Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 262
Filtrar
Mais filtros












Intervalo de ano de publicação
1.
Microb Cell Fact ; 23(1): 270, 2024 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-39379959

RESUMO

BACKGROUND: Adaptive laboratory evolution (ALE) is an impactful technique for cultivating microorganisms to adapt to specific environmental circumstances or substrates through iterative growth and selection. This study utilized an adaptive laboratory evolution method on Lipomyces starkeyi for high tolerance in producing lignin derivative alcohols and lipids from syringaldehyde. Afterward, untargeted metabolomics analysis was employed to find the key metabolites that play important roles in the better performance of evolved strains compared to the wild type. Lignin, a prominent constituent of plant biomass, is a favorable source material for the manufacture of biofuel and lipids. Nevertheless, the effective transformation of chemicals produced from lignin into products with high economic worth continues to be a difficult task. RESULTS: In this study, we exposed L. starkeyi to a series of flask passaging experiments while applying selective pressure to facilitate its adaptation to syringaldehyde, a specific type of lignin monomeric aldehyde. Using ALE, we successfully developed a new strain, DALE-22, which can synthesize syringyl alcohol up to 18.74 mM from 22.28 mM syringaldehyde with 41.9% lipid accumulation. In addition, a comprehensive examination of untargeted metabolomics identified six specific crucial metabolites linked to the improved tolerance of the evolved strain in the utilization of syringaldehyde, including 2-aminobutyric acid, allantoin, 4-hydroxyphenethyl alcohol, 2-aminoethanol, tryptophan, and 5-aminovaleric acid. CONCLUSION: The results of our study reveal how L. starkeyi adapts to using substrates produced from lignin. These findings offer important information for developing strategies to improve the process of converting lignin into valuable products for sustainable biorefinery applications.


Assuntos
Lignina , Lipomyces , Metabolômica , Lignina/metabolismo , Lipomyces/metabolismo , Lipídeos/biossíntese , Lipídeos/análise , Álcoois/metabolismo , Benzaldeídos/metabolismo
2.
Bioresour Technol ; 412: 131422, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39233183

RESUMO

Rhodosporidium toruloides has emerged as a prominent candidate for producing single-cell oil from cost-effective feedstocks. In this study, the capability of R. toruloides to produce punicic acid (PuA), a representative plant unusual fatty acid, was investigated. The introduction of acyl lipid desaturase and conjugase (PgFADX) allowed R. toruloides to accumulate 3.7 % of total fatty acids as PuA. Delta-12 acyl lipid desaturase (PgFAD2) and diacylglycerol acyltransferase 2 were shown to benefit PuA production. The strain with PgFADX and PgFAD2 coexpression accumulated 12 % of its lipids as PuA from glucose, which translated into a PuA titer of 451.6 mg/L in shake flask condition. Utilizing wood hydrolysate as the feedstock, this strain produced 6.4 % PuA with a titer of 310 mg/L. Taken together, the results demonstrated that R. toruloides could serve as an ideal platform for the production of plant-derived high-value conjugated fatty acid using agricultural and forestry waste as feedstock.


Assuntos
Glucose , Madeira , Madeira/química , Glucose/metabolismo , Rhodotorula/metabolismo , Ácidos Linolênicos/metabolismo , Engenharia Genética , Ácidos Graxos
3.
Chemosphere ; 365: 143345, 2024 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-39277045

RESUMO

There is growing scientific interest in oleaginous yeasts producing microbial oils as precursors of biofuels and potential substitutes for fossil fuels. Due to the high cost of substrates commonly metabolized by yeasts, volatile fatty acids (VFAs) are gaining interest as alternative cheap and sustainable carbon sources, which can be obtained from solid, liquid and gas pollutants. In this research, Rhodosporidium toruloides was proven to be able to accumulate microbial oils from VFAs obtained from the fermentation of syngas by Clostridium carboxidivorans. Using CO2 and CO as carbon sources from the syngas mixture and H2 as energy source, this acetogen produced, via the Wood-Ljungdahl pathway, a mixture of acetic, butyric and caproic acids. It was first revealed that R. toruloides exhibited minimal inhibition at concentrations below 12 g/L when exposed to a mixture of VFAs, which included acetic, butyric and even hexanoic acids. The yeast was then grown on the culture medium derived from the acetogenic fermentation of syngas. Between the two yeast strains tested of the same species, R. toruloides DSM 4444 reached a total VFAs consumption of 69.1 g/L, supplied by successive additions of acids to the reactor, yielding a maximum lipid content of 29.7% w/w cell. The lipid profile obtained in this case, in terms of abundance followed the order C18:1 > C16:0 ≥ C18:0 > C18:2>others; in which the dominant compound (C18:1), represented approximately 50% of the total. This research opens new possibilities in the cultivation of oleaginous yeasts for the production of biofuels and bioproducts from C1 gases.

4.
Microbiol Resour Announc ; 13(10): e0037724, 2024 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-39212355

RESUMO

This paper reports the draft genome sequence of Rhodotorula sp. BUB8, an oleaginous yeast isolated from the forest canopy of Mt. Makiling Forest Reserve in the Philippines. The draft genome is 20,394,133 bp with 64.3% guanine-cytosine (GC) content, 6,604 coding genes, 109 tRNA coding, and 6 snRNA-coding genes.

5.
Bioresour Technol ; 411: 131312, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39168414

RESUMO

Microbial oils have been of considerable interest as food additives and biofuel resources due to high lipid contents, but lipid accumulation of oleaginous microorganisms can be induced by environmental stresses, such as dissolved oxygen (DO), which limit large-scale lipid production. Here, DO stress gave rise to the endogenous nitric oxide (NO) level to mediate S-nitrosylation of SpAsg1, regulating the lipid accumulation in Saitozyma podzolica zwy-2-3. Notably, qRT-PCR, yeast one-hybrid, dual-luciferase reporter assays, and metabolomics analysis exhibited that overexpression of SpAsg1 promoted lipid synthesis by directly regulation of glucose metabolism, enhancing glucose uptake, ATP and NADPH contents under DO stress. Meanwhile, SpAsg1 improved the antioxidant capacity to reduce the intracellular reactive oxygen species (ROS) and NO levels. Overall, we systematically investigated the regulation of SpAsg1 on lipid metabolism of S. podzolica zwy-2-3 under DO stress, which sheds light on further studies for alleviating oxygen limitation of lipid production in microbial industry.


Assuntos
Lipídeos , Oxigênio , Fatores de Transcrição , Oxigênio/metabolismo , Fatores de Transcrição/metabolismo , Lipídeos/biossíntese , Metabolismo dos Lipídeos , Proteínas Fúngicas/metabolismo , Óxido Nítrico/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Estresse Fisiológico , Ustilaginales , Glucose/metabolismo
6.
Front Microbiol ; 15: 1416155, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39161597

RESUMO

The extremotolerant red yeast Rhodotorula mucilaginosa displays resilience to diverse environmental stressors, including cold, osmolarity, salinity, and oligotrophic conditions. Particularly, this yeast exhibits a remarkable ability to accumulate lipids and carotenoids in response to stress conditions. However, research into lipid biosynthesis has been hampered by limited genetic tools and a scarcity of studies on adaptive responses to nutrient stressors stimulating lipogenesis. This study investigated the impact of nitrogen stress on the adaptive response in Antarctic yeast R. mucilaginosa M94C9. Varied nitrogen availability reveals a nitrogen-dependent modulation of biomass and lipid droplet production, accompanied by significant ultrastructural changes to withstand nitrogen starvation. In silico analysis identifies open reading frames of genes encoding key lipogenesis enzymes, including acetyl-CoA carboxylase (Acc1), fatty acid synthases 1 and 2 (Fas1/Fas2), and acyl-CoA diacylglycerol O-acyltransferase 1 (Dga1). Further investigation into the expression profiles of RmACC1, RmFAS1, RmFAS2, and RmDGA1 genes under nitrogen stress revealed that the prolonged up-regulation of the RmDGA1 gene is a molecular indicator of lipogenesis. Subsequent fatty acid profiling unveiled an accumulation of oleic and palmitic acids under nitrogen limitation during the stationary phase. This investigation enhances our understanding of nitrogen stress adaptation and lipid biosynthesis, offering valuable insights into R. mucilaginosa M94C9 for potential industrial applications in the future.

7.
Biotechnol Biofuels Bioprod ; 17(1): 114, 2024 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-39152495

RESUMO

BACKGROUND: Lipids produced using oleaginous yeast cells are an emerging feedstock to manufacture commercially valuable oleochemicals ranging from pharmaceuticals to lipid-derived biofuels. Production of biofuels using oleaginous yeast is a multistep procedure that requires yeast cultivation and harvesting, lipid recovery, and conversion of the lipids to biofuels. The quantitative recovery of the total intracellular lipid from the yeast cells is a critical step during the development of a bioprocess. Their rigid cell walls often make them resistant to lysis. The existing methods include mechanical, chemical, biological and thermochemical lysis of yeast cell walls followed by solvent extraction. In this study, an aqueous thermal pretreatment was explored as a method for lysing the cell wall of the oleaginous yeast Rhodotorula toruloides for lipid recovery. RESULTS: Hydrothermal pretreatment for 60 min at 121 °C with a dry cell weight of 7% (w/v) in the yeast slurry led to a recovery of 84.6 ± 3.2% (w/w) of the total lipids when extracted with organic solvents. The conventional sonication and acid-assisted thermal cell lysis led to a lipid recovery yield of 99.8 ± 0.03% (w/w) and 109.5 ± 1.9% (w/w), respectively. The fatty acid profiles of the hydrothermally pretreated cells and freeze-dried control were similar, suggesting that the thermal lysis of the cells did not degrade the lipids. CONCLUSION: This work demonstrates that hydrothermal pretreatment of yeast cell slurry at 121 °C for 60 min is a robust and sustainable method for cell conditioning to extract intracellular microbial lipids for biofuel production and provides a baseline for further scale-up and process integration.

8.
Artigo em Inglês | MEDLINE | ID: mdl-39085043

RESUMO

The oleaginous yeast Lipomyces starkeyi is an attractive industrial yeast that can accumulate high amounts of intracellular lipids. Identification of genes involved in lipid accumulation contributes not only to elucidating the lipid accumulation mechanism but also to breeding industrially useful high lipid-producing strains. In this study, the suppressed lipid accumulation-related gene (SLA1) was identified as the causative gene of the sr22 mutant with decreased lipid productivity. SLA1 mutation reduced gene expression in lipid biosynthesis and increased gene expression in ß-oxidation. Our results suggest that SLA1 mutation may leads to decreased lipid productivity. SLA1 deletion also exhibited decreased gene expression in ß-oxidation and increased lipid accumulation, suggesting that SLA1 deletion is a useful tool to improve lipid accumulation in L. starkeyi for industrialization.

9.
Bioresour Technol ; 406: 131062, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38964514

RESUMO

Acquiring lipid-producing strains of Saccharomyces cerevisiae is necessary for producing high-value palmitoleic acid. This study sought to generate oleaginous S. cerevisiae mutants through a combination of zeocin mutagenesis and fluorescence-activated cell sorting, and then to identify key mutations responsible for enhanced lipid accumulation by multi-omics sequencing. Following three consecutive rounds of mutagenesis and sorting, a mutant, MU310, with the lipid content of 44%, was successfully obtained. Transcriptome and targeted metabolome analyses revealed that a coordinated response involving fatty acid precursor biosynthesis, nitrogen metabolism, pentose phosphate pathway, ethanol conversion, amino acid metabolism and fatty acid ß-oxidation was crucial for promoting lipid accumulation. The carbon fluxes of acetyl-CoA and NADPH in lipid biosynthesis were boosted in these pathways. Certain transcriptional regulators may also play significant roles in modulating lipid biosynthesis. Results of this study provide high-quality resource for palmitoleic acid production and deepen the understanding of lipid synthesis in yeast.


Assuntos
Lipídeos , Mutagênese , Saccharomyces cerevisiae , Ácidos Graxos/metabolismo , Ácidos Graxos Monoinsaturados , Citometria de Fluxo , Metabolismo dos Lipídeos , Lipídeos/biossíntese , Metaboloma , Multiômica , Mutação , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Transcriptoma/genética
10.
Sci Rep ; 14(1): 14233, 2024 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-38902520

RESUMO

Converting waste into high-value products promotes sustainability by reducing waste and creating new revenue streams. This study investigates the potential of diverse yeasts for microbial oil production by utilizing short-chain fatty acids (SCFAs) that can be produced from organic waste and focuses on identifying strains with the best SCFA utilisation, tolerance and lipid production. A collection of 1434 yeast strains was cultivated with SCFAs as the sole carbon source. Eleven strains emerged as candidates with promising growth rates and high lipid accumulation. Subsequent fermentation experiments in liquid SCFA-rich media, which focused on optimizing lipid accumulation by adjusting the carbon to nitrogen (C/N) ratio, showed an increase in lipid content at a C/N ratio of 200:1, but with a concurrent reduction in biomass. Two strains were characterized by their superior ability to produce lipids compared to the reference strain Yarrowia lipolytica CECT124: Y. lipolytica EXF-17398 and Pichia manshurica EXF-7849. Characterization of these two strains indicated that they exhibit a biotechnologically relevant balance between maximizing lipid yield and maintaining growth at high SCFA concentrations. These results emphasize the potential of using SCFAs as a sustainable feedstock for oleochemical production, offering a dual benefit of waste valorisation and microbial oil production.


Assuntos
Ácidos Graxos Voláteis , Fermentação , Ácidos Graxos Voláteis/metabolismo , Leveduras/metabolismo , Leveduras/crescimento & desenvolvimento , Yarrowia/metabolismo , Yarrowia/crescimento & desenvolvimento , Ensaios de Triagem em Larga Escala/métodos , Biomassa , Biocombustíveis/microbiologia , Ácidos Carboxílicos/metabolismo , Pichia/metabolismo , Pichia/crescimento & desenvolvimento
11.
Microb Cell Fact ; 23(1): 141, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38760782

RESUMO

BACKGROUND: The oleaginous yeast Rhodotorula toruloides is a promising chassis organism for the biomanufacturing of value-added bioproducts. It can accumulate lipids at a high fraction of biomass. However, metabolic engineering efforts in this organism have progressed at a slower pace than those in more extensively studied yeasts. Few studies have investigated the lipid accumulation phenotype exhibited by R. toruloides under nitrogen limitation conditions. Consequently, there have been only a few studies exploiting the lipid metabolism for higher product titers. RESULTS: We performed a multi-omic investigation of the lipid accumulation phenotype under nitrogen limitation. Specifically, we performed comparative transcriptomic and lipidomic analysis of the oleaginous yeast under nitrogen-sufficient and nitrogen deficient conditions. Clustering analysis of transcriptomic data was used to identify the growth phase where nitrogen-deficient cultures diverged from the baseline conditions. Independently, lipidomic data was used to identify that lipid fractions shifted from mostly phospholipids to mostly storage lipids under the nitrogen-deficient phenotype. Through an integrative lens of transcriptomic and lipidomic analysis, we discovered that R. toruloides undergoes lipid remodeling during nitrogen limitation, wherein the pool of phospholipids gets remodeled to mostly storage lipids. We identify specific mRNAs and pathways that are strongly correlated with an increase in lipid levels, thus identifying putative targets for engineering greater lipid accumulation in R. toruloides. One surprising pathway identified was related to inositol phosphate metabolism, suggesting further inquiry into its role in lipid accumulation. CONCLUSIONS: Integrative analysis identified the specific biosynthetic pathways that are differentially regulated during lipid remodeling. This insight into the mechanisms of lipid accumulation can lead to the success of future metabolic engineering strategies for overproduction of oleochemicals.


Assuntos
Metabolismo dos Lipídeos , Nitrogênio , Rhodotorula , Rhodotorula/metabolismo , Rhodotorula/genética , Nitrogênio/metabolismo , Transcriptoma , Engenharia Metabólica/métodos , Fosfolipídeos/metabolismo , Lipidômica , Lipídeos/biossíntese
12.
J Biosci Bioeng ; 138(2): 153-162, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38777650

RESUMO

Only a few reports available about the assimilation of hydrophobic or oil-based feedstock as carbon sources by Lipomyces starkeyi. In this study, the ability of L. starkeyi to efficiently utilize free fatty acids (FFAs) and real biomass like palm acid oil (PAO) as well as crude palm kernel oil (CPKO) for growth and lipid production was investigated. PAO, CPKO, and FFAs were evaluated as sole carbon sources or in the mixed medium containing glucose. L. starkeyi was able to grow on the medium supplemented with PAO and FFAs, which contained long-chain length FAs and accumulated lipids up to 35% (w/w) of its dry cell weight. The highest lipid content and lipid concentration were achieved at 50% (w/w) and 10.1 g/L, respectively, when L. starkeyi was cultured in nitrogen-limited mineral medium (-NMM) supplemented with PAO emulsion. Hydrophobic substrate like PAO could be served as promising carbon source for L. starkeyi.


Assuntos
Lipomyces , Óleo de Palmeira , Óleo de Palmeira/metabolismo , Óleo de Palmeira/química , Lipomyces/metabolismo , Lipomyces/crescimento & desenvolvimento , Biomassa , Carbono/metabolismo , Resíduos Industriais , Ácidos Graxos não Esterificados/metabolismo , Óleos de Plantas/metabolismo , Lipídeos/biossíntese , Lipídeos/química , Meios de Cultura/química , Glucose/metabolismo
13.
Sci Total Environ ; 924: 171639, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38485029

RESUMO

The utilization of solar energy and fast-growing heterotrophic microbes for biofuel production has been recognized as a promising approach to achieve carbon neutrality and address energy crisis. In this work, we synthesized different kinds of photocatalysts based on graphitic carbon nitride (g-C3N4). We found that carbon dots modified-graphitic carbon nitride (CDs-g-C3N4) showed the highest photocatalytic activity. Subsequently, we developed a photocatalyst-microbe hybrid (PMH) system by combining CDs-g-C3N4 with an oleaginous yeast strain, Cutaneotrichosporon dermatis ZZ-46. Under visible light irradiation, the lipid yield of this PMH system reached 1.70 g/L at 120 h, representing a 36 % increase compared to the control. The photocatalytic reaction-induced ROS and the reductive photogenerated electrons facilitated ZZ-46 cells to synthesize more lipids. Furthermore, the fermentation residual of this PMH system was reutilized to prepare biochar via pyrolysis. The biochar generated at 550 °C (BC-550) demonstrated exceptional adsorption capabilities, particularly with a 57 % adsorption rate for methylene blue (MB), and maintained its perfect adsorption efficacy even after five regeneration cycles. These results offer promising avenues for addressing energy shortages and environmental contamination.


Assuntos
Carbono , Carvão Vegetal , Grafite , Lipídeos , Compostos de Nitrogênio , Fermentação
14.
J Biosci Bioeng ; 137(4): 260-267, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38341331

RESUMO

The oleaginous yeast, Lipomyces starkeyi can have diverse industrial applications due to its remarkable capacity to use various carbon sources for the biosynthesis intracellular triacylglycerides (TAGs). In L. starkeyi, TAG synthesis is enhanced through upregulation of genes involved in citrate-mediated acyl-CoA synthesis and Kennedy pathways through the transcriptional regulator LsSpt23p. High expression of LsSPT23 can considerably enhance TAG production. Altering the regulatory factors associated with lipid production can substantially augment lipid productivity. In this study, we identified and examined the L. starkeyi homolog sucrose nonfermenting 1 SNF1 (LsSNF1) of YlSNF1, which encodes a negative regulator of lipid biosynthesis in the oleaginous yeast Yarrowia lipolytica. The deletion of LsSNF1 enhanced TAG productivity in L. starkeyi, suggesting that LsSnf1p is a negative regulator in TAG production. The enhancement of TAG production following deletion of LsSNF1 can primarily be attributed to the upregulation of genes in the citrate-mediated acyl-CoA synthesis and Kennedy pathways, pivotal routes in TAG biosynthesis. The overexpression of LsSPT23 enhanced lipid productivity; strain overexpressing LsSPT23 and without LsSNF1 exhibited increased TAG production capacity per cell. LsSnf1p also has a significant role in the utilization of carbon sources, including xylose or glycerol, in L. starkeyi. Our study results elucidated the role of LsSnf1p in the negative regulation of TAG synthesis in L. starkeyi, which has not previously been reported.


Assuntos
Lipomyces , Yarrowia , Yarrowia/genética , Carbono , Lipídeos , Citratos
15.
Mol Biotechnol ; 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38198050

RESUMO

Chitin, the second most abundant biomolecule after cellulose in nature, is a significant aquaculture by-product, and is estimated at 6-8 million tons annually. Chitin is composed of monomeric N-acetylglucosamine (NAG) which can be seen as an alternative feedstock for biotechnology. Microbial functional lipids have gained attention due to their bioactivity and sustainable production. In this study, a new oleaginous yeast strain named Sakaguchia sp. HKC2 was found to be able to use NAG as the carbon source for growth and accumulate functional lipids such as PUFAs and carotenoids. When cultured on the NAG-containing medium, strain HKC2 exhibited slower growth and slower intracellular lipid accumulation compared to those on a glucose-containing medium. However, the lipids obtained from HKC2 grown on NAG medium were richer in PUFAs. Notably, torularhodin-a powerful bioactive carotenoid-was found in all HKC2 cultures on NAG, while torulene was abundant in glucose medium. These findings highlight a novel avenue for utilizing aquatic by-products and unlocking their potential.

16.
Bioresour Technol ; 393: 130102, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38016584

RESUMO

Rhodosporidium toruloides, an oleaginous yeast, is a potential feedstock for biodiesel production due to its ability to utilize lignocellulosic biomass-derived hydrolysate with a considerably high lipid titer of 50-70 % w/w. Hence, for the first-time environmental assessment of large-scale R. toruloides-based biodiesel production from wood hydrolysate and crude glycerol was conducted. The global warming potential was observed to be 0.67 kg CO2 eq./MJ along with terrestrial ecotoxicity of 1.37 kg 1,4-DCB eq./MJ and fossil depletion of 0.13 kg oil eq./MJ. The highest impacts for global warming (∼45 %) and fossil depletion (∼37 %) are attributed to the use of chloroform for lipid extraction while fuel consumption for transportation contributed more than 50 % to terrestrial ecotoxicity. Further, sensitivity analysis revealed that maximizing biodiesel yield by increasing lipid yield and solid loading could contribute to reduced environmental impacts. In nutshell, this investigation reveals that environmental impact varies with the type of chemical utilized.


Assuntos
Basidiomycota , Glicerol , Rhodotorula , Biocombustíveis , Madeira , Lipídeos
17.
Bioresour Technol ; 393: 130015, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37979884

RESUMO

Intracellular lipid droplets (LDs), subcellular organelles playing a role in long-term carbon storage, have immense potential in biofuel and dietary lipid production. Monitoring the state of LDs in living cells is of utmost importance for quick biomass harvest and screening promising isolates. Here, a deep-learning-based segmentation model was developed for automatic detection and segmentation of LDs using the model yeast species Lipomyces starkeyi, leading to fast and accurate quantification of lipid contents in liquid cultures. The trained model detected the yeast's cell and LDs in light microscopic images with an accuracy of 98% and 92%, respectively. Lipid content prediction using pixel numbers counted in segmented LDs showed high similarity to lipid quantification results obtained with gas chromatography-mass spectrometry. This automated quantification can highly reduce cost and time in real-time monitoring of lipid production, thereby providing an efficient tool in bio-fermentation.


Assuntos
Aprendizado Profundo , Lipomyces , Leveduras , Lipídeos
18.
Microb Cell Fact ; 22(1): 246, 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-38053171

RESUMO

Biodiesel, unlike to its fossil-based homologue (diesel), is renewable. Its use contributes to greater sustainability in the energy sector, mainly by reducing greenhouse gas emissions. Current biodiesel production relies on plant- and animal-related feedstocks, resulting in high final costs to the prices of those raw materials. In addition, the production of those materials competes for arable land and has provoked a heated debate involving their use food vs. fuel. As an alternative, single-cell oils (SCOs) obtained from oleaginous microorganisms are attractive sources as a biofuel precursor due to their high lipid content, and composition similar to vegetable oils and animal fats. To make SCOs competitive from an economic point of view, the use of readily available low-cost substrates becomes essential. This work reviews the most recent advances in microbial oil production from non-synthetic sugar-rich media, particularly sugars from lignocellulosic wastes, highlighting the main challenges and prospects for deploying this technology fully in the framework of a Biorefinery concept.


Assuntos
Biocombustíveis , Saccharomyces cerevisiae , Óleos de Plantas
19.
Bioengineering (Basel) ; 10(12)2023 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-38135950

RESUMO

Trichosporon oleaginosus is an unconventional oleaginous yeast distinguished by its remarkable capacity to accumulate lipids in excess of 70% of its dry weight, particularly when cultivated in nitrogen-restricted conditions with ample carbon sources. A pivotal question that arises pertains to the nutrient dynamics in the culture medium, which give rise to both the excessive lipid content and corresponding lipid concentration. While previous research has predominantly focused on evaluating the impact of the initial carbon-to-nitrogen (C/N) ratio on lipid production, the precise critical thresholds of glucose and ammonium sulfate ((NH4)2SO4) at which growth and intracellular lipid production are either stimulated or impeded remain inadequately defined. This study employs an experimental design and response surface methodology to investigate the complex mechanism of lipid accumulation and its interaction with cellular growth. Application of the aforementioned methodologies resulted in the production of 10.6 g/L of microbial oil in batch cultures under conditions that correspond to a C/N ratio of 76. However, the primary objective is to generate knowledge to facilitate the development of efficient fed-batch cultivation strategies that optimize lipid production exclusively employing inorganic nitrogen sources by finely adjusting carbon and nitrogen levels. The intricate interaction between these levels is comprehensively addressed in the present study, while it is additionally revealed that as glucose levels rise within a non-inhibitory range, lipid-free biomass production decreases while lipid accumulation simultaneously increases. These findings set the stage for further exploration and the potential development of two-stage cultivation approaches, aiming to fully decouple growth and lipid production. This advancement holds the promise of bringing microbial oil production closer to commercial viability.

20.
Int J Mol Sci ; 24(24)2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-38139021

RESUMO

Rhodotorula paludigena CM33 is an oleaginous yeast that has been demonstrated to accumulate substantial quantities of intracellular lipids and carotenoids. In this study, crude glycerol, a by-product of biodiesel production, was used as a carbon source to enhance the accumulation of lipids and carotenoids in the cells. The culture conditions were first optimized using response surface methodology, which revealed that the carotenoid concentration and lipid content improved when the concentration of crude glycerol was 40 g/L. Different fermentation conditions were also investigated: batch, repeated-batch, and fed-batch conditions in a 500 L fermenter. For fed-batch fermentation, the maximum concentrations of biomass, lipids, and carotenoids obtained were 46.32 g/L, 37.65%, and 713.80 mg/L, respectively. A chemical-free carotenoid extraction method was also optimized using high-pressure homogenization and a microfluidizer device. The carotenoids were found to be mostly beta-carotene, which was confirmed by HPLC (high pressure liquid chromatography), LC-MS (liquid chromatography-mass spectrometry), and NMR (nuclear magnetic resonance). The results of this study indicate that crude glycerol can be used as a substrate to produce carotenoids, resulting in enhanced value of this biodiesel by-product.


Assuntos
Glicerol , Rhodotorula , Biocombustíveis/análise , Carotenoides , Biomassa , Lipídeos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...