Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 688
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-39238383

RESUMO

The human microbiota represents the community and diverse population of microbes within the human body, which comprises approximately 100 trillion micro-organisms. They exist in the human gastrointestinal tract and various other organs and are now considered virtual body organs. It is mainly represented by bacteria but also includes viruses, fungi, and protozoa. Although there is a heritable component to the gut microbiota, environmental factors related to diet, drugs, and anthropometry determine the composition of the microbiota. Besides the gastrointestinal tract, the human body also harbours microbial communities in the skin, oral and nasal cavities, and reproductive tract. The current review demonstrates the role of gut microbiota and its involvement in processing food, drugs, and immune responses. The discussion focuses on the implications of human microbiota in developing several diseases, such as gastrointestinal infections, metabolic disorders, malignancies, etc., through symbiotic relationships. The microbial population may vary depending on the pathophysiological condition of an individual and thus may be exploited as a therapeutic and clinical player. Further, we need a more thorough investigation to establish the correlation between microbes and pathophysiology in humans and propose them as potential therapeutic targets.

2.
Front Microbiol ; 15: 1431785, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39228377

RESUMO

The review aimed to investigate the diversity of oral microbiota and its influencing factors, as well as the association of oral microbiota with oral health and the possible effects of dysbiosis and oral disorder. The oral cavity harbors a substantial microbial burden, which is particularly notable compared to other organs within the human body. In usual situations, the microbiota exists in a state of equilibrium; however, when this balance is disturbed, a multitude of complications arise. Dental caries, a prevalent issue in the oral cavity, is primarily caused by the colonization and activity of bacteria, particularly streptococci. Furthermore, this environment also houses other pathogenic bacteria that are associated with the onset of gingival, periapical, and periodontal diseases, as well as oral cancer. Various strategies have been employed to prevent, control, and treat these disorders. Recently, techniques utilizing microbiota, like probiotics, microbiota transplantation, and the replacement of oral pathogens, have caught the eye. This extensive examination seeks to offer a general view of the oral microbiota and their metabolites concerning oral health and disease, and also the resilience of the microbiota, and the techniques used for the prevention, control, and treatment of disorders in this specific area.

3.
J Infect Dis ; 230(Supplement_2): S87-S94, 2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-39255395

RESUMO

Periodontitis is a common chronic inflammatory disease, affecting approximately 19% of the global adult population. A relationship between periodontal disease and Alzheimer disease has long been recognized, and recent evidence has been uncovered to link these 2 diseases mechanistically. Periodontitis is caused by dysbiosis in the subgingival plaque microbiome, with a pronounced shift in the oral microbiota from one consisting primarily of Gram-positive aerobic bacteria to one predominated by Gram-negative anaerobes, such as Porphyromonas gingivalis. A common phenomenon shared by all bacteria is the release of membrane vesicles to facilitate biomolecule delivery across long distances. In particular, the vesicles released by P gingivalis and other oral pathogens have been found to transport bacterial components across the blood-brain barrier, initiating the physiologic changes involved in Alzheimer disease. In this review, we summarize recent data that support the relationship between vesicles secreted by periodontal pathogens to Alzheimer disease pathology.


Assuntos
Doença de Alzheimer , Periodontite , Porphyromonas gingivalis , Doença de Alzheimer/microbiologia , Doença de Alzheimer/metabolismo , Humanos , Periodontite/microbiologia , Porphyromonas gingivalis/patogenicidade , Disbiose/microbiologia , Infecções Bacterianas/microbiologia , Barreira Hematoencefálica/microbiologia , Animais , Microbiota
4.
Clin Exp Med ; 24(1): 209, 2024 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-39230790

RESUMO

The oral cavity may play a role as a reservoir and in the transmission and colonization of Helicobacter pylori. The route of transmission for H. pylori is not fully understood. The prevalence of this pathogen varies globally, affecting half of the world's population, predominantly in developing countries. Here, we review the prevalence of H. pylori in the oral cavity, the characteristics that facilitate its colonization and dynamics in the oral microbiome, the heterogeneity and diversity of virulence of among strains, and noninvasive techniques for H. pylori detection in oral samples. The prevalence of H. pylori in the oral cavity varies greatly, being influenced by the characteristics of the population, regions where samples are collected in the oral cavity, and variations in detection methods. Although there is no direct association between the presence of H. pylori in oral samples and stomach infection, positive cases for gastric H. pylori frequently exhibit a higher prevalence of the bacterium in the oral cavity, suggesting that the stomach may not be the sole reservoir of H. pylori. In the oral cavity, H. pylori can cause microbiome imbalance and remodeling of the oral ecosystem. Detection of H. pylori in the oral cavity by a noninvasive method may provide a more accessible diagnostic tool as well as help prevent transmission and gastric re-colonization. Further research into this bacterium in the oral cavity will offer insights into the treatment of H. pylori infection, potentially developing new clinical approaches.


Assuntos
Infecções por Helicobacter , Helicobacter pylori , Boca , Humanos , Helicobacter pylori/genética , Helicobacter pylori/isolamento & purificação , Boca/microbiologia , Infecções por Helicobacter/microbiologia , Infecções por Helicobacter/transmissão , Prevalência , Microbiota , Virulência
5.
Nat Sci Sleep ; 16: 1091-1108, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39100910

RESUMO

Background: Obstructive sleep apnea (OSA) patients commonly experience high rates of depression. This study aims to examine the oral microbiota characteristics of OSA and those with comorbid major depressive disorder (OSA+MDD) patients. Methods: Participants were enrolled from Aug 2022 to Apr 2023. Polysomnography, psychiatrist interviews, and scales were used to diagnose OSA and MDD. Oral samples were collected from participants by rubbing swabs on buccal mucosa, palate, and gums. Oral microbiota was analyzed via whole-genome metagenomics and bioinformatic analysis followed sequencing. Venous blood was drawn to detect plasma inflammatory factor levels. Results: The study enrolled 33 OSA patients, 28 OSA+MDD patients, and 28 healthy controls. Significant differences were found in 8 phyla, 229 genera, and 700 species of oral microbiota among the three groups. Prevotellaceae abundance in the OSA and OSA+MDD groups was significantly lower than that in healthy controls. Linear discriminant analysis effect size (LEfSe) analysis showed that Streptococcaceae and Actinobacteria were the characteristic oral microbiota of the OSA and OSA+MDD groups, respectively. KEGG analysis indicates 30 pathways were changed in the OSA and OSA+MDD groups compared with healthy controls, and 23 pathways were changed in the OSA group compared with the OSA+MDD group. Levels of IL-6 in the OSA+MDD group were significantly higher than in the healthy group, correlating positively with the abundance of Schaalia, Campylobacter, Fusobacterium, Alloprevotella, and Candidatus Nanosynbacter in the oral, as well as with Hamilton Anxiety Rating Scale and Hamilton Depression Rating Scale scores. Conclusion: Significant differences in oral microbiota populations and gene function were observed among the three groups. OSA patients were characterized by a decreased abundance of Prevotellaceae and an increased abundance of Streptococcaceae. OSA+MDD patients had an increased abundance of Actinobacteria. IL-6 might regulate the relationship between depression and the oral microbiota in OSA+MDD patients.

6.
Am J Med ; 2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39151680

RESUMO

BACKGROUND: Many individuals experience long COVID after SARS-CoV-2 infection. As microbiota can influence health, it may change with COVID-19. This study investigated differences in oral microbiota between COVID-19 patients with and without long COVID. METHODS: Based on a prospective follow-up investigation, this nested case-control study evaluated the differences in oral microbiota in individuals with and without long COVID (Symptomatic and Asymptomatic groups), which were assessed by 16S rRNA sequencing on tongue coating samples. A predictive model was established using machine learning based on specific differential microbial communities. RESULTS: One-hundred-and-eight patients were included (n=54 Symptomatic group). The Symptomatic group had higher Alpha diversity indices (observed_otus, Chao1, Shannon, and Simpson indices), differences in microbial composition (Beta diversity), and microbial dysbiosis with increased diversity and relative abundance of pathogenic bacteria. Marker bacteria (c__Campylobacterota, o__Coriobacteriales, o__Pseudomonadales, and o__Campylobacterales) were associated with long COVID by linear discriminant analysis effect size and receiver operating characteristic curves (AUC 0.821). CONCLUSION: There were distinct variations in oral microbiota between COVID-19 patients with and without long COVID. Changes in oral microbiota may indicate long COVID.

7.
Food Sci Nutr ; 12(8): 5329-5340, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39139934

RESUMO

Bee Propolis has been used for its therapeutic properties, including anti-inflammatory, antibacterial, antifungal, and immune-stimulating properties, for centuries as a functional food. This study reviewed the effectiveness of propolis as a functional food on oral-related diseases as a rich bioflavonoid produced by honey bees. A literature search was conducted to identify studies published that investigated the effects of propolis on oral health and its ability to treat related diseases. The search was performed in electronic databases using relevant keywords. Initially, 3429 studies were identified through database searching, and based on the inclusion and exclusion criteria, 22 articles were eligible to be included. Reviewing the articles, propolis was recognized as a functional food and promising agent to balance oral microbiota and prevent oral diseases due to its effectiveness on related bacteria, its anti-inflammatory properties, and its activity against Porphyromonas gingivalis and Actinomyces Oris allowed it to be an effective substance to prevent periodontal diseases. Based on our findings, Propolis is a desirable preventive option for various oral health conditions, including dental caries and periodontal diseases. Therefore, it is recommended to be consumed as a functional food in our daily diet, which can reduce the risk of oral disease and improve oral health.

8.
J Clin Med ; 13(15)2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-39124746

RESUMO

Background/Objectives: Gastroesophageal reflux disease (GORD) is caused by gastric contents refluxing back into the oesophagus and oral cavity. It can lead to injuries to the mucosa in the form of erosion and ulcers. Our past research have shown acid reflux severity and disease progression is associated with alternations in the microbiota of the distal oesophagus. The aim of this study was to explore whether changes in the oral microbiota occurred in GORD patients and establish any associations with reflux severity. Methods: Fresh mouthwash samples were collected from 58 patients experiencing reflux symptoms referred for 24 h pH monitoring. The participants were categorised into three groups based on their DeMeester scores: Normal (<14.72), Mild (14.2-50), and Moderate/severe (>51). Microorganism identity and diversity were generated using hypervariable tag sequencing and analysing the V1-V3 region of the 16S rRNA gene. Results: No differences in microbiota diversity were found in oral microbiota between groups using the Chiao1 diversity index and Shannon diversity index. Microbiota in the Mild group showed reductions in Rothia dentocariosa and Lautropia, while Moryella and Clostridiales_1 were increased compared with the Normal group. In the Moderate/severe group, the abundance of Rothia aeria was reduced compared with the Normal group, while Schwartzia, Rs_045, Paludibacter, S. satelles, Treponema, and T. socranskii all had increased abundance. The abundance of Prevotella pallens was higher in the Mild group compared with Moderate/severe, while S. satelles and Paludibacter abundances were lower. Conclusions: Our study shows the oral microbiome show significant differences between acid reflux severity groups, as categorised by DeMeester score.

9.
Vet Sci ; 11(8)2024 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-39195805

RESUMO

Probiotics demonstrated effectiveness in modulating oral microbiota and improving oral health in humans and rodents. However, its effects and applications on the oral microbiota of cats remain underexplored. Twelve healthy cats were randomly assigned to a control group (CON) and a composite probiotic group (CPG) for a 42-day trial. The CPG diet included additional supplementation of Bifidobacterium animalis subsp. lactis HN019, Lactobacillus acidophilus NCFM, and Lactobacillus casei LC-11, each at approximately 1 × 1010 CFU/kg. On days 0 and 42, microbial samples were collected from the gingiva, tooth surfaces, and tongue of all cats for 16S rRNA gene sequencing. Bacteroidetes, Firmicutes, and Proteobacteria were the dominant phyla across all oral sites. The CPG treatment enriched seven genera, such as Moraxella, Actinomyces, and Frederiksenia in the gingiva. Meanwhile, Bergeyella and Streptococcus were enriched on the tooth surfaces, while Bergeyella, Flavobacterium, and Luteimonas were enriched on the tongue. Furthermore, the composite probiotic effectively suppressed eight genera, such as Bacteroides, Desulfovibrio, and Filifactor in the gingiva of CPG cats, as well as Helcococcus, Lentimicrobium, and Campylobacter on tooth surfaces, and Porphyromonas, Treponema, and Fusibacter on the tongue. These findings suggest that the composite probiotic used in this study modulates the feline oral microbiota by supporting beneficial or commensal bacteria and inhibiting oral pathogens, demonstrating potential to improve oral health in cats.

10.
Sci Rep ; 14(1): 18402, 2024 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-39117753

RESUMO

Gaining a comprehensive understanding of the role played by the oral microbiome in moderate to severe plaque psoriasis and its potential implications for disease management and development holds significant importance. With the objective of exploring correlations between the oral microbiota and severe psoriasis, this study involved 72 severe psoriasis patients and 16 healthy individuals, whose clinical manifestations and living habits were carefully recorded. Cutting-edge techniques such as 16S rRNA gene sequencing and bioinformatics analysis were employed to compare the microbial flora, investigating dynamic changes among severe plaque psoriasis patients, psoriatic arthritis patients and healthy individuals. The findings revealed noteworthy patterns including increased levels of Aggregatibacter in the psoriatic arthritis group, accompanied by a decrease in the level of Prevotella. Moreover, the enrichment o Capnocytandophaga (P = 0.009), Campylobacter (P = 0.0022), and Acetobacter (P = 0.0292) was notably more substantial in the psoriasis group compared to the control group, whereas certain bacterial species such as Bacteroides (P = 0.0049), Muribaculaceae (P = 0.0048) demonstrated decreased enrichment. Additionally, the psoriatic arthritis group exhibited significantly higher levels of Ralstonia, Bifidobacterium and Micromonospora. Based on these findings, it can be inferred that individuals with lower levels of Prevotella and higher levels of Corynebacterium may be more susceptible to psoriasis exacerbation.


Assuntos
Artrite Psoriásica , Microbiota , Psoríase , RNA Ribossômico 16S , Humanos , Artrite Psoriásica/microbiologia , Feminino , Masculino , Psoríase/microbiologia , Microbiota/genética , Adulto , Pessoa de Meia-Idade , RNA Ribossômico 16S/genética , Boca/microbiologia , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Doenças da Unha/microbiologia , Estudos de Casos e Controles
11.
Cureus ; 16(7): e64396, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39130947

RESUMO

Orthodontic appliances significantly influence the microbiological dynamics within the oral cavity, transforming symbiotic relationships into dysbiotic states that can lead to periodontal diseases. This review synthesizes current findings on how orthodontic treatments, particularly fixed and removable appliances, foster niches for bacterial accumulation and complicate oral hygiene maintenance. Advanced culture-independent methods were employed to identify shifts toward anaerobic and pathogenic bacteria, with fixed appliances showing a more pronounced impact compared to clear aligners. The study underscores the importance of meticulous oral hygiene practices and routine dental monitoring to manage these microbial shifts effectively. By highlighting the relationship between appliance type, surface characteristics, treatment duration, and microbial changes, this review aims to enhance dental professionals' understanding of periodontal risks associated with orthodontic appliances and strategies to mitigate these risks. The findings are intended to guide clinicians in optimizing orthodontic care to prevent plaque-associated diseases, ensuring better periodontal health outcomes for patients undergoing orthodontic treatment.

12.
Front Microbiol ; 15: 1442126, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39211320

RESUMO

Introduction: Atopic dermatitis (AD) is a common clinical recurrent atopic disease in dermatology, most seen in children and adolescents. In recent years, AD has been found to be closely associated with microbial communities. Methods: To explore the synergistic effects between colonizing bacteria from different sites and AD, we comparatively analyzed the skin, oral, and gut microbiota of children with AD (50 individuals) and healthy children (50 individuals) by 16S rRNA gene sequencing. Twenty samples were also randomly selected from both groups for metabolic and macrogenomic sequencing. Results: The results of our sequencing study showed reduced microbiota diversity in the oral, skin, and gut of children with AD (P < 0.05). Metabolomics analysis showed that serotonergic synapse, arachidonic acid metabolism, and steroid biosynthesis were downregulated at all three loci in the oral, skin, and gut of children with AD (P < 0.05). Macrogenomic sequencing analysis showed that KEGG functional pathways of the three site flora were involved in oxidative phosphorylation, ubiquitin-mediated proteolysis, mRNA surveillance pathway, ribosome biogenesis in eukaryotes, proteasome, basal transcription factors, peroxisome, MAPK signaling pathway, mitophagy, fatty acid elongation, and so on (P < 0.05). Discussion: The combined microbial, metabolic, and macrogenetic analyses identified key bacteria, metabolites, and pathogenic pathways that may be associated with AD development. We provides a more comprehensive and in-depth understanding of the role of the microbiota at different sites in AD patients, pointing to new directions for future diagnosis, treatment and prognosis.

13.
J Oral Microbiol ; 16(1): 2391640, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39161727

RESUMO

Gastric cancer is one of the most common malignant tumors worldwide and has a high mortality rate. However, tests for the early screening and diagnosis of gastric cancer are limited and invasive. Certain oral microorganisms are over-expressed in gastric cancer, but there is heterogeneity among different studies. Notably, each oral ecological niche harbors specific microorganisms. Among them, tongue coating, saliva, and dental plaque are important and unique ecological niches in the oral cavity. The colonization environment in different oral niches may be a source of heterogeneity. In this paper, we systematically discuss the latest developments in the field of the oral microbiota and gastric cancer and elucidate the enrichment of microorganisms in the oral ecological niches of the tongue coatings, saliva, and dental plaque in gastric cancer patients. The various potential mechanisms by which the oral microbiota induces gastric cancer (activation of an excessive inflammatory response; promotion of proliferation, migration, invasion, and metastasis; and secretion of carcinogens, leading to imbalance in gastric microbial communities) are explored. In this paper, we also highlight the applications of the rapeutics targeting the oral microbiota in gastric cancer and suggests future research directions related to the relationship between the oral microbiota and gastric cancer.

14.
BMC Oral Health ; 24(1): 993, 2024 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-39182077

RESUMO

BACKGROUND: Periodontitis is the sixth-most common disease worldwide. The oral microbiome composition and its association with Periodontal disease (PD) have been largely explored; however, limited studies have explored the microbial profiles of both oral and toothbrushes in patients with PD. Thus, this study aimed to ascertain the oral and toothbrushes microbial composition in high-altitude populations, hypothesizing that their correlation with periodontal health would differ from those at lower altitudes, potentially indicating links between environmental factors, microbial colonization patterns, and periodontal health in distinct geographic contexts. METHODS: In the present study, we enrolled 35 individuals including 21 healthy and 14 diagnosed with PD from the Lhasa region of Tibet, China. Saliva and toothbrush samples were collected from each participant to assess the association between toothbrush usage and oral microbiome with PD using 16 S rRNA gene-specific V3-V4 regions sequencing. To assess the oral and toothbrush microbiome composition and diversity and its possible link to PD. RESULTS: Significantly higher Alpha diversity (Shannon index) was observed between the PD group and PD toothbrushes (p = 0.00021) and between the PD group and Healthy toothbrushes (p = 0.00041). The predominant species were Proteobacteria, Bacteroidota, Firmicutes, Actinobacteria, and Fusobacteria, with genera Pseudomonas, Veillonella, Neisseria, Acinetobacter, and Haemophilus. In addition, PICRUST2 analysis unveiled 44 significant pathways differentiating the disease and healthy groups, along with 29 pathways showing significant differences between their respective toothbrush microbial profiles. The distinct oral and toothbrush microbial composition among high-altitude populations suggests potential adaptations to the challenges of high-altitude environments. CONCLUSION: This study emphasizes the importance of tailored dental care strategies, accounting for altitude and racial factors, to effectively manage periodontal health in these communities. Further research is warranted to investigate the specific microbial mechanisms and develop targeted interventions for optimizing oral health in populations across varying altitudes.


Assuntos
Altitude , Doenças Periodontais , Escovação Dentária , Humanos , Masculino , Estudos de Casos e Controles , Feminino , Escovação Dentária/instrumentação , Adulto , Doenças Periodontais/microbiologia , Pessoa de Meia-Idade , Microbiota , Tibet , Saliva/microbiologia , Boca/microbiologia
15.
BMC Oral Health ; 24(1): 1001, 2024 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-39187802

RESUMO

BACKGROUND: Oral microbiota comprises polymicrobial communities shaped by mutualistic coevolution with the host, contributing to homeostasis and regulating immune function. Nevertheless, dysbiosis of oral bacterial communities is associated with a number of clinical symptoms that ranges from infections to oral cancer. Peri-implant diseases are biofilm-associated inflammatory conditions affecting the soft and hard tissues around dental implants. Characterization and identification of the biofilm community are essential for the understanding of the pathophysiology of such diseases. For that sampling methods should be representative of the biofilm communities Therefore, there is a need to know the effect of different sampling strategies on the biofilm characterization by next generation sequencing. METHODS: With the aim of selecting an appropriate microbiome sampling procedure for periimplant biofilms, next generation sequencing was used for characterizing the bacterial communities obtained by three different sampling strategies two months after transepithelial abutment placement: adjacent periodontal crevicular fluid (ToCF), crevicular fluid from transepithelial abutment (TACF) and transepithelial abutment (TA). RESULTS: Significant differences in multiple alpha diversity indices were detected at both the OTU and the genus level between different sampling procedures. Differentially abundant taxa were detected between sample collection strategies, including peri-implant health and disease related taxa. At the community level significant differences were also detected between TACF and TA and also between TA and ToCF. Moreover, differential network properties and association patterns were identified. CONCLUSIONS: The selection of sample collection strategy can significantly affect the community composition and structure. TRIAL REGISTRATION: This research is part of a randomized clinical trial that was designed to assess the effect of transepithelial abutment surface on the biofilm formation. The trial was registered at Trial Registration ClinicalTrials.gov under the number NCT03554876.


Assuntos
Biofilmes , Implantes Dentários , Líquido do Sulco Gengival , Microbiota , Humanos , Líquido do Sulco Gengival/microbiologia , Implantes Dentários/microbiologia , Pessoa de Meia-Idade , Manejo de Espécimes/métodos , Feminino , Masculino , Sequenciamento de Nucleotídeos em Larga Escala , Bactérias/classificação , Bactérias/isolamento & purificação , Idoso
16.
Int J Mol Sci ; 25(13)2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-39000406

RESUMO

Diabetes mellitus (DM) poses a significant challenge to global health, with its prevalence projected to rise dramatically by 2045. This narrative review explores the bidirectional relationship between periodontitis (PD) and type 1 diabetes mellitus (T1DM), focusing on cellular and molecular mechanisms derived from the interplay between oral microbiota and the host immune response. A comprehensive search of studies published between 2008 and 2023 was conducted to elucidate the association between these two diseases. Preclinical and clinical evidence suggests a bidirectional relationship, with individuals with T1DM exhibiting heightened susceptibility to periodontitis, and vice versa. The review includes recent findings from human clinical studies, revealing variations in oral microbiota composition in T1DM patients, including increases in certain pathogenic species such as Porphyromonas gingivalis, Prevotella intermedia, and Aggregatibacter actinomycetemcomitans, along with shifts in microbial diversity and abundance. Molecular mechanisms underlying this association involve oxidative stress and dysregulated host immune responses, mediated by inflammatory cytokines such as IL-6, IL-8, and MMPs. Furthermore, disruptions in bone turnover markers, such as RANKL and OPG, contribute to periodontal complications in T1DM patients. While preventive measures to manage periodontal complications in T1DM patients may improve overall health outcomes, further research is needed to understand the intricate interactions between oral microbiota, host response, periodontal disease, and systemic health in this population.


Assuntos
Diabetes Mellitus Tipo 1 , Microbiota , Doenças Periodontais , Humanos , Diabetes Mellitus Tipo 1/microbiologia , Diabetes Mellitus Tipo 1/complicações , Doenças Periodontais/microbiologia , Periodontite/microbiologia , Periodontite/complicações , Periodontite/imunologia
17.
J Reprod Immunol ; 165: 104298, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39002425

RESUMO

BACKGROUND: This study aims to conduct a preliminary exploration of the correlation between the oral microbiota of full-term pregnant women and both local placental immunity and the systemic immune system of the mother. METHODS: A total of 26 pregnant women participated in this study, with samples collected from oral swabs, placental tissue, and peripheral venous blood. High-throughput sequencing was used to examine the oral microbial community. Flow cytometry was employed to assess immune cells in placental tissue and peripheral venous blood. ELISA and Luminex liquid bead chip technology were utilized to detect cytokines in both placental tissue and peripheral venous blood. RESULTS: In placental tissue, The oral microbial community is primarily negatively correlated with placental CD3+CD4+CD8+T cells and positively correlated with placental IL-5. In the peripheral blood, The oral microbial community is primarily positively correlated with maternal systemic immune parameters, including CD3+CD4+ T cells and the CD4+/CD8+ ratio, as well as positively correlated with peripheral IL-18. CONCLUSIONS: The oral microbiota of full-term pregnant women participates in the regulatory function of the maternal immune system. Meanwhile, the oral microbial community may also be an important factor mediating local immune regulation in the placenta.


Assuntos
Microbiota , Placenta , Humanos , Feminino , Gravidez , Microbiota/imunologia , Adulto , Placenta/imunologia , Placenta/microbiologia , Boca/microbiologia , Boca/imunologia , Interleucina-5/imunologia , Interleucina-5/metabolismo
18.
J Oral Microbiol ; 16(1): 2382620, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39055280

RESUMO

Background: Oral microbes mediate the production of nitric oxide (NO) through the denitrification pathway. This study aimed to investigate the association between oral microbial nitrate metabolism and prognosis in acute ischemic stroke (AIS) patients. Methods: This prospective, observational, single-center cohort study included 124 AIS patients admitted within 24 hours of symptom onset, with 24-hour ambulatory blood pressure data. Oral swabs were collected within 24 hours. Hypertensive AIS patients were stratified by the coefficient of variation (CV) of 24-hour systolic blood pressure. Microbial composition was analyzed using LEfSe and PICRUSt2 for bacterial and functional pathway identification. Results: Significant differences in oral microbiota composition were observed between hypertensive AIS patients with varying CVs. Lower CV groups showed enrichment of nitrate-reducing bacteria and "Denitrification, nitrate => nitrogen" pathways. The TAX score of oral nitrate-reducing bacteria, derived from LASSO modeling, independently correlated with 90-day modified Rankin Scale scores, serving as an independent risk factor for poor prognosis. Mediation analyses suggested indirect that the TAX score not only directly influences outcomes but also indirectly affects them by modulating 24-hour systolic blood pressure CV. Conclusions: AIS patients with comorbid hypertension and higher systolic blood pressure CV exhibited reduced oral nitrate-reducing bacteria, potentially worsening outcomes.

19.
Front Cell Infect Microbiol ; 14: 1383878, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39055977

RESUMO

Objective: The human microbiota plays a key role in cancer diagnosis, pathogenesis, and treatment. However, osteosarcoma-associated oral microbiota alterations have not yet been unraveled. The aim of this study was to explore the characteristics of oral microbiota in osteosarcoma patients compared to healthy controls, and to identify potential microbiota as a diagnostic tool for osteosarcoma. Methods: The oral microbiota was analyzed in osteosarcoma patients (n = 45) and matched healthy controls (n = 90) using 16S rRNA MiSeq sequencing technology. Results: The microbial richness and diversity of the tongue coat were increased in osteosarcoma patients as estimated by the abundance-based coverage estimator indices, the Chao, and observed operational taxonomy units (OTUs). Principal component analysis delineated that the oral microbial community was significant differences between osteosarcoma patients and healthy controls. 14 genera including Rothia, Halomonas, Rhodococcus, and Granulicatella were remarkably reduced, whereas Alloprevotella, Prevotella, Selenomonas, and Campylobacter were enriched in osteosarcoma. Eventually, the optimal four OTUs were identified to construct a microbial classifier by the random forest model via a fivefold cross-validation, which achieved an area under the curve of 99.44% in the training group (30 osteosarcoma patients versus 60 healthy controls) and 87.33% in the test group (15 osteosarcoma patients versus 30 healthy controls), respectively. Notably, oral microbial markers validated strong diagnostic potential distinguishing osteosarcoma patients from healthy controls. Conclusion: This study comprehensively characterizes the oral microbiota in osteosarcoma and reveals the potential efficacy of oral microbiota-targeted biomarkers as a noninvasive biological diagnostic tool for osteosarcoma.


Assuntos
Bactérias , Microbiota , Boca , Osteossarcoma , RNA Ribossômico 16S , Humanos , Osteossarcoma/microbiologia , Osteossarcoma/diagnóstico , Masculino , Feminino , RNA Ribossômico 16S/genética , Boca/microbiologia , Adulto , Adulto Jovem , Bactérias/classificação , Bactérias/isolamento & purificação , Bactérias/genética , Adolescente , Estudos de Casos e Controles , DNA Bacteriano/genética , Neoplasias Ósseas/microbiologia , Neoplasias Ósseas/diagnóstico , Análise de Sequência de DNA
20.
bioRxiv ; 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-39005279

RESUMO

Background: Lifestyle plays an important role in shaping the gut microbiome. However, its contributions to the oral microbiome remains less clear, due to the confounding effects of geography and methodology in investigations of populations studied to date. Furthermore, while the oral microbiome seems to differ between foraging and industrialized populations, we lack insight into whether transitions to and away from agrarian lifestyles shape the oral microbiota. Given the growing interest in so-called 'vanishing microbiomes' potentially being a risk factor for increased disease prevalence in industrialized populations, it is important that we distinguish lifestyle from geography in the study of microbiomes across populations. Results: Here, we investigate salivary microbiomes of 63 Nepali individuals representing a spectrum of lifestyles: foraging, subsistence farming (individuals that transitioned from foraging to farming within the last 50 years), agriculturalists (individuals that have transitioned to farming for at least 300 years), and industrialists (expatriates that immigrated to the United States within the last 20 years). We characterize the role of lifestyle in microbial diversity, identify microbes that differ between lifestyles, and pinpoint specific lifestyle factors that may be contributing to differences in the microbiomes across populations. Contrary to prevailing views, when geography is controlled for, oral microbiome alpha diversity does not differ significantly across lifestyles. Microbiome composition, however, follows the gradient of lifestyles from foraging through agrarianism to industrialism, supporting the notion that lifestyle indeed plays a role in the oral microbiome. Relative abundances of several individual taxa, including Streptobacillus and an unclassified Porphyromonadaceae genus, also mirror lifestyle. Finally, we identify specific lifestyle factors associated with microbiome composition across the gradient of lifestyles, including smoking and grain source. Conclusion: Our findings demonstrate that by controlling for geography, we can isolate an important role for lifestyle in determining oral microbiome composition. In doing so, we highlight the potential contributions of several lifestyle factors, underlining the importance of carefully examining the oral microbiome across lifestyles to improve our understanding of global microbiomes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...