 electrolyte and LiFSI with a specific succinonitrile additive and ethyl-methyl carbonate as a thermally stable electrolyte additive. The kinetic parameters involved in heat generation and their effects on the thermal properties of the ARC module were analyzed from the heat-wait-seek (HWS), self-heating (SH), and thermal runaway (TR) stages. The results indicate that the addition of a succinonitrile additive to the LiFSI electrolyte lowers the decomposition temperatures of the solid electrolyte interface (SEI) owing to polymerization with Li at the anode, while simultaneously increasing the activation energy of reaction temperatures at SEI between the separator and the electrolyte. The maximum thermal-runaway temperature decreased from 417 °C (ΔH = 5.26 kJ) (LiPF6) to 285 °C (ΔH = 2.068 kJ) (LiFSI + succinonitrile). This study provides key insights to the thermal characteristics of LiPF6 and LiFSI during the self-heating and thermal runaway stages and indicates a practical method for achieving thermally stable LIBs.

16.
Polymers (Basel) ; 16(8)2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38675080

RESUMO

Nitrile gloves have become a significant environmental pollutant after the COVID-19 pandemic due to their single-use design. This study examines the capability of P. aeruginosa to use nitrile gloves as its sole carbon energy source. Biodegradation was determined by P. aeruginosa adapting to increasing nitrile glove concentrations at 1%, 3%, and 5% (w/v). The growth kinetics of P. aeruginosa were evaluated, as well as the polymer weight loss. Topographic changes on the glove surfaces were examined using SEM, and FT-IR was used to evaluate the biodegradation products of the nitrile gloves. Following the establishment of a biofilm on the glove surface, the nitrile toxicity was minimized via biodegradation. The result of the average weight loss of nitrile gloves was 2.25%. FT-IR analysis revealed the presence of aldehydes and aliphatic amines associated with biodegradation. SEM showed P. aeruginosa immersed in the EPS matrix, causing the formation of cracks, scales, protrusions, and the presence of semi-spherical particles. We conclude that P. aeruginosa has the capability to use nitrile gloves as its sole carbon source, even up to 5%, through biofilm formation, demonstrating the potential of P. aeruginosa for the degradation of nitrile gloves.

17.
Chemistry ; 30(35): e202401210, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38634769

RESUMO

Meso-nitrile oxide group in 1,7-Diphenyl-containing BODIPYs can be involved in highly unusual [3+2] intramolecular cycloaddition reaction with the formation of the dihydrobenzo[d]isoxazole-containing BODIPYs. Oxidation of these compounds results in the formation of unprecedented either benzisoxazole- or benzo[b]azepine-fused fully conjugated NIR absorbing BODIPYs. The photophysical properties and electronic structures of the target compounds were studied by an array of experimental and theoretical methods.

18.
J Inorg Biochem ; 256: 112565, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38677005

RESUMO

Two conserved second-sphere ßArg (R) residues in nitrile hydratases (NHase), that form hydrogen bonds with the catalytically essential sulfenic and sulfinic acid ligands, were mutated to Lys and Ala residues in the Co-type NHase from Pseudonocardia thermophila JCM 3095 (PtNHase) and the Fe-type NHase from Rhodococcus equi TG328-2 (ReNHase). Only five of the eight mutants (PtNHase ßR52A, ßR52K, ßR157A, ßR157K and ReNHase ßR61A) were successfully expressed and purified. Apart from the PtNHase ßR52A mutant that exhibited no detectable activity, the kcat values obtained for the PtNHase and ReNHase ßR mutant enzymes were between 1.8 and 12.4 s-1 amounting to <1% of the kcat values observed for WT enzymes. The metal content of each mutant was also significantly decreased with occupancies ranging from ∼10 to ∼40%. UV-Vis spectra coupled with EPR data obtained on the ReNHase mutant enzyme, suggest a decrease in the Lewis acidity of the active site metal ion. X-ray crystal structures of the four PtNHase ßR mutant enzymes confirmed the mutation and the low active site metal content, while also providing insight into the active site hydrogen bonding network. Finally, DFT calculations suggest that the equatorial sulfenic acid ligand, which has been shown to be the catalytic nucleophile, is protonated in the mutant enzyme. Taken together, these data confirm the necessity of the conserved second-sphere ßR residues in the proposed subunit swapping process and post-translational modification of the α-subunit in the α activator complex, along with stabilizing the catalytic sulfenic acid in its anionic form.


Assuntos
Arginina , Hidroliases , Hidroliases/química , Hidroliases/metabolismo , Hidroliases/genética , Arginina/química , Rhodococcus equi/enzimologia , Rhodococcus equi/genética , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Actinomycetales/enzimologia , Actinomycetales/genética , Domínio Catalítico
19.
Anim Cells Syst (Seoul) ; 28(1): 84-92, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38440122

RESUMO

Aortic aneurysm/dissection (AAD) poses a life-threatening cardiovascular emergency with complex mechanisms and a notably high mortality rate. Zebrafish (Danio rerio) serve as valuable models for AAD due to the conservation of their three-layered arterial structure and genome with that of humans. However, the existing studies have predominantly focused on larval zebrafish, leaving a gap in our understanding of adult zebrafish. In this study, we utilized ß-Aminopropionic Nitrile (BAPN) impregnation to induce AAD in both larval and adult zebrafish. Following induction, larval zebrafish exhibited a 28% widening of the dorsal aortic diameter (p < 0.0004, n = 10) and aortic arch malformations, with a high malformation rate of 75% (6/8). Conversely, adult zebrafish showed a 41.67% (5/12) mortality rate 22 days post-induction. At this time point, the dorsal aortic area had expanded by 2.46 times (p < 0.009), and the vessel wall demonstrated significant thickening (8.22 ± 2.23 µM vs. 26.38 ± 10.74 µM, p < 0.05). Pathological analysis revealed disruptions in the smooth muscle layer, contributing to a 58.33% aneurysm rate. Moreover, the expression levels of acta2, tagln, cnn1a, and cnn1b were decreased, indicating a weakened contractile phenotype. Transcriptome sequencing showed a significant overlap between the molecular features of zebrafish tissues post-BAPN treatment and those of AAD patients. Our findings present a straightforward and practical method for generating AAD models in both larval and adult zebrafish using BAPN.

20.
Plant Cell Environ ; 47(6): 2127-2145, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38419355

RESUMO

Rhizosphere microbial community assembly results from microbe-microbe-plant interactions mediated by small molecules of plant and microbial origin. Studies with Arabidopsis thaliana have indicated a critical role of glucosinolates in shaping the root and/or rhizosphere microbial community, likely through breakdown products produced by plant or microbial myrosinases inside or outside of the root. Plant nitrile-specifier proteins (NSPs) promote the formation of nitriles at the expense of isothiocyanates upon glucosinolate hydrolysis with unknown consequences for microbial colonisation of roots and rhizosphere. Here, we generated the A. thaliana triple mutant nsp134 devoid of nitrile formation in root homogenates. Using this line and mutants lacking aliphatic or indole glucosinolate biosynthesis pathways or both, we found bacterial/archaeal alpha-diversity of the rhizosphere to be affected only by the ability to produce aliphatic glucosinolates. In contrast, bacterial/archaeal community composition depended on functional root NSPs as well as on pathways of aliphatic and indole glucosinolate biosynthesis. Effects of NSP deficiency were strikingly distinct from those of impaired glucosinolate biosynthesis. Our results demonstrate that rhizosphere microbial community assembly depends on functional pathways of both glucosinolate biosynthesis and breakdown in support of the hypothesis that glucosinolate hydrolysis by myrosinases and NSPs happens before secretion of products to the rhizosphere.


Assuntos
Arabidopsis , Archaea , Bactérias , Glucosinolatos , Raízes de Plantas , Rizosfera , Glucosinolatos/metabolismo , Glucosinolatos/biossíntese , Arabidopsis/metabolismo , Arabidopsis/microbiologia , Arabidopsis/genética , Raízes de Plantas/microbiologia , Raízes de Plantas/metabolismo , Bactérias/metabolismo , Bactérias/genética , Archaea/metabolismo , Archaea/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Mutação , Nitrilas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...