Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Annu Rev Biomed Eng ; 26(1): 141-167, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38346277

RESUMO

Histotripsy is a relatively new therapeutic ultrasound technology to mechanically liquefy tissue into subcellular debris using high-amplitude focused ultrasound pulses. In contrast to conventional high-intensity focused ultrasound thermal therapy, histotripsy has specific clinical advantages: the capacity for real-time monitoring using ultrasound imaging, diminished heat sink effects resulting in lesions with sharp margins, effective removal of the treated tissue, a tissue-selective feature to preserve crucial structures, and immunostimulation. The technology is being evaluated in small and large animal models for treating cancer, thrombosis, hematomas, abscesses, and biofilms; enhancing tumor-specific immune response; and neurological applications. Histotripsy has been recently approved by the US Food and Drug Administration to treat liver tumors, with clinical trials undertaken for benign prostatic hyperplasia and renal tumors. This review outlines the physical principles of various types of histotripsy; presents major parameters of the technology and corresponding hardware and software, imaging methods, and bioeffects; and discusses the most promising preclinical and clinical applications.


Assuntos
Ablação por Ultrassom Focalizado de Alta Intensidade , Humanos , Animais , Ablação por Ultrassom Focalizado de Alta Intensidade/métodos , Masculino , Neoplasias/terapia , Neoplasias/diagnóstico por imagem , Desenho de Equipamento , Neoplasias Hepáticas/terapia , Neoplasias Hepáticas/diagnóstico por imagem
2.
Front Phys (Beijing) ; 18(4)2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37008280

RESUMO

Analytical expressions for scaling of brain wave spectra derived from the general nonlinear wave Hamiltonian form show excellent agreement with experimental "neuronal avalanche" data. The theory of the weakly evanescent nonlinear brain wave dynamics [Phys. Rev. Research 2, 023061 (2020); J. Cognitive Neurosci. 32, 2178 (2020)] reveals the underlying collective processes hidden behind the phenomenological statistical description of the neuronal avalanches and connects together the whole range of brain activity states, from oscillatory wave-like modes, to neuronal avalanches, to incoherent spiking, showing that the neuronal avalanches are just the manifestation of the different nonlinear side of wave processes abundant in cortical tissue. In a more broad way these results show that a system of wave modes interacting through all possible combinations of the third order nonlinear terms described by a general wave Hamiltonian necessarily produces anharmonic wave modes with temporal and spatial scaling properties that follow scale free power laws. To the best of our knowledge this has never been reported in the physical literature and may be applicable to many physical systems that involve wave processes and not just to neuronal avalanches.

3.
J Eng Math ; 133(1): 6, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35299846

RESUMO

Starting from the Euler equations governing the flow of two immiscible incompressible fluids in a horizontal channel, allowing gravity and surface tension, and imposing an electric field across the channel, a nonlinear long-wave analysis is used to derive a 2 × 2 system of evolution equations describing the interface position and a modified tangential velocity jump across it. Travelling waves of permanent form are shown to exist and are constructed in the periodic case producing wave trains and the infinite case yielding novel gravity electro-capillary solitary waves. Various regimes are analysed including a hydrodynamically passive but electrically active upper layer, pairs of perfect dielectric fluids and a perfectly conducting lower fluid. In all cases, the presence of the field produces both depression and elevation waves travelling at the same speed, for given sets of parameters. The stability of the non-uniform travelling waves is investigated by numerically solving appropriate linearised eigenvalue problems. It is found that depression waves are neutrally stable whereas elevation ones are unstable unless the surface tension is large. Stability or instability is shown to be linked mathematically to the type of local eigenvalues of the nonlinear flux matrix used to obtain travelling and solitary waves; if these are real (hyperbolic flux matrix), the system is stable, and if they are complex (elliptic), the system is unstable. The latter is a manifestation of Kelvin-Helmholtz instability in electrified flows.

4.
J Geophys Res Oceans ; 127(12): e2022JC018792, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37033770

RESUMO

A nonlinear frequency-domain model and a probabilistic wave breaking model have been employed together to simulate the propagation of nearshore wave breaking and to provide estimates of related statistical quantities such as skewness and asymmetry. This combination of models requires a pre-specification of the frequency dependence of dissipation. Prior work has suggested that a frequency-squared weighting for the dissipation term is most appropriate via physical arguments. However, the original frequency distribution function significantly underpredicts the higher-order moments, particularly the accuracy of asymmetry predictions is in need of further improvement. An intensity of frequency dependence for the breaking-induced damping coefficient is introduced here to further adjust the dissipation function in order to increase the accuracy of asymmetry predictions. By correcting the frequency dependence function with a new form of frequency dependence in the breaking coefficient, the model results are in better agreement with the measurements of the spectrum and higher-order statistics, as well as with the free surface elevation measurements. It is also seen from testing the model with three different cases that the more evident the influence of the breaking mechanism is on the wave transformation process, the more pronounced the contribution of this modification is.

5.
Proc Natl Acad Sci U S A ; 118(14)2021 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-33790009

RESUMO

The classical theory of modulation instability (MI) attributed to Bespalov-Talanov in optics and Benjamin-Feir for water waves is just a linear approximation of nonlinear effects and has limitations that have been corrected using the exact weakly nonlinear theory of wave propagation. We report results of experiments in both optics and hydrodynamics, which are in excellent agreement with nonlinear theory. These observations clearly demonstrate that MI has a wider band of unstable frequencies than predicted by the linear stability analysis. The range of areas where the nonlinear theory of MI can be applied is actually much larger than considered here.

6.
Proc Math Phys Eng Sci ; 477(2252): 20210408, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35153577

RESUMO

We consider the propagation of short waves which generate waves of much longer (infinite) wavelength. Model equations of such long wave-short wave (LS) resonant interaction, including integrable ones, are well known and have received much attention because of their appearance in various physical contexts, particularly fluid dynamics and plasma physics. Here we introduce a new LS integrable model which generalizes those first proposed by Yajima and Oikawa and by Newell. By means of its associated Lax pair, we carry out the linear stability analysis of its continuous wave solutions by introducing the stability spectrum as an algebraic curve in the complex plane. This is done starting from the construction of the eigenfunctions of the linearized LS model equations. The geometrical features of this spectrum are related to the stability/instability properties of the solution under scrutiny. Stability spectra for the plane wave solutions are fully classified in the parameter space together with types of modulational instabilities.

7.
Coast Eng ; 1702021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35530661

RESUMO

A new nonlinear frequency-domain model based on the mild-slope equation is outlined. The model is an enhancement over previous work in that a closer correspondence between scaling of nonlinearity and horizontal variation of bathymetry is made relative to earlier models. This results in additional terms in the nonlinear summation terms of the model, as amplitude gradient terms are required in order to formulate a consistent model. From the resulting elliptic model, a parabolic approximation is developed in order to efficiently model the equations. Comparisons between the present model, previously-formulated models, and experimental data show that the present model does evidence improvement in performance over previous models.

8.
Proc Math Phys Eng Sci ; 476(2240): 20200300, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32922155

RESUMO

The semi-classical Korteweg-de Vries equation for step-like data is considered with a small parameter in front of the highest derivative. Using perturbation analysis, Whitham theory is constructed to the higher order. This allows the order one phase and the complete leading-order solution to be obtained; the results are confirmed by extensive numerical calculations.

9.
Cells ; 9(6)2020 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-32585983

RESUMO

During the last decade, intracellular actin waves have attracted much attention due to their essential role in various cellular functions, ranging from motility to cytokinesis. Experimental methods have advanced significantly and can capture the dynamics of actin waves over a large range of spatio-temporal scales. However, the corresponding coarse-grained theory mostly avoids the full complexity of this multi-scale phenomenon. In this perspective, we focus on a minimal continuum model of activator-inhibitor type and highlight the qualitative role of mass conservation, which is typically overlooked. Specifically, our interest is to connect between the mathematical mechanisms of pattern formation in the presence of a large-scale mode, due to mass conservation, and distinct behaviors of actin waves.


Assuntos
Actinas/metabolismo , Movimento Celular/fisiologia , Humanos
10.
Proc Math Phys Eng Sci ; 475(2229): 20190183, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31611715

RESUMO

This paper concerns the statistical distribution of the crest heights associated with surface waves in intermediate water depths. The results of a new laboratory study are presented in which data generated in different experimental facilities are used to establish departures from commonly applied statistical distributions. Specifically, the effects of varying sea-state steepness, effective water depth and directional spread are investigated. Following an extensive validation of the experimental data, including direct comparisons to available field data, it is shown that the nonlinear amplification of crest heights above second-order theory observed in steep deep water sea states is equally appropriate to intermediate water depths. These nonlinear amplifications increase with the sea-state steepness and reduce with the directional spread. While the latter effect is undoubtedly important, the present data confirm that significant amplifications above second order (5-10%) are observed for realistic directional spreads. This is consistent with available field data. With further increases in the sea-state steepness, the dissipative effects of wave breaking act to reduce these nonlinear amplifications. While the competing mechanisms of nonlinear amplification and wave breaking are relevant to a full range of water depths, the relative importance of wave breaking increases as the effective water depth reduces.

11.
Proc Math Phys Eng Sci ; 475(2227): 20190061, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31423090

RESUMO

We study elastic shear waves of small but finite amplitude, composed of an anti-plane shear motion and a general in-plane motion. We use a multiple scales expansion to derive an asymptotic system of coupled nonlinear equations describing their propagation in all isotropic incompressible nonlinear elastic solids, generalizing the scalar Zabolotskaya equation of compressible nonlinear elasticity. We show that for a general isotropic incompressible solid, the coupling between anti-plane and in-plane motions cannot be undone and thus conclude that linear polarization is impossible for general nonlinear two-dimensional shear waves. We then use the equations to study the evolution of a nonlinear Gaussian beam in a soft solid: we show that a pure (linearly polarized) shear beam source generates only odd harmonics, but that introducing a slight in-plane noise in the source signal leads to a second harmonic, of the same magnitude as the fifth harmonic, a phenomenon recently observed experimentally. Finally, we present examples of some special shear motions with linear polarization.

12.
Proc Math Phys Eng Sci ; 475(2224): 20180642, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31105448

RESUMO

A variational principle is derived for two-dimensional incompressible rotational fluid flow with a free surface in a moving vessel when both the vessel and fluid motion are to be determined. The fluid is represented by a stream function and the vessel motion is represented by a path in the planar Euclidean group. Novelties in the formulation include how the pressure boundary condition is treated, the introduction of a stream function into the Euler-Poincaré variations, the derivation of free surface variations and how the equations for the vessel path in the Euclidean group, coupled to the fluid motion, are generated automatically.

13.
Proc Math Phys Eng Sci ; 475(2223): 20180784, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31007555

RESUMO

A mechanism for dispersion to automatically arise from the dispersionless Whitham Modulation equations (WMEs) is presented, relying on the use of a moving frame. The speed of this is chosen to be one of the characteristics which emerge from the linearization of the Whitham system, and assuming these are real (and thus the WMEs are hyperbolic) morphs the WMEs into the Korteweg-de Vries (KdV) equation in the boosted coordinate. Strikingly, the coefficients of the KdV equation are universal, in the sense that they are determined by abstract properties of the original Lagrangian density. Two illustrative examples of the theory are given to illustrate how the KdV may be constructed in practice. The first being a revisitation of the derivation of the KdV equation from shallow water flows, to highlight how the theory of this paper fits into the existing literature. The second is a complex Klein-Gordon system, providing a case where the KdV equation may only arise with the use of a moving frame.

14.
Proc Natl Acad Sci U S A ; 116(20): 9759-9763, 2019 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-31028146

RESUMO

Solitons and breathers are nonlinear modes that exist in a wide range of physical systems. They are fundamental solutions of a number of nonlinear wave evolution equations, including the unidirectional nonlinear Schrödinger equation (NLSE). We report the observation of slanted solitons and breathers propagating at an angle with respect to the direction of propagation of the wave field. As the coherence is diagonal, the scale in the crest direction becomes finite; consequently, beam dynamics form. Spatiotemporal measurements of the water surface elevation are obtained by stereo-reconstructing the positions of the floating markers placed on a regular lattice and recorded with two synchronized high-speed cameras. Experimental results, based on the predictions obtained from the (2D + 1) hyperbolic NLSE equation, are in excellent agreement with the theory. Our study proves the existence of such unique and coherent wave packets and has serious implications for practical applications in optical sciences and physical oceanography. Moreover, unstable wave fields in this geometry may explain the formation of directional large-amplitude rogue waves with a finite crest length within a wide range of nonlinear dispersive media, such as Bose-Einstein condensates, solids, plasma, hydrodynamics, and optics.

15.
J Theor Biol ; 460: 184-194, 2019 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-30308176

RESUMO

Neural field theory of the corticothalamic system is applied to quantitatively analyze harmonic generation in normal sleep and wake states. The linear power spectrum is derived analytically via the transfer function and is then convolved with itself and other factors to calculate the nonlinear power spectrum analytically via a recent perturbation expansion. Analysis shows that strong spectral peaks generate a harmonic at twice the original frequency with peak power proportional to the square of that of the original peak. Fits to the data enable absolute normalization to be determined, with the conclusion that the experimentally observed spindle harmonic peak is nonlinear. Using this normalization, the same analysis is applied to the wake state and nonlinear contributions to the alpha and beta peaks are quantified.


Assuntos
Dinâmica não Linear , Tálamo/fisiologia , Animais , Humanos , Modelos Neurológicos , Sono/fisiologia , Vigília/fisiologia
16.
J Nonlinear Sci ; 28(4): 1251-1291, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30008518

RESUMO

It is well known that the linear stability of solutions of 1+1 partial differential equations which are integrable can be very efficiently investigated by means of spectral methods. We present here a direct construction of the eigenmodes of the linearized equation which makes use only of the associated Lax pair with no reference to spectral data and boundary conditions. This local construction is given in the general N×N matrix scheme so as to be applicable to a large class of integrable equations, including the multicomponent nonlinear Schrödinger system and the multiwave resonant interaction system. The analytical and numerical computations involved in this general approach are detailed as an example for N=3 for the particular system of two coupled nonlinear Schrödinger equations in the defocusing, focusing and mixed regimes. The instabilities of the continuous wave solutions are fully discussed in the entire parameter space of their amplitudes and wave numbers. By defining and computing the spectrum in the complex plane of the spectral variable, the eigenfrequencies are explicitly expressed. According to their topological properties, the complete classification of these spectra in the parameter space is presented and graphically displayed. The continuous wave solutions are linearly unstable for a generic choice of the coupling constants.

17.
Philos Trans A Math Phys Eng Sci ; 376(2127)2018 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-30037934

RESUMO

We propose a tunable cylinder-based granular system that is functionally graded in its stiffness distribution in space. With no initial compression given to the system, it supports highly nonlinear waves propagating under an impulse excitation. We investigate analytically, numerically and experimentally the ability to accelerate and decelerate the impulse wave without a significant scattering in the space domain. Moreover, the gradient in stiffness results in the scaling of contact forces along the chain. We envision that such tunable systems can be used for manipulating highly nonlinear impulse waves for novel sensing and impact mitigation purposes.This article is part of the theme issue 'Nonlinear energy transfer in dynamical and acoustical systems'.

18.
Philos Trans A Math Phys Eng Sci ; 376(2117)2018 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-29507178

RESUMO

The dispersionless Whitham modulation equations in 2+1 (two space dimensions and time) are reviewed and the instabilities identified. The modulation theory is then reformulated, near the Lighthill instability threshold, with a slow phase, moving frame and different scalings. The resulting nonlinear phase modulation equation near the Lighthill surfaces is a geometric form of the 2+1 two-way Boussinesq equation. This equation is universal in the same sense as Whitham theory. Moreover, it is dispersive, and it has a wide range of interesting multi-periodic, quasi-periodic and multi-pulse localized solutions. For illustration the theory is applied to a complex nonlinear 2+1 Klein-Gordon equation which has two Lighthill surfaces in the manifold of periodic travelling waves.This article is part of the theme issue 'Stability of nonlinear waves and patterns and related topics'.

19.
Math Biosci ; 301: 10-20, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29382493

RESUMO

A nonlinear three-dimensional model for the amplification of a wave in the cochlea is analyzed. Using the long-slender geometry of the cochlea, and the relatively high frequencies in the hearing spectrum, an asymptotic approximation of the solution is derived for linear, but spatially inhomogeneous, amplification. From this, a nonlinear WKB approximation is constructed for the nonlinear problem, and this is used to derive an efficient numerical method for solving the amplification problem. The advantage of this approach is that the very short waves needed to resolve the wave do not need to calculated as they are represented in the asymptotic solution.


Assuntos
Cóclea/anatomia & histologia , Cóclea/fisiologia , Audição/fisiologia , Modelos Biológicos , Algoritmos , Animais , Membrana Basilar/anatomia & histologia , Membrana Basilar/fisiologia , Fenômenos Biomecânicos , Simulação por Computador , Células Ciliadas Auditivas Externas/fisiologia , Humanos , Hidrodinâmica , Imageamento Tridimensional , Conceitos Matemáticos , Dinâmica não Linear , Órgão Espiral/anatomia & histologia , Órgão Espiral/fisiologia
20.
Ultrasonics ; 80: 34-46, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28499123

RESUMO

An analytical theory accounting for the influence of hysteretic nonlinearity of micro-inhomogeneous plate material on the Lamb waves near the S1 zero group velocity point is developed. The theory predicts that the main effect of the hysteretic quadratic nonlinearity consists in the modification of the frequency and the induced absorption of the Lamb modes. The effects of the nonlinear self-action in the propagating and standing Lamb waves are expected to be, respectively, nearly twice and three times stronger than those in the plane propagating acoustic waves. The theory is restricted to the simplest hysteretic nonlinearity, which is influencing only one of the Lamé moduli of the materials. However, possible extensions of the theory to the cases of more general hysteretic nonlinearities are discussed as well as the perspectives of its experimental testing. Applications include nondestructive evaluation of micro-inhomogeneous and cracked plates.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...