Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
Microorganisms ; 12(7)2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-39065122

RESUMO

In the setting of infectious diseases, antibodies show different functions beyond neutralizing activity. In this study, we investigated the activation of NK cells in vitro in the presence of human cytomegalovirus (HCMV)-specific antibodies and their potential role in the control of HCMV infection through antibody-dependent cell cytotoxicity (ADCC). Retinal pigmented epithelial cells (ARPE-19) infected with the HCMV strain VR1814 were co-cultured with cytokine-activated peripheral blood mononuclear cells (PBMCs) in the presence of sera collected from 23 HCMV-seropositive and 9 HCMV-seronegative donors. Moreover, 13 pregnant women sampled 3 and 6 months after HCMV primary infection and 13 pregnant women with pre-conception immunity were tested and compared. We determined the percentage of activated NK cells via the analysis of CD107a expression as a marker of degranulation. Significantly higher levels of NK-cell activation were observed using 1/100 and 1/10 dilutions of sera from HCMV-seropositive individuals, and when cells were infected for 96 and 120 h, suggesting that NK cells are activated by antibodies directed against late antigens. In the absence of serum NK cells, activation was negligible. In seropositive subjects, the median percentages of CD107a-positive NK cells in the presence of autologous serum and pooled HCMV-positive serum were similar (14.03% [range 0.00-33.56] and 12.42% [range 1.01-46.00], respectively), while NK-cell activation was negligible using an HCMV-negative serum pool. In HCMV-seronegative subjects, the median percentage of activated NK cells was 0.90% [range 0.00-3.92] with autologous serum and 2.07% [0.00-5.76] in the presence of the HCMV-negative serum pool, while it was 8.97% [0.00-26.49] with the pool of HCMV-positive sera. NK-cell activation using hyperimmune globulin is comparable to what is obtained using autologous serum. Sera from subjects at 3 and 6 months post primary infection showed a lower capacity of NK-cell activation than sera from subjects with past infection (p < 0.001). NK activation against HCMV-infected epithelial cells is dependent on the presence of HCMV-specific antibodies. This serum activity increases with time after the onset of HCMV infection. The protective role of NK-cell activation by HCMV-specific serum antibodies should be verified in clinical settings.

2.
Trends Immunol ; 2024 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-39034185

RESUMO

Recent studies show an important role for non-neutralizing anti-spike antibodies, including monoclonal antibodies (mAbs), in robustly protecting against SARS-CoV-2 infection. These mAbs use Fc-mediated functions such as complement activation, phagocytosis, and cellular cytotoxicity. There is an untapped potential for using non-neutralizing mAbs in durable antibody treatments; because of their available conserved epitopes, they may not be as sensitive to virus mutations as neutralizing mAbs. Here, we discuss evidence of non-neutralizing mAb-mediated protection against SARS-CoV-2 infection. We explore how non-neutralizing mAb Fc-mediated functions can be enhanced via novel antibody-engineering techniques. Important questions remain to be answered regarding the characteristics of protective non-neutralizing mAbs, including the models and assays used for study, the risks of ensuing detrimental inflammation, as well as the durability and mechanisms of protection.

3.
J Med Virol ; 96(5): e29628, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38682568

RESUMO

This study evaluated the potential for antibody-dependent enhancement (ADE) in serum samples from patients exposed to Middle East respiratory syndrome coronavirus (MERS-CoV). Furthermore, we evaluated the effect of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccination on ADE in individuals with a MERS infection history. We performed ADE assay in sera from MERS recovered and SARS-CoV-2-vaccinated individuals using BHK cells expressing FcgRIIa, SARS-CoV-2, and MERS-CoV pseudoviruses (PVs). Further, we analyzed the association of ADE to serum IgG levels and neutralization. Out of 16 MERS patients, nine demonstrated ADE against SARS-CoV-2 PV, however, none of the samples demonstrated ADE against MERS-CoV PV. Furthermore, out of the seven patients exposed to SARS-CoV-2 vaccination after MERS-CoV infection, only one patient (acutely infected with MERS-CoV) showed ADE for SARS-CoV-2 PV. Further analysis indicated that IgG1, IgG2, and IgG3 against SARS-CoV-2 S1 and RBD subunits, IgG1 and IgG2 against the MERS-CoV S1 subunit, and serum neutralizing activity were low in ADE-positive samples. In summary, samples from MERS-CoV-infected patients exhibited ADE against SARS-CoV-2 and was significantly associated with low levels of neutralizing antibodies. Subsequent exposure to SARS-CoV-2 vaccination resulted in diminished ADE activity while the PV neutralization assay demonstrated a broadly reactive antibody response in some patient samples.


Assuntos
Anticorpos Neutralizantes , Anticorpos Antivirais , Anticorpos Facilitadores , COVID-19 , Imunoglobulina G , Coronavírus da Síndrome Respiratória do Oriente Médio , SARS-CoV-2 , Humanos , Coronavírus da Síndrome Respiratória do Oriente Médio/imunologia , Anticorpos Antivirais/sangue , SARS-CoV-2/imunologia , Imunoglobulina G/sangue , Anticorpos Neutralizantes/sangue , Anticorpos Neutralizantes/imunologia , COVID-19/imunologia , Infecções por Coronavirus/imunologia , Infecções por Coronavirus/virologia , Pessoa de Meia-Idade , Masculino , Feminino , Testes de Neutralização , Adulto , Vacinas contra COVID-19/imunologia , Antígenos Virais/imunologia , Animais , Idoso , Glicoproteína da Espícula de Coronavírus/imunologia , Vacinação
4.
Thromb Res ; 231: 112-120, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37844518

RESUMO

BACKGROUND: An inhibitor can develop in congenital hemophilia A (HA) patients against exogenous infused factor (F)VIII, whereas in acquired HA (AHA) inhibitors initially develop against endogenous FVIII. Inhibitors can be detected with the Nijmegen Bethesda Assay (NBA), which has an international cut-off level of 0.60 Nijmegen Bethesda Units/mL (NBU/mL). Thereby, very low-titer inhibitors may remain undetected. AIM: To describe the design and validation of the Nijmegen ultra-sensitive Bethesda Assay (NusBA) for the detection of very low-titer inhibitors. METHODS: The NusBA is a modification of the NBA in which the ratio of patient plasma to normal pooled plasma is changed from 1:1 to 9:1. Analytical validation was performed according to the CLSI EP10 guideline in order to determine trueness and reproducibility. Clinical validation was performed in two cohorts of congenital HA patients (82 adults) with pharmacokinetic data and four AHA patients. The limit of quantitation (LOQ) was determined by measuring plasma samples spiked with inhibitor levels in the low range (0.05-0.80 NBU/mL). RESULTS: The LOQ for the NusBA was 0.10 NusBU/mL, with a coefficient of variation of 24.2 %. Seven (8.5 %) congenital HA patients had a positive NusBA result, of which only one was detected with the NBA. There was no correlation between NusBA and FVIII half-life. In three of the AHA patients the NusBA remained positive, when the NBA became negative. DISCUSSION: The NusBA is able to detect very low-titer FVIII inhibitors of ≥0.10 NBU/mL. Thereby, it may have added value in early inhibitor detection and therapy adjustments in patients with congenital HA and AHA.


Assuntos
Hemofilia A , Adulto , Humanos , Fator VIII/uso terapêutico , Reprodutibilidade dos Testes , Testes de Coagulação Sanguínea
5.
J Virol ; 97(9): e0071023, 2023 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-37681958

RESUMO

The envelope (Env) glycoproteins on HIV-1 virions are the sole target of broadly neutralizing antibodies (bNAbs) and the focus of vaccines. However, many cross-reactive conserved epitopes are often occluded on virus particles, contributing to the evasion of humoral immunity. This study aimed to identify the Env epitopes that are exposed/occluded on HIV-1 particles and to investigate the mechanisms contributing to their masking. Using a flow cytometry-based assay, three HIV-1 isolates, and a panel of antibodies, we show that only select epitopes, including V2i, the gp120-g41 interface, and gp41-MPER, are accessible on HIV-1 particles, while V3, V2q, and select CD4bs epitopes are masked. These epitopes become accessible after allosteric conformational changes are induced by the pre-binding of select Abs, prompting us to test if similar conformational changes are required for these Abs to exhibit their neutralization capability. We tested HIV-1 neutralization where the virus-mAb mix was pre-incubated/not pre-incubated for 1 hour prior to adding the target cells. Similar levels of neutralization were observed under both assay conditions, suggesting that the interaction between virus and target cells sensitizes the virions for neutralization via bNAbs. We further show that lectin-glycan interactions can also expose these epitopes. However, this effect is dependent on the lectin specificity. Given that, bNAbs are ideal for providing sterilizing immunity and are the goal of current HIV-1 vaccine efforts, these data offer insight on how HIV-1 may occlude these vulnerable epitopes from the host immune response. In addition, the findings can guide the formulation of effective antibody combinations for therapeutic use. IMPORTANCE The human immunodeficiency virus (HIV-1) envelope (Env) glycoprotein mediates viral entry and is the sole target of neutralizing antibodies. Our data suggest that antibody epitopes including V2q (e.g., PG9, PGT145), CD4bs (e.g., VRC01, 3BNC117), and V3 (2219, 2557) are masked on HIV-1 particles. The PG9 and 2219 epitopes became accessible for binding after conformational unmasking was induced by the pre-binding of select mAbs. Attempts to understand the masking mechanism led to the revelation that interaction between virus and host cells is needed to sensitize the virions for neutralization by broadly neutralizing antibodies (bNAbs). These data provide insight on how bNAbs may gain access to these occluded epitopes to exert their neutralization effects and block HIV-1 infection. These findings have important implications for the way we evaluate the neutralizing efficacy of antibodies and can potentially guide vaccine design.


Assuntos
Anticorpos Amplamente Neutralizantes , Epitopos de Linfócito B , Anticorpos Anti-HIV , Infecções por HIV , HIV-1 , Interações entre Hospedeiro e Microrganismos , Humanos , Anticorpos Monoclonais/imunologia , Anticorpos Amplamente Neutralizantes/imunologia , Anticorpos Anti-HIV/imunologia , Proteína gp120 do Envelope de HIV/imunologia , Proteína gp120 do Envelope de HIV/metabolismo , Infecções por HIV/imunologia , Infecções por HIV/patologia , Infecções por HIV/virologia , HIV-1/química , HIV-1/imunologia , HIV-1/metabolismo , Lectinas/metabolismo , Epitopos de Linfócito B/imunologia , Epitopos de Linfócito B/metabolismo , Vacinas contra a AIDS/química , Vacinas contra a AIDS/imunologia , Vírion/química , Vírion/imunologia , Vírion/metabolismo , Polissacarídeos/metabolismo
6.
Viruses ; 15(7)2023 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-37515130

RESUMO

Since its discovery, Porcine reproductive and respiratory syndrome (PRRS) has had a huge impact on the farming industry. The virus that causes PRRS is Porcine Reproductive and Respiratory Syndrome Virus (PRRSV), and because of its genetic diversity and the complexity of the immune response, the eradication of PRRS has been a challenge. To provide scientific references for PRRSV control and vaccine development, this study describes the processes of PRRSV-induced infection and escape, as well as the host adaptive immune response to PRRSV. It also discusses the relationship between PRRSV and the adaptive immune response.


Assuntos
Síndrome Respiratória e Reprodutiva Suína , Vírus da Síndrome Respiratória e Reprodutiva Suína , Vacinas Virais , Suínos , Animais , Imunidade Adaptativa , Anticorpos Antivirais
7.
Cell Rep ; 41(6): 111624, 2022 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-36351384

RESUMO

Non-neutralizing antibodies (nnAbs) can eliminate HIV-1-infected cells via antibody-dependent cellular cytotoxicity (ADCC) and were identified as a correlate of protection in the RV144 vaccine trial. Fc-mediated effector functions of nnAbs were recently shown to alter the course of HIV-1 infection in vivo using a vpu-defective virus. Since Vpu is known to downregulate cell-surface CD4, which triggers conformational changes in the viral envelope glycoprotein (Env), we ask whether the lack of Vpu expression was linked to the observed nnAbs activity. We find that restoring Vpu expression greatly reduces nnAb recognition of infected cells, rendering them resistant to ADCC. Moreover, administration of nnAbs in humanized mice reduces viral loads only in animals infected with a vpu-defective but not with a wild-type virus. CD4-mimetics administration, known to "open" Env and expose nnAb epitopes, renders wild-type viruses sensitive to nnAbs Fc-effector functions. This work highlights the importance of Vpu-mediated evasion of humoral responses.


Assuntos
Infecções por HIV , Soropositividade para HIV , HIV-1 , Animais , Humanos , Camundongos , Anticorpos Neutralizantes , Citotoxicidade Celular Dependente de Anticorpos , Anticorpos Anti-HIV
8.
Mol Immunol ; 152: 172-182, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36371813

RESUMO

Antibody-dependent enhancement (ADE) has been associated with severe disease outcomes in several viral infections, including respiratory infections. In vitro and in vivo studies showed that antibody-response to SARS-CoV and MERS-CoV could exacerbate infection via ADE. Recently in SARS CoV-2, the in vitro studies and structural analysis shows a risk of disease severity via ADE. This phenomenon is partially attributed to non-neutralizing antibodies or antibodies at sub-neutralizing levels. These antibodies result in antigen-antibody complexes' deposition and propagation of a chronic inflammatory process that destroys affected tissues. Further, antigen-antibody complexes may enhance the internalization of the virus into cells through the Fc gamma receptor (FcγR) and lead to further virus replication. Thus, ADE occur via two mechanisms; 1. Antibody mediated replication and 2. Enhanced immune activation. Antibody-mediated effector functions are mainly driven by complement activation, and the first complement in the cascade is complement 1q (C1q) which binds to the virus-antibody complex. Reports say that deficiency in circulating plasma levels of C1q, an independent predictor of mortality in high-risk patients, including diabetes, is associated with severe viral infections. Complement mediated ADE is reported in several viral infections such as dengue, West Nile virus, measles, RSV, Human immunodeficiency virus (HIV), and Ebola virus. This review discusses ADE in viral infections and the in vitro evidence of ADE in coronaviruses. We outline the mechanisms of ADE, emphasizing the role of complements, especially C1q in the outcome of the enhanced disease.


Assuntos
COVID-19 , Síndrome Respiratória Aguda Grave , Humanos , Anticorpos Facilitadores , Complemento C1q , Complexo Antígeno-Anticorpo , Anticorpos Antivirais
9.
3 Biotech ; 12(9): 202, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35928502

RESUMO

We used human semi-synthetic phage antibody gene libraries to select anti-SARS-CoV-2 RBD scFv antibody fragment and subsequent characterization of this novel tetravalent monoclonal antibody targeting conformational epitopes in the receptor binding domain of SARS-CoV-2. Binding studies suggest that II62 tetravalent antibody cross-reacts with RBD protein of SARS-CoV2 and its different variants of concerns. The epitope mapping data reveals that II62 tetravalent antibody targets an epitope that does not directly interferes with RBD: ACE2 interaction. Neutralization studies with live authentic SARS-CoV2 virus suggests that increase in valency of II62 mAb from monovalent to tetravalent doesn't perturbate virus interactions with the ACE2 expressing host cells in cytopathic effect-based (CPE) assay. Supplementary Information: The online version contains supplementary material available at 10.1007/s13205-022-03272-6.

10.
Acta Biotheor ; 70(4): 23, 2022 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-35962852

RESUMO

The interplay between the virus, infected cells and immune responses to SARS-CoV-2 is still under debate. By extending the basic model of viral dynamics, we propose here a formal approach to describe neutralisation versus weak (or non-)neutralisation scenarios and compare them with the possible effects of antibody-dependent enhancement (ADE). The theoretical model is consistent with the data available in the literature; we show that both weakly neutralising antibodies and ADE can result in final viral clearance or disease progression, but that the immunodynamics are different in each case. As a significant proportion of the world's population is already naturally immune or vaccinated, we also discuss the implications for secondary infections after vaccination or in the presence of immune system dysfunctions.


Assuntos
COVID-19 , Animais , Anticorpos Neutralizantes , Anticorpos Antivirais , Imunidade Humoral , SARS-CoV-2
11.
Thromb Res ; 217: 22-32, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35842956

RESUMO

INTRODUCTION: The development of inhibitory antibodies (inhibitors) in persons with hemophilia B (PwHB) causes significant morbidity. Data on the impact of the F9 variant and immune tolerance induction (ITI) outcome are limited. The aim of this study was to investigate the presence of neutralizing and non-neutralizing antibodies (NNA) in severe hemophilia B (HB) and to evaluate ITI outcome and complications in relation to the pathogenic F9 variant. MATERIALS AND METHODS: Persons with severe HB in the Nordic countries were enrolled and information on F9 variants, inhibitors, ITI and complications were collected. Analyses of anti-FIX antibodies with a fluorescence-immunoassay (xFLI) and an ELISA method were conducted. RESULTS: Seventy-nine PwHB were enrolled. Null variants were seen in 33 (42 %) PwHB and 12 (15 %) had a current or former inhibitor. Eleven (92 %) of the inhibitor patients had experienced allergic manifestations and three (25 %) nephrotic syndrome. Of 10 PwHB with at least one ITI attempt, eight (80 %) were considered tolerant at enrolment. Immunosuppression was included in seven of eight successful or partially successful attempts. Five PwHB had at least one ITI failure before a successful or partially successful ITI. No NNA could be identified. CONCLUSION: A high proportion of severe F9 gene defects among persons with severe HB in the Nordic countries may explain the observed relatively high prevalence of inhibitors. ITI success was independent of the F9 variant and attained despite allergic manifestations and previous ITI failures. Inclusion of immunosuppression tentatively enhances the chances of ITI success. No NNA were observed.


Assuntos
Hemofilia A , Hemofilia B , Anticorpos Neutralizantes , Fator IX/genética , Fator VIII , Hemofilia B/genética , Humanos , Tolerância Imunológica/genética , Terapia de Imunossupressão
12.
Cell Rep ; 38(7): 110368, 2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-35123652

RESUMO

Emerging evidence indicates that both neutralizing and Fc-mediated effector functions of antibodies contribute to protection against SARS-CoV-2. It is unclear whether Fc-effector functions alone can protect against SARS-CoV-2. Here, we isolated CV3-13, a non-neutralizing antibody, from a convalescent individual with potent Fc-mediated effector functions. The cryoelectron microscopy structure of CV3-13 in complex with the SARS-CoV-2 spike reveals that the antibody binds from a distinct angle of approach to an N-terminal domain (NTD) epitope that only partially overlaps with the NTD supersite recognized by neutralizing antibodies. CV3-13 does not alter the replication dynamics of SARS-CoV-2 in K18-hACE2 mice, but its Fc-enhanced version significantly delays virus spread, neuroinvasion, and death in prophylactic settings. Interestingly, the combination of Fc-enhanced non-neutralizing CV3-13 with Fc-compromised neutralizing CV3-25 completely protects mice from lethal SARS-CoV-2 infection. Altogether, our data demonstrate that efficient Fc-mediated effector functions can potently contribute to the in vivo efficacy of anti-SARS-CoV-2 antibodies.


Assuntos
Anticorpos Neutralizantes/uso terapêutico , Anticorpos Antivirais/imunologia , Anticorpos Antivirais/uso terapêutico , COVID-19/terapia , Animais , Anticorpos Antivirais/química , Citotoxicidade Celular Dependente de Anticorpos , COVID-19/mortalidade , COVID-19/prevenção & controle , COVID-19/transmissão , Modelos Animais de Doenças , Epitopos , Humanos , Imunização Passiva/mortalidade , Fragmentos Fab das Imunoglobulinas/química , Fragmentos Fab das Imunoglobulinas/metabolismo , Fragmentos Fc das Imunoglobulinas/genética , Fragmentos Fc das Imunoglobulinas/imunologia , Camundongos , Ligação Proteica , Conformação Proteica , SARS-CoV-2/imunologia , SARS-CoV-2/patogenicidade , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/imunologia , Glicoproteína da Espícula de Coronavírus/metabolismo , Soroterapia para COVID-19
13.
Int Immunopharmacol ; 101(Pt B): 108187, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34649114

RESUMO

Cross-reactivity among the two diverse viruses is believed to originate from the concept of antibodies recognizing similar epitopes on the two viral surfaces. Cross-reactive antibody responses have been seen in previous variants of SARS and SARS-CoV-2, but little is known about the cross reactivity with other similar RNA viruses like HIV-1. In the present study, we examined the reactivity the SARS-CoV-2 directed antibodies, via spike, immunized mice sera and demonstrated whether they conferred any cross-reactive neutralization against HIV-1. Our findings show that SARS-CoV-2 spike immunized mice antibodies cross-react with the HIV-1 Env protein. Cross-neutralization among the two viruses is uncommon, suggesting the presence of a non-neutralizing antibody response to conserved epitopes amongst the two viruses. Our results indicate, that SARS-CoV-2 spike antibody cross reactivity is targeted towards the gp41 region of the HIV-1 Env (gp160) protein. Overall, our investigation not only answers a crucial question about the understanding of cross-reactive epitopes of antibodies generated in different viral infections, but also provides critical evidence for developing vaccine immunogens and novel treatment strategies with enhanced efficacy capable of recognising diverse pathogens with similar antigenic features.


Assuntos
Anticorpos Antivirais/imunologia , Proteína gp41 do Envelope de HIV/imunologia , Glicoproteína da Espícula de Coronavírus/imunologia , Animais , Reações Cruzadas , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Proteínas Recombinantes/imunologia , Glicoproteína da Espícula de Coronavírus/genética
14.
Viruses ; 13(10)2021 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-34696383

RESUMO

To minimize immune responses against infected cells, HIV-1 has evolved different mechanisms to limit the surface expression of its envelope glycoproteins (Env). Recent observations suggest that the binding of certain broadly neutralizing antibodies (bNAbs) targeting the 'closed' conformation of Env induces its internalization. On the other hand, non-neutralizing antibodies (nNAbs) that preferentially target Env in its 'open' conformation, remain bound to Env on the cell surface for longer periods of time. In this study, we attempt to better understand the underlying mechanisms behind the differential rates of antibody-mediated Env internalization. We demonstrate that 'forcing' open Env using CD4 mimetics allows for nNAb binding and results in similar rates of Env internalization as those observed upon the bNAb binding. Moreover, we can identify distinct populations of Env that are differentially targeted by Abs that mediate faster rates of internalization, suggesting that the mechanism of antibody-induced Env internalization partially depends on the localization of Env on the cell surface.


Assuntos
Anticorpos Amplamente Neutralizantes/imunologia , Endocitose/imunologia , Anticorpos Anti-HIV/imunologia , HIV-1/imunologia , Internalização do Vírus , Produtos do Gene env do Vírus da Imunodeficiência Humana/imunologia , Produtos do Gene env do Vírus da Imunodeficiência Humana/metabolismo , Antígenos CD4/metabolismo , Epitopos/imunologia , Células HEK293 , Proteína gp120 do Envelope de HIV/imunologia , Proteína gp120 do Envelope de HIV/metabolismo , Humanos , Conformação Molecular
15.
Front Immunol ; 12: 710273, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34484212

RESUMO

Bispecific HIVxCD3 DART molecules that co-engage the viral envelope glycoprotein (Env) on HIV-1-infected cells and the CD3 receptor on CD3+ T cells are designed to mediate the cytolysis of HIV-1-infected, Env-expressing cells. Using a novel ex vivo system with cells from rhesus macaques (RMs) infected with a chimeric Simian-Human Immunodeficiency Virus (SHIV) CH505 and maintained on ART, we tested the ability of HIVxCD3 DART molecules to mediate elimination of in vitro-reactivated CD4+ T cells in the absence or presence of autologous CD8+ T cells. HIVxCD3 DART molecules with the anti-HIV-1 Env specificities of A32 or 7B2 (non-neutralizing antibodies) or PGT145 (broadly neutralizing antibody) were evaluated individually or combined. DART molecule-mediated antiviral activity increased significantly in the presence of autologous CD8+ T cells. In this ex vivo system, the PGT145 DART molecule was more active than the 7B2 DART molecule, which was more active than the A32 DART molecule. A triple combination of the DART molecules exceeded the activity of the individual PGT145 DART molecule. Modified quantitative virus outgrowth assays confirmed the ability of the DART molecules to redirect RM CD3+ T cells to eliminate SHIV-infected RM CD4+ T cells as demonstrated by the decreased propagation of in vitro infection by the infected cells pre-incubated with DART molecules in presence of effector CD8+ T cells. While mediating cytotoxic activity, DART molecules did not increase proinflammatory cytokine production. In summary, combination of HIVxCD3 DART molecules that have broadly-neutralizing and non-neutralizing anti-HIV-1 Env specificities can leverage the host immune system for treatment of HIV-1 infection but will require appropriate reactivation of the latent reservoir.


Assuntos
Anticorpos Biespecíficos/imunologia , Complexo CD3/imunologia , Anticorpos Anti-HIV/imunologia , Proteína gp120 do Envelope de HIV/imunologia , Síndrome de Imunodeficiência Adquirida dos Símios/terapia , Vírus da Imunodeficiência Símia/imunologia , Animais , Linfócitos T CD8-Positivos/imunologia , Citocinas/biossíntese , Citotoxicidade Imunológica , Humanos
16.
Cell ; 184(17): 4430-4446.e22, 2021 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-34416147

RESUMO

Alphaviruses cause severe arthritogenic or encephalitic disease. The E1 structural glycoprotein is highly conserved in these viruses and mediates viral fusion with host cells. However, the role of antibody responses to the E1 protein in immunity is poorly understood. We isolated E1-specific human monoclonal antibodies (mAbs) with diverse patterns of recognition for alphaviruses (ranging from Eastern equine encephalitis virus [EEEV]-specific to alphavirus cross-reactive) from survivors of natural EEEV infection. Antibody binding patterns and epitope mapping experiments identified differences in E1 reactivity based on exposure of epitopes on the glycoprotein through pH-dependent mechanisms or presentation on the cell surface prior to virus egress. Therapeutic efficacy in vivo of these mAbs corresponded with potency of virus egress inhibition in vitro and did not require Fc-mediated effector functions for treatment against subcutaneous EEEV challenge. These studies reveal the molecular basis for broad and protective antibody responses to alphavirus E1 proteins.


Assuntos
Alphavirus/imunologia , Anticorpos Antivirais/imunologia , Reações Cruzadas/imunologia , Proteínas Virais/imunologia , Liberação de Vírus/fisiologia , Animais , Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/isolamento & purificação , Anticorpos Neutralizantes/imunologia , Antígenos Virais/imunologia , Linhagem Celular , Vírus Chikungunya/imunologia , Vírus da Encefalite Equina do Leste/imunologia , Encefalomielite Equina/imunologia , Encefalomielite Equina/virologia , Mapeamento de Epitopos , Feminino , Cavalos , Humanos , Concentração de Íons de Hidrogênio , Articulações/patologia , Masculino , Camundongos Endogâmicos C57BL , Modelos Biológicos , Ligação Proteica , RNA Viral/metabolismo , Receptores Fc/metabolismo , Temperatura , Vírion/metabolismo , Internalização do Vírus
17.
Front Immunol ; 12: 657424, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33796119

RESUMO

The antiviral properties of broadly neutralizing antibodies against HIV are well-documented but no vaccine is currently able to elicit protective titers of these responses in primates. While current vaccine modalities can readily induce non-neutralizing antibodies against simian immunodeficiency virus (SIV) and HIV, the ability of these responses to restrict lentivirus transmission and replication remains controversial. Here, we investigated the antiviral properties of non-neutralizing antibodies in a group of Indian rhesus macaques (RMs) that were vaccinated with vif, rev, tat, nef, and env, as part of a previous study conducted by our group. These animals manifested rapid and durable control of viral replication to below detection limits shortly after SIVmac239 infection. Although these animals had no serological neutralizing activity against SIVmac239 prior to infection, their pre-challenge titers of Env-binding antibodies correlated with control of viral replication. To assess the contribution of anti-Env humoral immune responses to virologic control in two of these animals, we transiently depleted their circulating antibodies via extracorporeal plasma immunoadsorption and inhibition of IgG recycling through antibody-mediated blockade of the neonatal Fc receptor. These procedures reduced Ig serum concentrations by up to 80% and temporarily induced SIVmac239 replication in these animals. Next, we transferred purified total Ig from the rapid controllers into six vaccinated RMs one day before intrarectal challenge with SIVmac239. Although recipients of the hyperimmune anti-SIV Ig fraction were not protected from infection, their peak and chronic phase viral loads were significantly lower than those in concurrent unvaccinated control animals. Together, our results suggest that non-neutralizing Abs may play a role in the suppression of SIVmac239 viremia.


Assuntos
Anticorpos Antivirais/imunologia , Interações Hospedeiro-Patógeno/imunologia , Síndrome de Imunodeficiência Adquirida dos Símios/imunologia , Síndrome de Imunodeficiência Adquirida dos Símios/virologia , Vírus da Imunodeficiência Símia/imunologia , Viremia/imunologia , Viremia/virologia , Animais , Anticorpos Antivirais/sangue , Biomarcadores , Genótipo , Antígenos de Histocompatibilidade Classe I , Imunoglobulina G/sangue , Imunoglobulina G/imunologia , Macaca mulatta , Receptores Fc , Vírus da Imunodeficiência Símia/genética , Carga Viral
18.
Eur J Immunol ; 51(6): 1423-1435, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33547634

RESUMO

Antibodies play an important role in host defense against microorganisms. Besides direct microbicidal activities, antibodies can also provide indirect protection via crosstalk to constituents of the adaptive immune system. Similar to many human chronic viral infections, persistence of Lymphocytic choriomeningitis virus (LCMV) is associated with compromised T- and B-cell responses. The administration of virus-specific non-neutralizing antibodies (nnAbs) prior to LCMV infection protects against the establishment of chronic infection. Here, we show that LCMV-specific nnAbs bind preferentially Ly6Chi inflammatory monocytes (IMs), promote their infection in an Fc-receptor independent way, and support acquisition of APC properties. By constituting additional T-cell priming opportunities, IMs promote early activation of virus-specific CD8 T cells, eventually tipping the balance between T-cell exhaustion and effector cell differentiation, preventing establishment of viral persistence without causing lethal immunopathology. These results document a beneficial role of IMs in avoiding T-cell exhaustion and an Fc-receptor independent protective mechanism provided by LCMV-specific nnAbs against the establishment of chronic infection.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Vírus da Coriomeningite Linfocítica/fisiologia , Monócitos/imunologia , Animais , Anticorpos Antivirais , Antígenos Ly/metabolismo , Antígenos Virais/imunologia , Diferenciação Celular , Células Cultivadas , Senescência Celular , Doença Crônica , Resistência à Doença , Humanos , Inflamação , Ativação Linfocitária , Coriomeningite Linfocítica , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Monócitos/virologia , Receptores de IgG/genética
19.
Influenza Other Respir Viruses ; 15(1): 110-120, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32889792

RESUMO

BACKGROUND: Non-neutralizing antibodies inducing complement-dependent lysis (CDL) and antibody-dependent cell-mediated cytotoxicity (ADCC) activity may contribute to protection against influenza infection. We investigated CDL and ADCC responses in healthy adults randomized to receive either non-adjuvanted or AS03-adjuvanted monovalent A(H1N1)pdm09 vaccine (containing 15 µg/3.75 µg of hemagglutinin, respectively) on a 2-dose schedule 21 days apart. METHODS: We conducted an exploratory analysis of a subset of 106 subjects having no prior history of A(H1N1)pdm09 infection or seasonal influenza vaccination enrolled in a previously reported study (NCT00985673). Antibody responses against the homologous A/California/7/2009 (H1N1) vaccine strain and a related A/Brisbane/59/2007 (H1N1) seasonal influenza strain were analyzed up to Day 42. RESULTS: Baseline seropositivity determined with hemagglutination inhibition (HI), CDL and ADCC antibody titers against viral strains was high; A/California/7/2009 (HI [40.4-48.1%]; CDL [34.6-36.0%]; ADCC [92.1-92.3%]); A/Brisbane/59/2007 (HI [73.1-88.9%]; CDL [38.0-42.0%]; ADCC [86.8-97.0%]). CDL seropositivity increased following vaccination with both adjuvanted and non-adjuvanted formulations (A/California/7/2009 [95.9-100%]; A/Brisbane/59/2007 [75.5-79.6%]). At Day 21, increases in CDL and ADCC antibody geometric mean titers against both strains were observed for both formulations. After 2 doses of AS03-adjuvanted vaccine, vaccine responses of 95.8% (≥9-fold increase from baseline in CDL titers) and 34.3% (≥16-fold increase from baseline in ADCC titers) were seen against A/California/7/2009; and 22.4% and 42.9%, respectively, against A/Brisbane/59/2007. Vaccine responses after 2 doses of the non-adjuvanted vaccine were broadly similar. CONCLUSIONS: Broadly comparable non-neutralizing immune responses were observed following vaccination with non-adjuvanted and AS03-adjuvanted A(H1N1)pdm09 formulations; including activity against a related vaccine strain.


Assuntos
Vírus da Influenza A Subtipo H1N1 , Vacinas contra Influenza , Influenza Humana , Adjuvantes Imunológicos , Anticorpos Antivirais , Testes de Inibição da Hemaglutinação , Humanos , Influenza Humana/prevenção & controle , Polissorbatos , Esqualeno , Vacinação
20.
Ther Adv Vaccines Immunother ; 8: 2515135520957763, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33103053

RESUMO

The enormous diversity of HIV-1 is a significant impediment in selecting envelopes (Envs) that can be suitable for designing vaccine immunogens. While tremendous progress has been made in developing soluble, trimeric, native-like Env proteins, those that have elicited neutralizing antibodies (Abs) in animal models are relatively few. A strategy of selecting naturally occurring Envs suitable for immunogen design by studying the correlation between efficient cleavage on the cell surface and their selective binding to broadly neutralizing Abs (bNAbs) and not to non-neutralizing Abs (non-NAbs), properties essential in immunogens, may be useful. Here we discuss some of the challenges of developing an efficacious HIV-1 vaccine and the work done in generating soluble immunogens. We also discuss the study of naturally occurring, membrane-bound, efficiently cleaved (naturally more sensitive to furin) Envs and how they may positively add to the repertoire of HIV-1 Envs that can be used for vaccine immunogen design. However, even with such Envs, the challenges of developing well-folded, native-like trimers as soluble proteins or using other immunogen strategies such as virus-like particles with desirable antigenic properties remain, and are formidable. In spite of the progress that has been made in the HIV-1 vaccine field, an immunogen that elicits neutralizing Abs with significant breadth and potency in vaccines has still not been developed. Efficiently cleaved Envs may increase the number of available Envs suitable for immunogen design and should be studied further.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...