Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
1.
Int J Biol Macromol ; 262(Pt 2): 129949, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38311132

RESUMO

Chikungunya virus (CHIKV) is a single positive-stranded RNA virus of the Togaviridae family and Alphavirus genus, with a typical lipid bilayer envelope structure, and is the causative agent of human chikungunya fever (CHIKF). The U.S. Food and Drug Administration has recently approved the first chikungunya vaccine, Ixchiq; however, vaccination rates are low, and CHIKF is prevalent owing to its periodic outbreaks. Thus, developing effective anti-CHIKV drugs in clinical settings is imperative. Viral proteins encoded by the CHIKV genome play vital roles in all stages of infection, and developing therapeutic agents that target these CHIKV proteins is an effective strategy to improve CHIKF treatment efficacy and reduce mortality rates. Therefore, in the present review article, we aimed to investigate the basic structure, function, and replication cycle of CHIKV and comprehensively outline the current status and future advancements in anti-CHIKV drug development, specifically targeting nonstructural (ns) proteins, including nsP1, nsP2, nsP3, and nsP4 and structural proteins such as capsid (C), E3, E2, 6K, and E1.


Assuntos
Febre de Chikungunya , Vírus Chikungunya , Humanos , Preparações Farmacêuticas , Replicação Viral/genética , Febre de Chikungunya/tratamento farmacológico , Febre de Chikungunya/genética , Febre de Chikungunya/metabolismo , Proteínas não Estruturais Virais/metabolismo
2.
Biomed Pharmacother ; 170: 115901, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38056238

RESUMO

BACKGROUND: Hepatitis C virus (HCV) vaccines are an urgent need to prevent hepatitis C and its further progression of hepatocellular carcinoma. Since the promising T cell based chimpanzee adenovirus and modified vaccinia virus Ankara vectorial HCV vaccines were failed in clinical phase II trial, the vaccine designs to improve protection efficacy in combination of cellular and humoral immunity have been hypothesized against multi-genotypic HCV. METHODS: Eight HCV vaccine strains were constructed with two novel adenovirus vectors (Sad23L and Ad49L) encoding E1E2 or NS3-5B proteins of HCV genotype (Gt) 1b and 6a isolates, covering 80 % HCV strains prevalent in south China and south-east Asia. Eight HCV vaccine strains were grouped into Sad23L-based vaccine cocktail-1 and Ad49L-based vaccine cocktail-2 for vaccinating mice, respectively. RESULTS: The immunogenicity of a single dose of 107-1010 PFU HCV individual vaccines was evaluated in mice, showing weak specific antibody to E1 and E2 protein but a dose-dependent T cell response to E1E2/NS3-5B peptides, which could be significantly enhanced by boosting with an alternative vector vaccine carrying homologous antigen. Prime-boost vaccinations with vaccine cocktail-1 and cocktail-2 induced significantly higher cross-reactive antibody and stronger T cell responses to HCV Gt-1b/6a. The high frequency of intrasplenic and intrahepatic NS31629-1637 CD8+ T cell responses were identified, in which the high proportion of TRM and TEM cells might play an important role against HCV infection in liver. CONCLUSIONS: Prime-boost regimens with HCV vaccine cocktails elicited the broad cross-reactive antibody and robust T cell responses against multi-genotypic HCV in mice.


Assuntos
Hepatite C , Vacinas , Animais , Camundongos , Hepacivirus/genética , Hepatite C/prevenção & controle , Vetores Genéticos , Vaccinia virus/genética , Adenoviridae/genética , Imunidade , Genótipo
3.
Viruses ; 15(12)2023 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-38140532

RESUMO

Since the emergence of SARS-CoV-2, many genetic variations within its genome have been identified, but only a few mutations have been found in nonstructural proteins (NSPs). Among this class of viral proteins, NSP3 is a multidomain protein with 16 different domains, and its largest domain is known as the macrodomain or Mac1 domain. In this study, we present a virtual screening campaign in which we computationally evaluated the NCI anticancer library against the NSP3 Mac1 domain, using Molegro Virtual Docker. The top hits with the best MolDock and Re-Rank scores were selected. The physicochemical analysis and drug-like potential of the top hits were analyzed using the SwissADME data server. The binding stability and affinity of the top NSC compounds against the NSP3 Mac1 domain were analyzed using molecular dynamics (MD) simulation, using Desmond software, and their interaction energies were analyzed using the MM/GBSA method. In particular, by applying subsequent computational filters, we identified 10 compounds as possible NSP3 Mac1 domain inhibitors. Among them, after the assessment of binding energies (ΔGbind) on the whole MD trajectories, we identified the four most interesting compounds that acted as strong binders of the NSP3 Mac1 domain (NSC-358078, NSC-287067, NSC-123472, and NSC-142843), and, remarkably, it could be further characterized for developing innovative antivirals against SARS-CoV-2.


Assuntos
COVID-19 , Inibidores de Protease de Coronavírus , Simulação de Dinâmica Molecular , Humanos , COVID-19/prevenção & controle , SARS-CoV-2/química , Inibidores de Protease de Coronavírus/química , Inibidores de Protease de Coronavírus/farmacologia , Tratamento Farmacológico da COVID-19/métodos
4.
Mol Biol (Mosk) ; 57(5): 863-872, 2023.
Artigo em Russo | MEDLINE | ID: mdl-37752651

RESUMO

The pathology of diseases arising from infections by viruses of Flaviviridae is largely determined by the development of systemic inflammation. The cytokines interleukin-1beta and interleukin-18 play a key role in triggering inflammation. Their secretion from cells, in its turn, is induced upon activation of inflammasomes. Activation of NLRP3 (NLR pyrin domain-containing family 3) inflammasomes was detected in cells infected with Flaviviridae. Some nonstructural proteins of these viruses have been shown to be able to activate or to inhibit the NLRP3 inflammasome, in particular, through interaction with its components. In this study, a functional NLRP3 inflammasome was reconstructed in human HEK293T cells and the effect of some nonstructural proteins of individual Flaviviridae viruses on it was studied. This model did not reveal any impact of nonstructural NS1 proteins of the West Nile virus, NS3 of hepatitis C virus, or NS5 of tick-borne encephalitis virus on the inflammasome components content. At the same time, in the presence of the NS1 of the West Nile virus and NS5 of the tick-borne encephalitis virus, the level of secretion of interleukin-1beta did not change, whereas in the presence of the NS3 protein of the hepatitis C virus, it increased by 1.5 times. Thus, NS3 can be considered as one of the factors of NLRP3 inflammasome activation and inflammatory pathogenesis in chronic hepatitis C virus infection.


Assuntos
Hepatite C Crônica , Inflamassomos , Humanos , Inflamassomos/genética , Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Proteínas não Estruturais Virais/genética , Proteínas não Estruturais Virais/metabolismo , Hepacivirus/metabolismo , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Células HEK293 , Inflamação
5.
Curr Issues Mol Biol ; 45(6): 4589-4599, 2023 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-37367040

RESUMO

The World Health Organization has estimated the annual occurrence of approximately 392 million dengue virus (DENV) infections in more than 100 countries where the virus is endemic, which represents a serious threat to humanity. DENV is a serologic group with four distinct serotypes (DENV-1, DENV-2, DENV-3, and DENV-4) belonging to the genus Flavivirus, in the family Flaviviridae. Dengue is the most widespread mosquito-borne disease in the world. The ~10.7 kb DENV genome encodes three structural proteins (capsid (C), pre-membrane (prM), and envelope (E)) and seven non-structural (NS) proteins (NS1, NS2A, NS2B, NS3, NS4A, NS4B, and NS5). The NS1 protein is a membrane-associated dimer and a secreted, lipid-associated hexamer. Dimeric NS1 is found on membranes both in cellular compartments and cell surfaces. Secreted NS1 (sNS1) is often present in patient serum at very high levels, which correlates with severe dengue symptoms. This study was conducted to discover how the NS1 protein, microRNAs-15/16 (miRNAs-15/16), and apoptosis are related during DENV-4 infection in human liver cell lines. Huh 7.5 and HepG2 cells were infected with DENV-4, and miRNAs-15/16, viral load, NS1 protein, and caspases-3/7 were quantified after different durations of infection. This study demonstrated that miRNAs-15/16 were overexpressed during the infection of HepG2 and Huh 7.5 cells with DENV-4 and had a relationship with NS1 protein expression, viral load, and the activity of caspases-3/7, thus making these miRNAs potential injury markers during DENV infection in human hepatocytes.

6.
Virology ; 585: 155-163, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37348144

RESUMO

Senecavirus A (SVA) is an emerging virus, causing vesicular disease in swine. SVA is a single-stranded, positive-sense RNA virus, which is the only member of the genus Senecavirus in the family Picornaviridae. SVA genome encodes 12 proteins: L, VP4, VP2, VP3, VP1, 2A, 2B, 2C, 3A, 3B, 3C and 3D. The VP1 to VP4 are structural proteins, and the others are nonstructural proteins. The replication of SVA in host cells is a complex process coordinated by an elaborate interplay between the structural and nonstructural proteins. Structural proteins are primarily involved in the invasion and assembly of virions. Nonstructural proteins modulate viral RNA translation and replication, and also take part in antagonizing the antiviral host response and in disrupting some cellular processes to allow virus replication. Here, we systematically reviewed the molecular functions of SVA structural and nonstructural proteins by reference to literatures of SVA itself and other picornaviruses.


Assuntos
Picornaviridae , Animais , Suínos , Proteínas Virais/genética , Proteínas Virais/metabolismo , RNA Viral
7.
Arq. neuropsiquiatr ; 81(4): 357-368, Apr. 2023. tab, graf
Artigo em Inglês | LILACS-Express | LILACS | ID: biblio-1439463

RESUMO

Abstract Background Evidence indicates a strong link between Zika virus (ZikV) and neurological complications. Acute myelitis, optic neuritis, polyneuropathy, and encephalomyelitis that mimic inflammatory idiopathic demyelination disorders (HDD) after ZikV infection have been reported in Brazil. Objective The present study aims to investigate the possible occurrence of molecular mimicry between ZikV antigens and Multiple Sclerosis (MS) autoantigens, the most frequent HDD of the central nervous system (CNS). Methods A retrospective cohort study with 305 patients admitted due to suspected arbovirus infection in Rio de Janeiro was performed, all subjects were submitted to neurological examination, and a biological sample was collected for serologic and molecular diagnostic. Bioinformatics tools were used to analyze the peptides shared between ZikV antigens and MS autoantigens. Results Of 305 patients, twenty-six were positive for ZikV and 4 presented IDD patterns found in MS cases. Sequence homology comparisons by bioinformatics approach between NS5 ZikV and PLP MS protein revealed a homology of 5/6 consecutive amino acids (CSSVPV/CSAVPV) with 83% identity, deducing a molecular mimicry. Analysis of the 3D structures revealed a similar conformation with alpha helix presentation. Conclusions Molecular mimicry between NS5 Zika virus antigen and PLP MS autoantigens emerge as a possible mechanism for IDD spectrum in genetically susceptible individuals.


Resumo Antecedentes Evidências indicam uma forte ligação entre o vírus Zika (ZikV) e complicações neurológicas. Mielite aguda, neurite óptica, polineuropatia e encefalomielite que mimetizam distúrbios inflamatórios de desmielinização idiopáticos (DDII) após infecção por ZikV têm sido relatadas no Brasil. Obejtivo O presente estudo tem como objetivo investigar a possível ocorrência de mimetismo molecular entre antígenos do ZikV e autoantígenos da Esclerose Múltipla (EM), a DDII mais frequente do sistema nervoso central (SNC). Métodos Foi realizado um estudo de coorte retrospectivo com 305 pacientes internados por suspeita de infecção por arbovirus no Rio de Janeiro, todos os indivíduos foram submetidos a exame neurológico e coleta de amostra biológica para diagnóstico sorológico e molecular. Ferramentas de bioinformática foram usadas para analisar os peptídeos compartilhados entre antígenos do ZikV e autoantígenos da EM. Resultados Dos 305 pacientes, vinte e seis foram positivos para ZikV e 4 apresentaram padrão IDD encontrado em casos de EM. As comparações de homologia de sequência por abordagem de bioinformática entre a proteína NS5 ZikV e PLP EM revelaram uma homologia de 5/6 aminoácidos consecutivos (CSSVPV/CSAVPV) com 83% de identidade, deduzindo um mimetismo molecular. A análise das estruturas 3D revelou uma conformação semelhante com apresentação em alfa-hélice. Conclusões O mimetismo molecular entre o antígeno NS5 do vírus Zika e o autoantígeno PLP da EM surge como um possível mecanismo para o espectro IDD em indivíduos geneticamente suscetíveis.

8.
Arab J Chem ; 16(5): 104654, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36777994

RESUMO

The severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2)-mediated coronavirus disease 2019 (COVID-19) infection remains a global pandemic and health emergency with overwhelming social and economic impacts throughout the world. Therapeutics for COVID-19 are limited to only remdesivir; therefore, there is a need for combined, multidisciplinary efforts to develop new therapeutic molecules and explore the effectiveness of existing drugs against SARS-CoV-2. In the present study, we reported eight (SCOV-L-02, SCOV-L-09, SCOV-L-10, SCOV-L-11, SCOV-L-15, SCOV-L-18, SCOV-L-22, and SCOV-L-23) novel structurally related small-molecule derivatives of niclosamide (SCOV-L series) for their targeting potential against angiotensin-converting enzyme-2 (ACE2), type II transmembrane serine protease (TMPRSS2), and SARS-COV-2 nonstructural proteins (NSPs) including NSP5 (3CLpro), NSP3 (PLpro), and RdRp. Our correlation analysis suggested that ACE2 and TMPRSS2 modulate host immune response via regulation of immune-infiltrating cells at the site of tissue/organs entries. In addition, we identified some TMPRSS2 and ACE2 microRNAs target regulatory networks in SARS-CoV-2 infection and thus open up a new window for microRNAs-based therapy for the treatment of SARS-CoV-2 infection. Our in vitro study revealed that with the exception of SCOV-L-11 and SCOV-L-23 which were non-active, the SCOV-L series exhibited strict antiproliferative activities and non-cytotoxic effects against ACE2- and TMPRSS2-expressing cells. Our molecular docking for the analysis of receptor-ligand interactions revealed that SCOV-L series demonstrated high ligand binding efficacies (at higher levels than clinical drugs) against the ACE2, TMPRSS2, and SARS-COV-2 NSPs. SCOV-L-18, SCOV-L-15, and SCOV-L-09 were particularly found to exhibit strong binding affinities with three key SARS-CoV-2's proteins: 3CLpro, PLpro, and RdRp. These compounds bind to the several catalytic residues of the proteins, and satisfied the criteria of drug-like candidates, having good adsorption, distribution, metabolism, excretion, and toxicity (ADMET) pharmacokinetic profile. Altogether, the present study suggests the therapeutic potential of SCOV-L series for preventing and managing SARs-COV-2 infection and are currently under detailed investigation in our lab.

9.
Expert Opin Drug Discov ; 18(3): 247-268, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36723288

RESUMO

INTRODUCTION: Emergence of highly infectious SARS-CoV-2 variants are reducing protection provided by current vaccines, requiring constant updates in antiviral approaches. The virus encodes four structural and sixteen nonstructural proteins which play important roles in viral genome replication and transcription, virion assembly, release , entry into cells, and compromising host cellular defenses. As alien proteins to host cells, many viral proteins represent potential targets for combating the SARS-CoV-2. AREAS COVERED: Based on literature from PubMed and Web of Science databases, the authors summarize the typical characteristics of SARS-CoV-2 from the whole viral particle to the individual viral proteins and their corresponding functions in virus life cycle. The authors also discuss the potential and emerging targeted interventions to curb virus replication and spread in detail to provide unique insights into SARS-CoV-2 infection and countermeasures against it. EXPERT OPINION: Our comprehensive analysis highlights the rationale to focus on non-spike viral proteins that are less mutated but have important functions. Examples of this include: structural proteins (e.g. nucleocapsid protein, envelope protein) and extensively-concerned nonstructural proteins (e.g. NSP3, NSP5, NSP12) along with the ones with relatively less attention (e.g. NSP1, NSP10, NSP14 and NSP16), for developing novel drugs to overcome resistance of SARS-CoV-2 variants to preexisting vaccines and antibody-based treatments.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Antivirais/farmacologia , Antivirais/química , SARS-CoV-2/genética , Proteínas não Estruturais Virais/metabolismo , Proteínas Virais/metabolismo
10.
Pathogens ; 12(1)2023 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-36678439

RESUMO

Heat shock protein 27 (HSP27) is a multifunctional protein and belongs to the small HSP family. It has been shown that HSP27 is involved in viral replication as a cellular chaperone, but the function of HSP27 during porcine reproductive and respiratory syndrome virus (PRRSV) infections remains unexplored. Here, we found that PRRSV replication can induce HSP27 expression and phosphorylation in vitro. HSP27 overexpression promoted PRRSV replication, whereas its knockdown reduced PRRSV proliferation. Additionally, suppressing HSP27 phosphorylation reduced PRRSV replication and the level of viral double-stranded RNA (dsRNA), a marker of the viral replication and transcription complexes (RTCs). Furthermore, HSP27 can interact with multiple viral nonstructural proteins (nsps), including nsp1α, nsp1ß, nsp5, nsp9, nsp11 and nsp12. Suppressing the phosphorylation of HSP27 almost completely disrupted its interaction with nsp1ß and nsp12. Altogether, our study revealed that HSP27 plays an important role in PRRSV replication.

11.
Biotechnol Appl Biochem ; 70(1): 201-209, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35396867

RESUMO

Since the onset of the coronavirus disease 2019 (COVID-19) pandemic, the clinical manifestations of the virus have undergone many changes. Recently, there have been many reports on gastrointestinal symptoms in COVID-19 patients. This study is aimed to perform a detailed phylogenetic study and assessment of different SNVs in the RNA genome of viruses isolated from fecal samples of patients with COVID-19 who have gastrointestinal symptoms, which can help better understand viral pathogenesis. In the present study, 20 fecal samples were collected by written consent from COVID-19 patients. According to the manufacturer's protocol, virus nucleic acid was extracted from stool samples and the SARS-CoV-2 genome presence in stool samples was confirmed by RT-PCR assay. Three viral genes, S, nsp12, and nsp2, were amplified using the reverse transcription polymerase chain reaction (RT-PCR) method and specific primers. Multiple sequencing alignment (MSA) was performed in the CLC word bench, and a phylogenetic tree was generated by MEGA X based on the neighbor-joining method. Of all cases, 11 (55%) were males. The mean age of the patients was 33.6 years. Diabetes (70%) and blood pressure (55%) were the most prevalent comorbidities. All 20 patients were positive for SARS-CoV-2 infection in respiratory samples. Molecular analysis investigation among 20 stool samples revealed that the SARS-CoV-2 genome was found among 10 stool samples; only three samples were used for sequencing. The polymorphism and phylogenetic analysis in SARS-CoV-2 showed great similarity among all of the evaluated genes with the Wuhan reference sequence and all of the current variants of concern (VOCs). The current study represents a great similarity in polymorphism and phylogenetic analysis of the SARS-CoV-2 isolates with the Wuhan reference sequence and all of the current VOC in the particular evaluated partial sequences of S, nsp12, and nsp2.


Assuntos
COVID-19 , SARS-CoV-2 , Adulto , Feminino , Humanos , Masculino , COVID-19/virologia , Teste para COVID-19 , Irã (Geográfico)/epidemiologia , Filogenia , SARS-CoV-2/genética
12.
Saudi Pharm J ; 31(2): 228-244, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36540698

RESUMO

MERS-CoV belongs to the coronavirus group. Recent years have seen a rash of coronavirus epidemics. In June 2012, MERS-CoV was discovered in the Kingdom of Saudi Arabia, with 2,591 MERSA cases confirmed by lab tests by the end of August 2022 and 894 deaths at a case-fatality ratio (CFR) of 34.5% documented worldwide. Saudi Arabia reported the majority of these cases, with 2,184 cases and 813 deaths (CFR: 37.2%), necessitating a thorough understanding of the molecular machinery of MERS-CoV. To develop antiviral medicines, illustrative investigation of the protein in coronavirus subunits are required to increase our understanding of the subject. In this study, recombinant expression and purification of MERS-CoV (PLpro), a primary goal for the development of 22 new inhibitors, were completed using a high throughput screening methodology that employed fragment-based libraries in conjunction with structure-based virtual screening. Compounds 2, 7, and 20, showed significant biological activity. Moreover, a docking analysis revealed that the three compounds had favorable binding mood and binding free energy. Molecular dynamic simulation demonstrated the stability of compound 2 (2-((Benzimidazol-2-yl) thio)-1-arylethan-1-ones) the strongest inhibitory activity against the PLpro enzyme. In addition, disubstitutions at the meta and para locations are the only substitutions that may boost the inhibitory action against PLpro. Compound 2 was chosen as a MERS-CoV PLpro inhibitor after passing absorption, distribution, metabolism, and excretion studies; however, further investigations are required.

13.
Viruses ; 14(11)2022 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-36366534

RESUMO

Protein phosphorylation is a post-translational modification that enables various cellular activities and plays essential roles in protein interactions. Phosphorylation is an important process for the replication of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). To shed more light on the effects of phosphorylation, we used an ensemble of neural networks to predict potential kinases that might phosphorylate SARS-CoV-2 nonstructural proteins (nsps) and molecular dynamics (MD) simulations to investigate the effects of phosphorylation on nsps structure, which could be a potential inhibitory target to attenuate viral replication. Eight target candidate sites were found as top-ranked phosphorylation sites of SARS-CoV-2. During the process of molecular dynamics (MD) simulation, the root-mean-square deviation (RMSD) analysis was used to measure conformational changes in each nsps. Root-mean-square fluctuation (RMSF) was employed to measure the fluctuation in each residue of 36 systems considered, allowing us to evaluate the most flexible regions. These analysis shows that there are significant structural deviations in the residues namely nsp1 THR 72, nsp2 THR 73, nsp3 SER 64, nsp4 SER 81, nsp4 SER 455, nsp5 SER284, nsp6 THR 238, and nsp16 SER 132. The identified list of residues suggests how phosphorylation affects SARS-CoV-2 nsps function and stability. This research also suggests that kinase inhibitors could be a possible component for evaluating drug binding studies, which are crucial in therapeutic discovery research.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Simulação de Dinâmica Molecular , Proteínas não Estruturais Virais/metabolismo , Fosforilação , Replicação Viral
14.
Emerg Microbes Infect ; 11(1): 2447-2465, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36149812

RESUMO

Zika virus (ZIKV) has been circulating in human networks over 70 years since its first appearance in Africa, yet little is known about whether the viral 3'-terminal sequence and nonstructural (NS) protein diverged genetically from ancient ZIKV have different effects on viral replication and virulence in currently prevailing Asian lineage ZIKV. Here we show, by a reverse genetics approach using an infectious cDNA clone for a consensus sequence (Con1) of ZIKV, which represents Asian ZIKV strains, and another clone derived from the MR766 strain isolated in Uganda, Africa in 1947, that the 3'-end sequence -UUUCU-3' homogeneously present in MR766 genome and the -GUCU-3' sequence strictly conserved in Asian ZIKV isolates are functionally equivalent in viral replication and gene expression. By gene swapping experiments using the two infectious cDNA clones, we show that the NS1-5 proteins of MR766 enhance replication competence of ZIKV Con1. The Con1, which was less virulent than MR766, acquired severe bilateral hindlimb paralysis when its NS1-5 genes were replaced by the counterparts of MR766 in type I interferon receptor (IFNAR1)-deficient A129 mice. Moreover, MR766 NS5 RNA-dependent RNA polymerase (RdRp) alone also rendered the Con1 virulent, despite there being no difference in RdRp activity between MR766 and Con1 NS5 proteins. By contrast, the Con1 derivatives expressing MR766 Nsps, like Con1, did not develop severe disease in wild-type mice treated with an IFNAR1 blocking antibody. Together, our findings uncover an unprecedented role for ZIKV NS proteins in determining viral pathogenicity in immunocompromised hosts.


Assuntos
Infecção por Zika virus , Zika virus , Animais , Humanos , Camundongos , Receptor de Interferon alfa e beta/genética , Virulência , DNA Complementar , Replicação Viral , Proteínas não Estruturais Virais/genética , Proteínas não Estruturais Virais/metabolismo , RNA Polimerase Dependente de RNA , Uganda
15.
Front Immunol ; 13: 956587, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36091067

RESUMO

Grass carp reovirus (GCRV) is the most pathogenic double-stranded (ds) RNA virus among the isolated aquareoviruses. The molecular mechanisms by which GCRV utilizes host factors to generate its infectious compartments beneficial for viral replication and infection are poorly understood. Here, we discovered that the grass carp ADP ribosylation factor 1 (gcARF1) was required for GCRV replication since the knockdown of gcARF1 by siRNA or inhibiting its GTPase activity by treatment with brefeldin A (BFA) significantly impaired the yield of infectious viral progeny. GCRV infection recruited gcARF1 into viral inclusion bodies (VIBs) by its nonstructural proteins NS80 and NS38. The small_GTP domain of gcARF1 was confirmed to be crucial for promoting GCRV replication and infection, and the number of VIBs reduced significantly by the inhibition of gcARF1 GTPase activity. The analysis of gcARF1-GDP complex crystal structure revealed that the 27AAGKTT32 motif and eight amino acid residues (A27, G29, K30, T31, T32, N126, D129 and A160), which were located mainly within the GTP-binding domain of gcARF1, were crucial for the binding of gcARF1 with GDP. Furthermore, the 27AAGKTT32 motif and the amino acid residue T31 of gcARF1 were indispensable for the function of gcARF1 in promoting GCRV replication and infection. Taken together, it is demonstrated that the GTPase activity of gcARF1 is required for efficient replication of GCRV and that host GTPase ARF1 is closely related with the generation of VIBs.


Assuntos
Carpas , Proteínas Monoméricas de Ligação ao GTP , Orthoreovirus , Reoviridae , Fator 1 de Ribosilação do ADP/genética , Aminoácidos , Animais , Anticorpos Antivirais , Guanosina Trifosfato , Corpos de Inclusão Viral , Reoviridae/fisiologia
16.
Viruses ; 14(8)2022 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-36016430

RESUMO

Members of the Flaviviridae family are posing a significant threat to human health worldwide. Many flaviviruses are capable of inducing severe inflammation in humans. Flaviviridae nonstructural proteins, apart from their canonical roles in viral replication, have noncanonical functions strongly affecting antiviral innate immunity. Among these functions, antagonism of type I IFN is the most investigated; meanwhile, more data are accumulated on their role in the other pathways of innate response. This review systematizes the last known data on the role of Flaviviridae nonstructural proteins in molecular mechanisms of triggering inflammation, with an emphasis on their interactions with TLRs and RLRs, interference with NF-κB and cGAS-STING signaling, and activation of inflammasomes.


Assuntos
Flaviviridae , Flaviviridae/metabolismo , Humanos , Imunidade Inata , Inflamassomos , Inflamação , Transdução de Sinais
17.
Heliyon ; 8(7): e09910, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35847618

RESUMO

The first cases of the novel coronavirus, SARS-CoV-2, were detected in December 2019 in Wuhan, China. Nucleotide substitutions and mutations in the SARS-CoV-2 sequence can result in the evolution of the virus and its rapid spread across the world. Therefore, understanding genetic variants of SARS-CoV-2 and targeting the conserved elements responsible for viral replication have great benefits for detecting its infection sources and diagnosing and treating COVID-19. In this study, we used the SARS-CoV-2 sequence isolated from a 59-year-old man in Ardabil, Iran, in April 2020 and sequenced using Oxford Nanopore technology. A meta-analysis comparing the sequence under study with other sequences from Iran indicated long nucleotide insertions/deletions (indels) that code for NSP15, the NSP14-NSP10 complex, open reading frame ORF9b, and ORF1ab polyproteins. In addition, replicating the NSP8 protein in the study sequence is another topic that can affect viral replication. Then using the DNA structure of NSP8, NSP15, NSP14-NSP10 complex, and ORF1ab as a genetic target can help find drug-like compounds for COVID-19. Potential drug-like compounds reported in this study for their mechanism of action and interactions with SARS-CoV-2 genes using drug repurposing are resveratrol, erythromycin, chloramphenicol, indomethacin, ciclesonide, and PDE4 inhibitor. Ciclesonide appears to show the best results when docked with chosen viral proteins. Therefore, different proteins isolated from nucleotide mutations in the virus sequence can indicate distinct inducers for antibodies and are important in vaccine design.

18.
Viruses ; 14(7)2022 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-35891516

RESUMO

Hepatitis E virus (HEV) is a major cause of acute viral hepatitis in humans globally. Considered for a long while a public health issue only in developing countries, the HEV infection is now a global public health concern. Most human infections are caused by the HEV genotypes 1, 2, 3 and 4 (HEV-1 to HEV-4). Although HEV-3 and HEV-4 can evolve to chronicity in immunocompromised patients, HEV-1 and HEV-2 lead to self-limited infections. HEV has a positive-sense single-stranded RNA genome of ~7.2 kb that is translated into a large pORF1 replicative polyprotein, essential for the viral RNA genome replication and transcription. Unfortunately, the composition and structure of these replicases are still unknown. The recent release of the powerful machine-learning protein structure prediction software AlphaFold2 (AF2) allows us to accurately predict the structure of proteins and their complexes. Here, we used AF2 with the replicase encoded by the polyprotein pORF1 of the human-infecting HEV-3. The boundaries and structures reveal five domains or nonstructural proteins (nsPs): the methyltransferase, Zn-binding domain, macro, helicase, and RNA-dependent RNA polymerase, reliably predicted. Their substrate-binding sites are similar to those observed experimentally for other related viral proteins. Precisely knowing enzyme boundaries and structures is highly valuable to recombinantly produce stable and active proteins and perform structural, functional and inhibition studies.


Assuntos
Vírus da Hepatite E , Hepatite E , Furilfuramida/metabolismo , Vírus da Hepatite E/genética , Humanos , Poliproteínas/genética , Poliproteínas/metabolismo , RNA Viral/genética , RNA Viral/metabolismo , Proteínas Virais/genética , Proteínas Virais/metabolismo , Replicação Viral/genética
19.
Int J Mol Sci ; 23(11)2022 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-35682761

RESUMO

Coronavirus disease 2019 (COVID-19) caused by the infection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has become the most severe health crisis, causing extraordinary economic disruption worldwide. SARS-CoV-2 is a single-stranded RNA-enveloped virus. The process of viral replication and particle packaging is finished in host cells. Viral proteins, including both structural and nonstructural proteins, play important roles in the viral life cycle, which also provides the targets of treatment. Therefore, a better understanding of the structural function of virus proteins is crucial to speed up the development of vaccines and therapeutic strategies. Currently, the structure and function of proteins encoded by the SARS-CoV-2 genome are reviewed by several studies. However, most of them are based on the analysis of SARS-CoV-1 particles, lacking a systematic review update for SARS-CoV-2. Here, we specifically focus on the structure and function of proteins encoded by SARS-CoV-2. Viral proteins that contribute to COVID-19 infection and disease pathogenesis are reviewed according to the most recent research findings. The structure-function correlation of viral proteins provides a fundamental rationale for vaccine development and targeted therapy. Then, current antiviral vaccines are updated, such as inactive viral vaccines and protein-based vaccines and DNA, mRNA, and circular RNA vaccines. A summary of other therapeutic options is also reviewed, including monoclonal antibodies such as a cross-neutralizer antibody, a constructed cobinding antibody, a dual functional monoclonal antibody, an antibody cocktail, and an engineered bispecific antibody, as well as peptide-based inhibitors, chemical compounds, and clustered regularly interspaced short palindromic repeats (CRISPR) exploration. Overall, viral proteins and their functions provide the basis for targeted therapy and vaccine development.


Assuntos
COVID-19 , Vacinas Virais , Anticorpos Antivirais , Antivirais/química , Antivirais/farmacologia , Antivirais/uso terapêutico , COVID-19/prevenção & controle , Humanos , SARS-CoV-2 , Proteínas Virais
20.
Virus Genes ; 58(6): 491-500, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35614328

RESUMO

Bovine viral diarrhea virus (BVDV) belongs to the family Flaviviridae genus pestivirus. The viral genome is a single-stranded, positive-sense RNA that encodes four structural proteins (i.e., C, Erns, E1, and E2) and eight non-structural proteins (NSPs) (i.e., Npro, p7, NS2, NS3, NS4A, NS4B, NS5A, and NS5B). Cattle infected with BVDV exhibit a number of different clinical signs including diarrhea, abortion, and other reproductive disorders which have a serious impact on the cattle industry worldwide. Research on BVDV mainly focuses on its structural protein, however, progress in understanding the functions of the NSPs of BVDV has also been made in recent decades. The knowledge gained on the BVDV non-structural proteins is helpful to more fully understand the viral replication process and the molecular mechanism of viral persistent infection. This review focuses on the functions of BVDV NSPs and provides references for the identification of BVDV, the diagnosis and prevention of Bovine viral diarrhea mucosal disease (BVD-MD), and the development of vaccines.


Assuntos
Doença das Mucosas por Vírus da Diarreia Viral Bovina , Vírus da Diarreia Viral Bovina Tipo 1 , Vírus da Diarreia Viral Bovina , Animais , Bovinos , Proteínas não Estruturais Virais/metabolismo , RNA Viral/genética , Linhagem Celular , Vírus da Diarreia Viral Bovina/genética , Vírus da Diarreia Viral Bovina/metabolismo , Diarreia/veterinária , Vírus da Diarreia Viral Bovina Tipo 1/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...