Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 18726, 2024 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-39134567

RESUMO

This paper presents an analysis of trunk movement in women with postnatal low back pain using machine learning techniques. The study aims to identify the most important features related to low back pain and to develop accurate models for predicting low back pain. Machine learning approaches showed promise for analyzing biomechanical factors related to postnatal low back pain (LBP). This study applied regression and classification algorithms to the trunk movement proposed dataset from 100 postpartum women, 50 with LBP and 50 without. The Optimized optuna Regressor achieved the best regression performance with a mean squared error (MSE) of 0.000273, mean absolute error (MAE) of 0.0039, and R2 score of 0.9968. In classification, the Basic CNN and Random Forest Classifier both attained near-perfect accuracy of 1.0, the area under the receiver operating characteristic curve (AUC) of 1.0, precision of 1.0, recall of 1.0, and F1-score of 1.0, outperforming other models. Key predictive features included pain (correlation of -0.732 with flexion range of motion), range of motion measures (flexion and extension correlation of 0.662), and average movements (correlation of 0.957 with flexion). Feature selection consistently identified pain, flexion, extension, lateral flexion, and average movement as influential across methods. While limited to this initial dataset and constrained by generalizability, machine learning offered quantitative insight. Models accurately regressed (MSE < 0.01, R2 > 0.95) and classified (accuracy > 0.94) trunk biomechanics distinguishing LBP. Incorporating additional demographic, clinical, and patient-reported factors may enhance individualized risk prediction and treatment personalization. This preliminary application of advanced analytics supported machine learning's potential utility for both LBP risk determination and outcome improvement. This study provides valuable insights into the use of machine learning techniques for analyzing trunk movement in women with postnatal low back pain and can potentially inform the development of more effective treatments.Trial registration: The trial was designed as an observational and cross-section study. The study was approved by the Ethical Committee in Deraya University, Faculty of Pharmacy, (No: 10/2023). According to the ethical standards of the Declaration of Helsinki. This study complies with the principles of human research. Each patient signed a written consent form after being given a thorough description of the trial. The study was conducted at the outpatient clinic from February 2023 till June 30, 2023.


Assuntos
Dor Lombar , Aprendizado de Máquina , Movimento , Tronco , Humanos , Dor Lombar/fisiopatologia , Dor Lombar/diagnóstico , Feminino , Adulto , Tronco/fisiopatologia , Movimento/fisiologia , Período Pós-Parto/fisiologia , Amplitude de Movimento Articular/fisiologia , Fenômenos Biomecânicos , Algoritmos , Curva ROC
2.
Foods ; 13(13)2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38998534

RESUMO

To enhance the accuracy of identifying fresh meat varieties using laser-induced breakdown spectroscopy (LIBS), we utilized the LightGBM model in combination with the Optuna algorithm. The procedure involved flattening fresh meat slices with glass slides and collecting spectral data of the plasma from the surfaces of the fresh meat tissues (pork, beef, and chicken) using LIBS technology. A total of 900 spectra were collected. Initially, we established LightGBM and SVM (support vector machine) models for the collected spectra. Subsequently, we applied information gain and peak extraction algorithms to select the features for each model. We then employed Optuna to optimize the hyperparameters of the LightGBM model, while a 10-fold cross-validation was conducted to determine the optimal parameters for SVM. Ultimately, the LightGBM model achieved higher accuracy, macro-F1, and Cohen's kappa coefficient (kappa coefficient) values of 0.9370, 0.9364, and 0.9244, respectively, compared to the SVM model's values of 0.8888, 0.8881, and 0.8666. This study provides a novel method for the rapid classification of fresh meat varieties using LIBS.

3.
Sci Rep ; 14(1): 11004, 2024 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-38744923

RESUMO

This study investigates the application of cavitation in non-invasive abdominal fat reduction and body contouring, a topic of considerable interest in the medical and aesthetic fields. We explore the potential of cavitation to alter abdominal fat composition and delve into the optimization of fat prediction models using advanced hyperparameter optimization techniques, Hyperopt and Optuna. Our objective is to enhance the predictive accuracy of abdominal fat dynamics post-cavitation treatment. Employing a robust dataset with abdominal fat measurements and cavitation treatment parameters, we evaluate the efficacy of our approach through regression analysis. The performance of Hyperopt and Optuna regression models is assessed using metrics such as mean squared error, mean absolute error, and R-squared score. Our results reveal that both models exhibit strong predictive capabilities, with R-squared scores reaching 94.12% and 94.11% for post-treatment visceral fat, and 71.15% and 70.48% for post-treatment subcutaneous fat predictions, respectively. Additionally, we investigate feature selection techniques to pinpoint critical predictors within the fat prediction models. Techniques including F-value selection, mutual information, recursive feature elimination with logistic regression and random forests, variance thresholding, and feature importance evaluation are utilized. The analysis identifies key features such as BMI, waist circumference, and pretreatment fat levels as significant predictors of post-treatment fat outcomes. Our findings underscore the effectiveness of hyperparameter optimization in refining fat prediction models and offer valuable insights for the advancement of non-invasive fat reduction methods. This research holds important implications for both the scientific community and clinical practitioners, paving the way for improved treatment strategies in the realm of body contouring.


Assuntos
Gordura Abdominal , Aprendizado de Máquina , Humanos , Contorno Corporal/métodos , Masculino , Feminino , Gordura Intra-Abdominal , Adulto
4.
Sci Rep ; 14(1): 9728, 2024 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-38678078

RESUMO

Tunnel Boring Machines (TBMs) are pivotal in underground projects like subways, highways, and water supply tunnels. Predicting and monitoring jack speed and torque is crucial for optimizing TBM excavation efficiency. Conventionally, skilled operators manually adjust numerous tunnelling parameters to regulate the machine's progress. In contrast, machine learning (ML) algorithms offer a promising avenue where computers learn from operator actions to establish parameter relationships autonomously. This study introduces an innovative approach to enhancing operator monitoring and TBM data comprehension. A robust correlation between TBM operator behaviour and TBM logged data is established by leveraging an Optuna-assisted ML methodology-the research light on the intricate dynamics influencing TBM advance rate parameters. Operational data is collected from micro slurry tunnel boring machine (MSTBM) umbrella support excavations. The proposed framework harnesses Optuna, an advanced hyperparameter optimization platform, to dynamically refine jack speed and torque settings. Through meticulous analysis of the interplay between TBM operator decisions and real-time logged data, the AI model discerns patterns, empowering informed decision-making. Using Optuna, a range of models, including random forest (RF), K-nearest neighbours (kNN), decision tree (DT), XGBoost, Support Vector Machine (SVM), and Artificial Neural Network (ANN) were automatically compared and tuned. The best model's (RF) performance is evaluated through a correlation coefficient (R2) of 96%, mean squared error (MSE) of 119.7, and mean absolute error (MAE) of 4.42 for jack speed decision making while 83% of R2, MSE of 0.62, and MAE of 0.42 for the torque decision making. This intelligent model can assist the TBM operator in making decisions about TBM control.

5.
Diagnostics (Basel) ; 13(22)2023 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-37998575

RESUMO

The paper focuses on the hepatitis C virus (HCV) infection in Egypt, which has one of the highest rates of HCV in the world. The high prevalence is linked to several factors, including the use of injection drugs, poor sterilization practices in medical facilities, and low public awareness. This paper introduces a hyOPTGB model, which employs an optimized gradient boosting (GB) classifier to predict HCV disease in Egypt. The model's accuracy is enhanced by optimizing hyperparameters with the OPTUNA framework. Min-Max normalization is used as a preprocessing step for scaling the dataset values and using the forward selection (FS) wrapped method to identify essential features. The dataset used in the study contains 1385 instances and 29 features and is available at the UCI machine learning repository. The authors compare the performance of five machine learning models, including decision tree (DT), support vector machine (SVM), dummy classifier (DC), ridge classifier (RC), and bagging classifier (BC), with the hyOPTGB model. The system's efficacy is assessed using various metrics, including accuracy, recall, precision, and F1-score. The hyOPTGB model outperformed the other machine learning models, achieving a 95.3% accuracy rate. The authors also compared the hyOPTGB model against other models proposed by authors who used the same dataset.

6.
Mol Inform ; 42(11): e202300128, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37679293

RESUMO

The multi-step retrosynthesis problem can be solved by a search algorithm, such as Monte Carlo tree search (MCTS). The performance of multistep retrosynthesis, as measured by a trade-off in search time and route solvability, therefore depends on the hyperparameters of the search algorithm. In this paper, we demonstrated the effect of three MCTS hyperparameters (number of iterations, tree depth, and tree width) on metrics such as Linear integrated speed-accuracy score (LISAS) and Inverse efficiency score which consider both route solvability and search time. This exploration was conducted by employing three data-driven approaches, namely a systematic grid search, Bayesian optimization over an ensemble of molecules to obtain static MCTS hyperparameters, and a machine learning approach to dynamically predict optimal MCTS hyperparameters given an input target molecule. With the obtained results on the internal dataset, we demonstrated that it is possible to identify a hyperparameter set which outperforms the current AiZynthFinder default setting. It appeared optimal across a variety of target input molecules, both on proprietary and public datasets. The settings identified with the in-house dataset reached a solvability of 93 % and median search time of 151 s for the in-house dataset, and a 74 % solvability and 114 s for the ChEMBL dataset. These numbers can be compared to the current default settings which solved 85 % and 73 % during a median time of 110s and 84 s, for in-house and ChEMBL, respectively.


Assuntos
Algoritmos , Benchmarking , Teorema de Bayes , Aprendizado de Máquina , Método de Monte Carlo
7.
Mol Ther ; 31(8): 2543-2551, 2023 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-37271991

RESUMO

5-methylcytosine (m5C) is indeed a critical post-transcriptional alteration that is widely present in various kinds of RNAs and is crucial to the fundamental biological processes. By correctly identifying the m5C-methylation sites on RNA, clinicians can more clearly comprehend the precise function of these m5C-sites in different biological processes. Due to their effectiveness and affordability, computational methods have received greater attention over the last few years for the identification of methylation sites in various species. To precisely identify RNA m5C locations in five different species including Homo sapiens, Arabidopsis thaliana, Mus musculus, Drosophila melanogaster, and Danio rerio, we proposed a more effective and accurate model named m5C-pred. To create m5C-pred, five distinct feature encoding techniques were combined to extract features from the RNA sequence, and then we used SHapley Additive exPlanations to choose the best features among them, followed by XGBoost as a classifier. We applied the novel optimization method called Optuna to quickly and efficiently determine the best hyperparameters. Finally, the proposed model was evaluated using independent test datasets, and we compared the results with the previous methods. Our approach, m5C- pred, is anticipated to be useful for accurately identifying m5C sites, outperforming the currently available state-of-the-art techniques.


Assuntos
Drosophila melanogaster , RNA , Animais , Camundongos , RNA/genética , Drosophila melanogaster/genética , Sequência de Bases
8.
Front Physiol ; 14: 1072273, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36891146

RESUMO

Introduction: Globally, hypertension (HT) is a substantial risk factor for cardiovascular disease and mortality; hence, rapid identification and treatment of HT is crucial. In this study, we tested the light gradient boosting machine (LightGBM) machine learning method for blood pressure stratification based on photoplethysmography (PPG), which is used in most wearable devices. Methods: We used 121 records of PPG and arterial blood pressure (ABP) signals from the Medical Information Mart for Intensive Care III public database. PPG, velocity plethysmography, and acceleration plethysmography were used to estimate blood pressure; the ABP signals were used to determine the blood pressure stratification categories. Seven feature sets were established and used to train the Optuna-tuned LightGBM model. Three trials compared normotension (NT) vs. prehypertension (PHT), NT vs. HT, and NT + PHT vs. HT. Results: The F1 scores for these three classification trials were 90.18%, 97.51%, and 92.77%, respectively. The results showed that combining multiple features from PPG and its derivative led to a more accurate classification of HT classes than using features from only the PPG signal. Discussion: The proposed method showed high accuracy in stratifying HT risks, providing a noninvasive, rapid, and robust method for the early detection of HT, with promising applications in the field of wearable cuffless blood pressure measurement.

9.
Micromachines (Basel) ; 14(2)2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-36837965

RESUMO

The transmission characteristics of the printed circuit board (PCB) ensure signal integrity and support the entire circuit system, with impedance matching being critical in the design of high-speed PCB circuits. Because the factors affecting impedance are closely related to the PCB production process, circuit designers and manufacturers must work together to adjust the target impedance to maintain signal integrity. Five machine learning models, including decision tree (DT), random forest (RF), extreme gradient boosting (XGBoost), categorical boosting (CatBoost), and light gradient boosting machine (LightGBM), were used to forecast target impedance values. Furthermore, the Optuna algorithm is used to determine forecasting model hyperparameters. This study applied tree-based machine learning techniques with Optuna to predict impedance. The results revealed that five tree-based machine learning models with Optuna can generate satisfying forecasting accuracy in terms of three measurements, including mean absolute percentage error (MAPE), root mean square error (RMSE), and coefficient of determination (R2). Meanwhile, the LightGBM model with Optuna outperformed the other models. In addition, by using Optuna to tune the parameters of machine learning models, the accuracy of impedance matching can be increased. Thus, the results of this study suggest that the tree-based machine learning techniques with Optuna are a viable and promising alternative for predicting impedance values for circuit analysis.

10.
Entropy (Basel) ; 24(11)2022 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-36359649

RESUMO

The huge amount of power fingerprint data often has the problem of unbalanced categories and is difficult to upload by the limited data transmission rate for IoT communications. An optimized LightGBM power fingerprint extraction and identification method based on entropy features is proposed. First, the voltage and current signals were extracted on the basis of the time-domain features and V-I trajectory features, and a 56-dimensional original feature set containing six entropy features was constructed. Then, the Boruta algorithm with a light gradient boosting machine (LightGBM) as the base learner was used for feature selection of the original feature set, and a 23-dimensional optimal feature subset containing five entropy features was determined. Finally, the Optuna algorithm was used to optimize the hyperparameters of the LightGBM classifier. The classification performance of the power fingerprint identification model on imbalanced datasets was further improved by improving the loss function of the LightGBM model. The experimental results prove that the method can effectively reduce the computational complexity of feature extraction and reduce the amount of power fingerprint data transmission. It meets the recognition accuracy and efficiency requirements of a massive power fingerprint identification system.

11.
Environ Sci Pollut Res Int ; 29(43): 64939-64958, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35476269

RESUMO

Understanding the dynamics of water quality in any water body is vital for the sustainability of our water resources. Thus, investigating spatio-temporal changes of dominant water quality parameters (WQPs) in any study is indeed critical for proposing the appropriate treatment for the water bodies. Traditionally, concentrations of WQPs have been measured through intensive fieldwork. Additionally, many studies have attempted to retrieve concentrations of WQPs from satellite images using regression-based methods. However, the relationship between WQPs and satellite data is complex to be modeled accurately by using simple regression-based methods. Our study attempts to develop a machine learning model for mapping the concentrations of dominant optical and non-optical WQPs such as electrical conductivity (EC), pH, temperature (Temp), total dissolved solids (TDS), silicon dioxide (SiO2), and dissolved oxygen (DO). In this context, a remote sensing framework based on the extreme gradient boosting (XGBoost) and multi-layer perceptron (MLP) regressor with optimized hyper parameters (HPs) to quantify concentrations of different WQPs from the Landsat-8 satellite imagery is developed. We evaluated six years of satellite data stretching spatially from upstream to downstream Ankinghat to Chopan (20 stations under Central Water Commission (CWC), Middle Ganga Basin) for characterizing the trends of dominant physico-chemical WQPs across the four clusters identified in our previous study. Through the developed XGBoost and MLP regression models between measured WQPs and the reflectance of the pixels corresponding to the sampling stations, a significant coefficient of determination (R2) in the range of 0.88-0.98 for XGBoost and 0.72-0.97 for MLP were generated, with bands B1-B4 and their ratios more consistent. Indeed, these findings indicate that from a small number of in-situ measurements, we can develop reliable models to estimate the spatio-temporal variations of physico-chemical and biological WQPs. Therefore, models generated from Landsat-8 could facilitate the environmental, economic, and social management of any waterbody.


Assuntos
Tecnologia de Sensoriamento Remoto , Qualidade da Água , Monitoramento Ambiental/métodos , Aprendizado de Máquina , Oxigênio , Dióxido de Silício
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...