Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 648
Filtrar
1.
Arch Biochem Biophys ; 761: 110160, 2024 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-39313141

RESUMO

Novel classes of antibiotics are needed to improve the resilience of the healthcare system to antimicrobial resistance (AMR), including vancomycin resistance. vanA gene cluster is a cause of vancomycin resistance. This gene cluster is transferred and spreads vancomycin resistance from Enterococcus spp. to Staphylococcus aureus. Therefore, novel antibacterial agents are required to combat AMR, including vanA-type vancomycin resistance. Serine hydroxymethyltransferase (SHMT) is a key target of antibacterial agents. However, the specific binding mechanisms of SHMT inhibitors remain unclear. Detailed structural information will contribute to understanding these mechanisms. In this study, we found that (+)-SHIN-2, the first in vivo active inhibitor of human SHMT, is strongly bound to the Enterococcus faecium SHMT (efmSHMT). Comparison of the crystal structures of apo- and (+)-SHIN-2-boud efmSHMT revealed that (+)-SHIN-2 stabilized the active site loop of efmSHMT via hydrogen bonds, which are critical for efmSHMT inhibition. Additionally, (+)-SHIN-2 formed hydrogen bonds with serine, forming the Schiff's base with pyridoxal 5'-phosphate, which is a co-factor of SHMT. Furthermore, (+)-SHIN-2 exerted biostatic effects on vancomycin-susceptible and vanA-type vancomycin-resistant E. faecium in vitro, indicating that SHMT inhibitors do not induce cross-resistance to vanA-type vancomycin. Overall, these findings can aid in the design of novel SHMT inhibitors to combat AMR, including vancomycin resistance.

2.
J Anim Sci ; 1022024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-39234988

RESUMO

Maternal nutrition is pivotal for proper fetal development, with one-carbon metabolites (OCM) playing a key role in fetal epigenetic programming through DNA and histone methylation. The study aimed to investigate the effects of nutrient restriction and OCM supplementation on fetal liver metabolomics in pregnant beef-heifers, focusing on metabolites and pathways associated with amino acid, vitamin and cofactor, carbohydrate, and energy metabolism at day 63 of gestation. Thirty-one crossbred Angus heifers were artificially inseminated and allocated to 4 nutritional treatments in a 2 × 2 factorial arrangement of treatments, with the 2 factors being dietary intake/rate of gain (control-diet [CON]; 0.60 kg/d ADG, vs. restricted-diet [RES]; -0.23 kg/d ADG) and OCM supplementation (supplemented [+OCM] vs. not supplemented [-OCM]). The resulting treatment groups-CON - OCM, CON + OCM, RES - OCM, and RES + OCM were maintained for 63 day post-breeding. Following this period, fetal liver tissues were collected and subjected to metabolomic analysis using UPLC-tandem mass-spectrometry. We identified 288 metabolites, with the majority (n = 54) being significantly influenced by the main effect of gain (P ≤ 0.05). Moreover, RES showed decreased abundances of most metabolites in pathways such as lysine metabolism; leucine, isoleucine, and valine metabolism; and tryptophan metabolism, compared to CON. Supplementation with OCM vs. no OCM supplementation, resulted in greater abundance of metabolites (P ≤ 0.05) affecting pathways associated with methionine, cysteine, S-adenosylmethionine and taurine metabolism; guanidino and acetamido metabolism; and nicotinate and nicotinamide metabolism. Notably, OCM supplementation with a moderate rate of gain increased the concentrations of ophthalmate, N-acetylglucosamine, and ascorbic-acid 3-sulfate, which are important for proper fetal development (P ≤ 0.05). Nutrient restriction reduced the majority of liver metabolites, while OCM supplementation increased a smaller number of metabolites. Thus, OCM supplementation may be protective of metabolite concentrations in key developmental pathways, which could potentially enhance fetal development under nutrient-restricted conditions.


Maternal nutrition is crucial for pregnancy outcomes, influencing offspring health and productivity. Poor nutrition during pregnancy can lead to fetal growth restrictions, impacting liver development. Such changes can increase the risk of metabolic syndromes and predispose them to impaired immune function. In cattle, optimal nutrition during early pregnancy is essential for reproductive efficiency and herd health. This period is critical for developmental programming through epigenetic changes triggered by environmental or genetic factors. These modifications are heritable which are influenced by maternal diet and play a critical role in determining health outcomes post-birth, relying significantly on the availability of one-carbon metabolites (OCM) like methionine, choline, folate, and vitamin B12. Supplementing these nutrients during early gestation may counteract the negative effects of poor nutrition. This study explores the impact of OCM supplementation and dietary restrictions on the fetal liver metabolism in beef heifers during early gestation. Our findings showed that dietary restrictions decrease fetal liver metabolites, whereas OCM supplementation increases certain metabolites, indicating a compensatory effect to support fetal development under nutrient-restricted conditions. Highlighting the importance of maternal nutrition, our findings provide valuable insights for developing nutritional strategies to enhance livestock efficiency and inform dietary guidelines during pregnancy for better health outcomes.


Assuntos
Ração Animal , Fenômenos Fisiológicos da Nutrição Animal , Dieta , Suplementos Nutricionais , Fígado , Animais , Bovinos/fisiologia , Feminino , Fígado/metabolismo , Gravidez , Ração Animal/análise , Dieta/veterinária , Feto/metabolismo , Metabolômica , Metaboloma , Fenômenos Fisiológicos da Nutrição Materna
3.
J Nutr ; 2024 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-39270851

RESUMO

BACKGROUND: Driven by the complex multifactorial etiopathogenesis of autism spectrum disorder (ASD), a growing interest surrounds the disturbance in folate-dependent one-carbon metabolism (OCM) in the pathology of ASD, whereas the evidence remained inconclusive. OBJECTIVES: The study aims to investigate the association of OCM metabolism and ASD and characterize differential OCM metabolites among children with ASD. METHODS: Plasma OCM metabolites were investigated in 59 children with ASD and 40 neurotypical children using ultra-performance liquid chromatography tandem mass spectrometry technology. Differences (significance level < 0.001) were tested in each OCM metabolite between cases and controls. Multivariable models were also performed after adjusting for covariates. RESULTS: Ten out of 22 examined OCM metabolites were significantly different in children with ASD, compared with neurotypical controls. Specifically, S-adenosylmethionine (SAM), oxidized glutathione (GSSG), and glutathione (GSH) levels were increased, whereas S-adenosylhomocysteine (SAH), choline, glycine, L-serine, cystathionine, L-cysteine, and taurine levels were significantly decreased. Children with ASD showed significantly higher SAM/SAH ratio (3.87 ± 0.93 compared with 2.00 ± 0.76, P = 0.0001) and lower GSH/GSSG ratio [0.58 (0.46, 0.81) compared with 1.71 (0.93, 2.99)] compared with the neurotypical controls. Potential interactive effects between SAM/SAH ratio, taurine, L-serine, and gastrointestinal syndromes were further observed. CONCLUSIONS: OCM disturbance was observed among children with ASD, particularly in methionine methylation and trans-sulfuration pathways. The findings add valuable insights into the mechanisms underlying ASD and the potential of ameliorating OCM as a promising therapeutic of ASD, which warrant further validation.

4.
Cells ; 13(17)2024 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-39273042

RESUMO

Ischemic stroke is one of the leading causes of disability and death globally, with a rising incidence in younger age groups. It is well known that maternal diet during pregnancy and lactation is vital for the early neurodevelopment of offspring. One-carbon (1C) metabolism, including folic acid and choline, plays a vital role in closure of the neural tube in utero. However, the impact of maternal dietary deficiencies in 1C on offspring neurological function following ischemic stroke later in life remains undefined. The aim of this study was to investigate inflammation in the blood and brain tissue of offspring from mothers deficient in dietary folic acid or choline. Female mice were maintained on either a control or deficient diet prior to and during pregnancy and lactation. When offspring were 3 months of age, ischemic stroke was induced. One and a half months later, blood and brain tissue were collected. We measured levels of matrix metalloproteases (MMP)-2 and 9 in both plasma and brain tissue, and reported reduced levels of MMP-2 in ChDD male offspring in both tissue types. No changes were observed in MMP-9. This observation supports our working hypothesis that maternal dietary deficiencies in folic acid or choline during early neurodevelopment impact the levels of inflammation in offspring after ischemic stroke.


Assuntos
Encéfalo , Colina , Metaloproteinase 2 da Matriz , Animais , Metaloproteinase 2 da Matriz/metabolismo , Metaloproteinase 2 da Matriz/sangue , Feminino , Encéfalo/metabolismo , Masculino , Camundongos , Gravidez , Colina/metabolismo , Camundongos Endogâmicos C57BL , Dieta , Ácido Fólico/metabolismo , Ácido Fólico/sangue , Metaloproteinase 9 da Matriz/metabolismo , Deficiência de Colina , Efeitos Tardios da Exposição Pré-Natal/metabolismo , Efeitos Tardios da Exposição Pré-Natal/sangue
5.
Theriogenology ; 230: 233-242, 2024 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-39342825

RESUMO

Folate metabolism is required for important biochemical processes that regulate cell functioning, but its role in female reproductive physiology in cattle during peri- and post-conceptional periods has not been thoroughly explored. Previous studies have shown the presence of folate in bovine oviductal fluid, as well as finely regulated gene expression of folate receptors and transporters in bovine oviduct epithelial cells (BOECs). Additionally, extracellular folic acid (FA) affects the transcriptional levels of genes important for the functioning of BOECs. However, it remains unknown whether the anatomical and cyclic features inherent to the oviduct affect regulation of folate metabolism. The present study aimed to characterize the gene expression pattern of folate cycle enzymes in BOECs from different anatomical regions during the estrous cycle and to determine the transcriptional response of these genes to increasing concentrations of exogenous FA. A first PCR screening showed the presence of transcripts encoding dihydrofolate reductase (DHFR), methylenetetrahydrofolate reductase (MTHFR), and methionine synthase (MTR) in bovine reproductive tissues (ovary, oviduct and uterus), with expression levels in oviductal tissues comparable to, or even higher than, those detected in ovarian and uterine tissues. Moreover, expression analysis through RT-qPCR in BOECs from the ampulla and isthmus during different stages of the estrous cycle demonstrated that folate metabolism-related enzymes exhibited cycle-dependent variations. In both anatomical regions, DHFR was upregulated during the preovulatory stage, while MTHFR and MTR exhibited increased expression levels during the postovulatory stage. Under in vitro culture conditions, ampullary and isthmic cells were cultured in the presence of 10, 50, and 100 µM FA for 24 h. Under these conditions, isthmus epithelial cells exhibited a unique transcriptional response to exogenous FA, showing a pronounced increase in MTR expression levels. Our results suggest that the expression of folate metabolism-related genes in BOECs is differentially regulated during the estrous cycle and may respond to exogenous levels of folate. This offers a new perspective on the transcriptional regulation of genes associated with the folate cycle in oviductal cells and provides groundwork for future studies on their functional and epigenetic implications within the oviductal microenvironment.

6.
Nutr Neurosci ; : 1-8, 2024 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-39230256

RESUMO

Objective: Ischemic stroke is the leading cause of death and disability globally. By addressing modifiable risk factors, particularly nutrition, the prevalence of stroke and its dire consequences can be mitigated. One-carbon (1C) metabolism is a critical biosynthetic process that is involved in neural tube closure, DNA synthesis, plasticity, and cellular proliferation. Folates and choline are two active components of 1C metabolism. We have previously demonstrated that maternal dietary deficiencies during pregnancy and lactation in folic acid or choline result in worse stroke outcomes in offspring. However, there is insufficient data to understand the neuronal mechanisms involved.Methods: Using C57Bl/6J female mice maintained on control, folic acid (0.3 mg/kg) or choline (choline bitrate 300 mg/kg) deficient diets we collected embryonic primary neurons from offspring and exposed them to hypoxic conditions for 6 hours. To determine whether increased levels of either folic acid or choline can rescue reduced neuronal viability, we supplemented cell media with folic acid and choline prior to and after exposure to hypoxia.Results: Our results suggest that maternal dietary deficiencies in either folic acid or choline during pregnancy negatively impacts offspring neuronal viability after hypoxia. Furthermore, increasing levels of folic acid (250 mg/ml) or choline chloride (250 mg/ml) prior to and after hypoxia have a beneficial impact on neuronal viability.Conclusion: The findings contribute to our understanding of the intricate interplay between maternal dietary factors, 1C metabolism, and the outcome of offspring to hypoxic events, emphasizing the potential for nutritional interventions in mitigating adverse outcomes.

7.
Artigo em Inglês | MEDLINE | ID: mdl-39239102

RESUMO

The crosstalk between metabolism and epigenetics is an emerging field that is gaining importance in different areas such as cancer and aging, where changes in metabolism significantly impacts the cellular epigenome, in turn dictating changes in chromatin as an adaptive mechanism to bring back metabolic homeostasis. A key metabolic pathway influencing an organism's epigenetic state is one-carbon metabolism (OCM), which includes the folate and methionine cycles. Together, these cycles generate S-adenosylmethionine (SAM), the universal methyl donor essential for DNA and histone methylation. SAM serves as the sole methyl group donor for DNA and histone methyltransferases, making it a crucial metabolite for chromatin modifications. In this review, we will discuss how SAM and its byproduct, S-adenosylhomocysteine (SAH), along with the enzymes and cofactors involved in OCM, may function in the different cellular compartments, particularly in the nucleus, to directly regulate the epigenome in aging and cancer.

8.
Int J Biol Sci ; 20(11): 4277-4296, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39247810

RESUMO

Recent investigations have revealed that oxidative stress can lead to neuronal damage and disrupt mitochondrial and endoplasmic reticulum functions after intracerebral hemorrhage (ICH). However, there is limited evidence elucidating their role in maintaining neuronal homeostasis. Metabolomics analysis, RNA sequencing, and CUT&Tag-seq were performed to investigate the mechanism underlying the interaction between the PERK/ATF4 branch of the endoplasmic reticulum stress (ERS) and mitochondrial one-carbon (1C) metabolism during neuronal resistance to oxidative stress. The association between mitochondrial 1C metabolism and the PERK/ATF4 branch of the ERS after ICH was investigated using transcription factor motif analysis and co-immunoprecipitation. The findings revealed interactions between the GRP78/PERK/ATF4 and mitochondrial 1C metabolism, which are important in preserving neuronal homeostasis after ICH. ATF4 is an upstream transcription factor that directly regulates the expression of 1C metabolism genes. Additionally, the GRP78/PERK/ATF4 forms a negative regulatory loop with MTHFD2 because of the interaction between GRP78 and MTHFD2. This study presents evidence of disrupted 1C metabolism and the occurrence of ERS in neurons post-ICH. Supplementing exogenous NADPH or interfering with the PERK/ATF4 could reduce symptoms related to neuronal injuries, suggesting new therapeutic prospects for ICH.


Assuntos
Fator 4 Ativador da Transcrição , Hemorragia Cerebral , Estresse do Retículo Endoplasmático , Mitocôndrias , Neurônios , eIF-2 Quinase , Fator 4 Ativador da Transcrição/metabolismo , Estresse do Retículo Endoplasmático/fisiologia , Animais , Neurônios/metabolismo , eIF-2 Quinase/metabolismo , Hemorragia Cerebral/metabolismo , Mitocôndrias/metabolismo , Chaperona BiP do Retículo Endoplasmático/metabolismo , Carbono/metabolismo , Ratos , Camundongos , Masculino , Ratos Sprague-Dawley , Estresse Oxidativo
9.
Int J Mol Sci ; 25(17)2024 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-39273288

RESUMO

Cellular metabolism is crucial for various physiological processes, with folate-dependent one-carbon (1C) metabolism playing a pivotal role. Folate, a B vitamin, is a key cofactor in this pathway, supporting DNA synthesis, methylation processes, and antioxidant defenses. In dividing cells, folate facilitates nucleotide biosynthesis, ensuring genomic stability and preventing carcinogenesis. Additionally, in neurodevelopment, folate is essential for neural tube closure and central nervous system formation. Thus, dysregulation of folate metabolism can contribute to pathologies such as cancer, severe birth defects, and neurodegenerative diseases. Epidemiological evidence highlights folate's impact on disease risk and its potential as a therapeutic target. In cancer, antifolate drugs that inhibit key enzymes of folate-dependent 1C metabolism and strategies targeting folate receptors are current therapeutic options. However, folate's impact on cancer risk is complex, varying among cancer types and dietary contexts. In neurodegenerative conditions, including Alzheimer's and Parkinson's diseases, folate deficiency exacerbates cognitive decline through elevated homocysteine levels, contributing to neuronal damage. Clinical trials of folic acid supplementation show mixed outcomes, underscoring the complexities of its neuroprotective effects. This review integrates current knowledge on folate metabolism in cancer and neurodegeneration, exploring molecular mechanisms, clinical implications, and therapeutic strategies, which can provide crucial information for advancing treatments.


Assuntos
Ácido Fólico , Neoplasias , Doenças Neurodegenerativas , Humanos , Ácido Fólico/metabolismo , Ácido Fólico/uso terapêutico , Neoplasias/metabolismo , Neoplasias/tratamento farmacológico , Doenças Neurodegenerativas/metabolismo , Doenças Neurodegenerativas/tratamento farmacológico , Animais , Carbono/metabolismo , Antagonistas do Ácido Fólico/uso terapêutico , Antagonistas do Ácido Fólico/farmacologia
10.
Cell Metab ; 36(10): 2315-2328.e6, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-39191258

RESUMO

Metabolic homeostasis is maintained by redundant pathways to ensure adequate nutrient supply during fasting and other stresses. These pathways are regulated locally in tissues and systemically via the liver, kidney, and circulation. Here, we characterize how serine, glycine, and one-carbon (SGOC) metabolism fluxes across the eye, liver, and kidney sustain retinal amino acid levels and function. Individuals with macular telangiectasia (MacTel), an age-related retinal disease with reduced circulating serine and glycine, carrying deleterious alleles in SGOC metabolic enzymes exhibit an exaggerated reduction in circulating serine. A Phgdh+/- mouse model of this haploinsufficiency experiences accelerated retinal defects upon dietary serine/glycine restriction, highlighting how otherwise silent haploinsufficiencies can impact retinal health. We demonstrate that serine-associated retinopathy and peripheral neuropathy are reversible, as both are restored in mice upon serine supplementation. These data provide molecular insights into the genetic and metabolic drivers of neuro-retinal dysfunction while highlighting therapeutic opportunities to ameliorate this pathogenesis.


Assuntos
Glicina , Retina , Serina , Animais , Serina/metabolismo , Glicina/metabolismo , Retina/metabolismo , Camundongos , Humanos , Camundongos Endogâmicos C57BL , Masculino , Nervos Periféricos/metabolismo , Feminino , Doenças Retinianas/metabolismo
11.
Am J Clin Nutr ; 120(4): 973-983, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39128498

RESUMO

BACKGROUND: Dietary Reference Intake (DRI) Recommendations for total sulfur amino acids (TSAAs; methionine + cysteine) during pregnancy are based on factorial calculations using data from adult males. To date, no data exist on TSAA requirements obtained directly during pregnancy. OBJECTIVES: The objective of this study was to examine whether TSAA requirements during early (11-20 wk) and late (31-40 wk) gestation in healthy females with singleton pregnancies are different than current recommendations, and different between early and late gestation using the indicator amino acid oxidation (IAAO) technique. METHODS: Twenty-five females 20-40 y with a healthy singleton pregnancy were studied using the IAAO technique in a repeated measures design for a total of 70, 8-h d. On each study day a methionine test intake (range: 0-40 mg⋅kg-1⋅d-1) was provided in 8 hourly, isonitrogenous and isocaloric meals with cysteine excluded from the diet. Breath samples were collected at baseline and isotopic steady state of orally provided L-1-13C-Phenylalanine for measurement of phenylalanine oxidation. The requirement was determined using biphasic linear regression crossover analysis to identify a breakpoint in 13CO2 production, representing the estimated average requirement (EAR). RESULTS: The TSAA requirement in healthy pregnant participants in early gestation was 11.1 mg⋅kg-1⋅d-1 {R2m = 0.79, R2c = 0.79; 95% confidence interval [CI] (8.9, 13.3 mg⋅kg-1⋅d-1)} and 15.0 mg⋅kg-1⋅d-1 (R2m = 0.72, R2c = 0.79; 95% CI [13.0, 17.0 mg⋅kg-1⋅d-1]) in late gestation. The difference between confidence intervals of the 2 breakpoints was = -3.9 ± 3.0, and statistically different. CONCLUSIONS: We directly measured TSAA requirements in healthy pregnant mothers, and our findings suggest that requirements are lower than current DRI recommendations of 20 and 25 mg⋅kg-1⋅d-1, as the EAR, and Recommended Dietary Allowance, respectively. Late gestation TSAA needs are significantly different and increased 35% compared with early gestation. Recommendations for TSAA intake need to be tailored for gestational stage. This clinical trial was registered at clinicaltrials.gov as NCT04326322.


Assuntos
Aminoácidos Sulfúricos , Necessidades Nutricionais , Humanos , Feminino , Gravidez , Adulto , Aminoácidos Sulfúricos/metabolismo , Aminoácidos Sulfúricos/administração & dosagem , Adulto Jovem , Canadá , Metionina/administração & dosagem , Metionina/metabolismo , Idade Gestacional , Fenômenos Fisiológicos da Nutrição Materna , Dieta
12.
J Anim Sci ; 1022024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-39215655

RESUMO

Decreased intake is induced by stressors such as parturition, transportation, dietary transitions, and disease. An important function of one-carbon metabolism (OCM) is to produce the antioxidant glutathione to help reduce oxidative stress. Although various components of OCM are expressed in the bovine rumen and small intestine, the relationship between reduced feed intake, OCM, and antioxidant mechanisms in gut tissues is unknown. This study aimed to assess alterations in immune and antioxidant pathways in ruminal epithelium due to acute feed restriction (FR). Seven group-housed ruminally cannulated Angus steers (663 ±â€…73 kg body weight, 2 yr old) had ad libitum access to a finishing diet (dry-rolled corn, corn silage, modified wet distiller's grains) during 15 d of a pre-FR period (PRE). Subsequently, steers were moved to a metabolism barn with tie stalls and individually fed at 25% of estimated intake in PRE for 3 d (FR period, FRP). This was followed by 15 d of recovery (POST) during which steers had ad libitum access to the same diet as in PRE and FRP. Plasma and ruminal tissue biopsies were collected during each period. Plasma free fatty acid and IL1-ß concentrations were higher (P ≤ 0.03) in FRP than PRE or POST. The mRNA abundance of the proinflammatory genes tumor necrosis factor, toll-like receptor 2 (TLR2), and TLR4 in the ruminal epithelium peaked (P < 0.05) at FRP and remained higher at POST. These responses agreed with the higher (P < 0.05) abundance of phosphorylated (p)-MAPK (an inflammation activator) and p-EEF2 (translational repressor) in FRP than PRE and POST. Although ruminal glutathione peroxidase (GPX) enzyme activity did not increase at FRP compared with PRE and POST, protein abundance of GPX1 and GPX3 along with the antioxidant response regulator NFE2L2 were highest (P < 0.01), and the activity of cystathionine-beta synthase tended (P = 0.06) to be highest during FR. Although FR had minimal negative effects on tissue integrity-related genes (only filamin A was downregulated), it led to a systemic inflammatory response and triggered inflammation and antioxidant mechanisms within the ruminal epithelium. Thus, deploying anti-inflammatory and antioxidant mechanisms via molecules that feed into OCM (e.g., dietary methyl donors such as methionine, choline, betaine, and folate) could potentially counteract the stressors associated with FR.


Heat stress, changing pens, transportation, and disease are stressors that often decrease feed intake. Undernutrition leads to physiological adaptations of which fat depot mobilization is especially important due to the effects of fatty acids on cell function including increased oxidative stress and inflammation. Ruminally cannulated Angus steers undergoing a 3-d feed restriction (FR) were used for ruminal papillae biopsies before, during, and after FR. Although mRNA abundance of most tissue integrity-related genes was not affected, tissue mRNA and protein abundance data revealed an inflammatory response and a more pronounced antioxidant response during FR. The latter was particularly evident by the marked upregulation of glutathione peroxidases and the activity of cystathionine ß-synthase responsible for glutathione synthesis. Future studies should address the role of nutrients feeding into OCM and their potential to induce antioxidant responses.


Assuntos
Antioxidantes , Cistationina beta-Sintase , Dieta , Inflamação , Rúmen , Animais , Rúmen/metabolismo , Bovinos , Masculino , Antioxidantes/metabolismo , Inflamação/veterinária , Inflamação/metabolismo , Dieta/veterinária , Cistationina beta-Sintase/metabolismo , Cistationina beta-Sintase/genética , Glutationa Peroxidase/metabolismo , Glutationa Peroxidase/genética , Epitélio/metabolismo , Ração Animal/análise , Privação de Alimentos
13.
Int J Cancer ; 155(11): 1944-1957, 2024 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-39109892

RESUMO

Incidence of esophageal and gastric cancer has been linked to low B-vitamin status. We conducted matched nested case-control studies of incident esophageal squamous cell carcinoma (ESCC; 340 case-control pairs) and gastric cancer (GC; 352 case-control pairs) within the Golestan Cohort Study. The primary exposure was plasma biomarkers: riboflavin and flavin mononucleotide (FMN) (vitamin B2), pyridoxal phosphate (PLP) (B6), cobalamin (B12), para-aminobenzoylglutamate (pABG) (folate), and total homocysteine (tHcy); and indicators for deficiency: 3-hydroxykyurenine-ratio (HK-r for vitamin B6) and methylmalonic acid (MMA for B12). We estimated odds ratios (ORs) and 95% confidence intervals (CIs) using conditional logistic regression adjusting for matching factors and potential confounders. High proportions of participants had low B-vitamin and high tHcy levels. None of the measured vitamin B levels was associated with the risk of ESCC and GC, but elevated level of MMA was marginally associated with ESCC (OR = 1.42, 95% CI = 0.99-2.04) and associated with GC (OR = 1.53, 95% CI = 1.05-2.22). Risk of GC was higher for the highest versus lowest quartile of HK-r (OR = 1.95, 95%CI = 1.19-3.21) and for elevated versus non-elevated HK-r level (OR = 1.59, 95% CI = 1.13-2.25). Risk of ESCC (OR = 2.81, 95% CI = 1.54-5.13) and gastric cancer (OR = 2.09, 95%CI = 1.17-3.73) was higher for the highest versus lowest quartile of tHcy. In conclusion, insufficient vitamin B12 was associated with higher risk of ESCC and GC, and insufficient vitamin B6 status was associated with higher risk of GC in this population with prevalent low plasma B-vitamin status. Higher level of tHcy, a global indicator of OCM function, was associated with higher risk of ESCC and GC.


Assuntos
Neoplasias Esofágicas , Neoplasias Gástricas , Humanos , Masculino , Pessoa de Meia-Idade , Feminino , Estudos de Casos e Controles , Neoplasias Gástricas/sangue , Neoplasias Gástricas/epidemiologia , Neoplasias Esofágicas/sangue , Neoplasias Esofágicas/epidemiologia , Estudos de Coortes , Idoso , Biomarcadores Tumorais/sangue , Carcinoma de Células Escamosas/sangue , Carcinoma de Células Escamosas/epidemiologia , Vitamina B 12/sangue , Carcinoma de Células Escamosas do Esôfago/sangue , Carcinoma de Células Escamosas do Esôfago/epidemiologia , Carcinoma de Células Escamosas do Esôfago/metabolismo , Carbono/metabolismo , Homocisteína/sangue , Adulto , Ácido Fólico/sangue , Ácido Metilmalônico/sangue , Riboflavina/sangue
14.
FASEB J ; 38(16): e70032, 2024 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-39212230

RESUMO

Prenatal multivitamins, including folic acid, are commonly consumed in excess, whereas choline, an essential nutrient and an important source of labile methyl groups, is underconsumed. Here, we characterized profiles of one-carbon metabolism and related pathways and patterns of DNA methylation in offspring exposed to excess or imbalanced micronutrients prenatally. Pregnant Wistar rats were fed either recommended 1× vitamins (RV), high 10× vitamins (HV), high 10× folic acid with recommended choline (HFolRC), or high 10× folic acid with no choline (HFolNC). Offspring were weaned to a high-fat diet for 12 weeks. Circulating metabolites were analyzed with a focus on the hypothalamus, an area known to be under epigenetic regulation. HV, HFolRC, and HFolNC males had higher body weight (BW) and lower plasma choline and methionine consistent with lower hypothalamic S-adenosylmethionine (SAM):S-adenosylhomocysteine (SAH) and global DNA methylation compared with RV. HV and HFolNC females had higher BW and lower plasma 5-methyltetrahydrofolate and methionine consistent with lower hypothalamic global DNA methylation compared with RV. Plasma dimethylglycine (DMG) and methionine were higher as with hypothalamic SAM:SAH and global DNA methylation in HFolRC females without changes in BW compared with RV. Plasma trimethylamine and trimethylamine-N-oxide were higher in males but lower in females from HFolRC compared with RV. Network modeling revealed a link between the folate-dependent pathway and SAH, with most connections through DMG. Final BW was negatively correlated with choline, DMG, and global DNA methylation. In conclusion, prenatal intake of excess or imbalanced micronutrients induces distinct metabolic and epigenetic perturbations in offspring that reflect long-term nutritional programming of health.


Assuntos
Colina , Metilação de DNA , Ácido Fólico , Metilaminas , Micronutrientes , Ratos Wistar , Animais , Feminino , Ratos , Gravidez , Masculino , Metilaminas/metabolismo , Metilaminas/sangue , Micronutrientes/metabolismo , Colina/metabolismo , Colina/farmacologia , Ácido Fólico/metabolismo , Efeitos Tardios da Exposição Pré-Natal/metabolismo , Carbono/metabolismo , Hipotálamo/metabolismo , Epigênese Genética , Metionina/metabolismo
16.
J Bone Miner Res ; 39(9): 1356-1370, 2024 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-39126376

RESUMO

The skeleton is a metabolically active organ undergoing continuous remodeling initiated by bone marrow stem cells (BMSCs). Recent research has demonstrated that BMSCs adapt the metabolic pathways to drive the osteogenic differentiation and bone formation, but the mechanism involved remains largely elusive. Here, using a comprehensive targeted metabolome and transcriptome profiling, we revealed that one-carbon metabolism was promoted following osteogenic induction of BMSCs. Methotrexate (MTX), an inhibitor of one-carbon metabolism that blocks S-adenosylmethionine (SAM) generation, led to decreased N6-methyladenosine (m6A) methylation level and inhibited osteogenic capacity. Increasing intracellular SAM generation through betaine addition rescued the suppressed m6A content and osteogenesis in MTX-treated cells. Using S-adenosylhomocysteine (SAH) to inhibit the m6A level, the osteogenic activity of BMSCs was consequently impeded. We also demonstrated that the pro-osteogenic effect of m6A methylation mediated by one-carbon metabolism could be attributed to HIF-1α and glycolysis pathway. This was supported by the findings that dimethyloxalyl glycine rescued the osteogenic potential in MTX-treated and SAH-treated cells by upregulating HIF-1α and key glycolytic enzymes expression. Importantly, betaine supplementation attenuated MTX-induced m6A methylation decrease and bone loss via promoting the abundance of SAM in rat. Collectively, these results revealed that one-carbon metabolite SAM was a potential promoter in BMSC osteogenesis via the augmentation of m6A methylation, and the cross talk between metabolic reprogramming, epigenetic modification, and transcriptional regulation of BMSCs might provide strategies for bone regeneration.


The bone is a self-renewing tissue that continues to reshape throughout life. Bone marrow mesenchymal stem cells (BMSCs) are essential for bone homeostasis as they are capable of osteogenic differentiation. Recent evidence suggests that BMSCs drive the osteogenic differentiation through metabolic reprogramming, but the mechanism remains unclear. In this paper, we explored the metabolic alteration following osteogenic induction of BMSCs and found that one-carbon metabolism was obviously promoted in this process. The underlining mechanisms of the osteogenic potential driven by one-carbon metabolism seem to be its contribution on N6-methyladenosine (m6A) methylation and consequent glycolysis level by providing methyl donor. We demonstrated that one-carbon metabolism-mediated m6A methylation was a potential promoter in BMSC osteogenesis, and metabolic-epigenetic coupling might provide novel therapeutic targets for bone regeneration.


Assuntos
Adenosina , Carbono , Osteogênese , Ratos Sprague-Dawley , S-Adenosilmetionina , Animais , S-Adenosilmetionina/metabolismo , S-Adenosilmetionina/farmacologia , Osteogênese/efeitos dos fármacos , Adenosina/análogos & derivados , Adenosina/farmacologia , Adenosina/metabolismo , Metilação/efeitos dos fármacos , Carbono/metabolismo , Carbono/farmacologia , Ratos , Células da Medula Óssea/metabolismo , Células da Medula Óssea/efeitos dos fármacos , Células da Medula Óssea/citologia , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Masculino , Metotrexato/farmacologia , Glicólise/efeitos dos fármacos , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/efeitos dos fármacos
17.
Clin Nutr ; 43(9): 2118, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39116616
18.
Int J Mol Sci ; 25(15)2024 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-39125744

RESUMO

Carcinogenesis is closely related to the expression, maintenance, and stability of DNA. These processes are regulated by one-carbon metabolism (1CM), which involves several vitamins of the complex B (folate, B2, B6, and B12), whereas alcohol disrupts the cycle due to the inhibition of folate activity. The relationship between nutrients related to 1CM (all aforementioned vitamins and alcohol) in breast cancer has been reviewed. The interplay of genes related to 1CM was also analyzed. Single nucleotide polymorphisms located in those genes were selected by considering the minor allele frequency in the Caucasian population and the linkage disequilibrium. These genes were used to perform several in silico functional analyses (considering corrected p-values < 0.05 as statistically significant) using various tools (FUMA, ShinyGO, and REVIGO) and databases such as the Kyoto Encyclopedia of Genes and Genomes (KEGG) and GeneOntology (GO). The results of this study showed that intake of 1CM-related B-complex vitamins is key to preventing breast cancer development and survival. Also, the genes involved in 1CM are overexpressed in mammary breast tissue and participate in a wide variety of biological phenomena related to cancer. Moreover, these genes are involved in alterations that give rise to several types of neoplasms, including breast cancer. Thus, this study supports the role of one-carbon metabolism B-complex vitamins and genes in breast cancer; the interaction between both should be addressed in future studies.


Assuntos
Neoplasias da Mama , Carbono , Polimorfismo de Nucleotídeo Único , Complexo Vitamínico B , Humanos , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Feminino , Complexo Vitamínico B/metabolismo , Carbono/metabolismo , Ácido Fólico/metabolismo , Bases de Dados Genéticas , Simulação por Computador , Regulação Neoplásica da Expressão Gênica , Vitamina B 6/metabolismo , Desequilíbrio de Ligação
19.
Mol Genet Metab ; 143(1-2): 108518, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39047301

RESUMO

Choline contributes to the biogenesis of methyl groups, neurotransmitters, and cell membranes. Our genome-wide association study (GWAS) of circulating choline in 2228 college students found that alleles in SLC25A48 (rs6596270) influence choline concentrations in men (p = 9.6 × 10-8), but not women. Previously, the subcellular location and function of SLC25A48 were unknown. Using super-resolution immunofluorescence microscopy, we localized SLC25A48 to the inner mitochondrial membrane. Our results suggest that SLC25A48 transports choline across the inner mitochondrial membrane.


Assuntos
Colina , Estudo de Associação Genômica Ampla , Proteínas de Transporte da Membrana Mitocondrial , Adulto , Feminino , Humanos , Masculino , Adulto Jovem , Alelos , Colina/sangue , Colina/metabolismo , Mitocôndrias/metabolismo , Mitocôndrias/genética , Polimorfismo de Nucleotídeo Único , Proteínas de Transporte da Membrana Mitocondrial/genética , Proteínas de Transporte da Membrana Mitocondrial/metabolismo
20.
bioRxiv ; 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39071273

RESUMO

Ischemic stroke is one of the leading causes of disability and death globally, with a rising incidence in younger age groups. It's well known that maternal diet during pregnancy and lactation is vital for the early neurodevelopment of offspring. One-carbon (1C) metabolism, including folic acid and choline, plays a vital role in closure of the neural tube in utero. However, the impact of maternal dietary deficiencies in 1C on offspring neurological function following ischemic stroke later in life remains undefined. The aim of this study was to investigate inflammation in blood and brain tissue of offspring from mothers deficient in dietary folic acid or choline. Female mice were maintained on either a control or deficient diets prior to and during pregnancy and lactation. When offspring were 3-months of age, ischemic stroke was induced. One and half months later blood and brain tissue were collected. We measured levels of matrix-metalloproteases (MMP)-2 and 9 in both plasma and brain tissue, and report reduced levels of MMP-2 in both, with no changes observed in MMP-9. This observation supports our working hypothesis that maternal dietary deficiencies in folic acid or choline during early neurodevelopment impact the levels of inflammation in offspring after ischemic stroke.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...